| 1 |
gezelter |
1934 |
/* |
| 2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
|
|
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
|
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
|
*/ |
| 42 |
|
|
|
| 43 |
|
|
#include "applications/dynamicProps/cOHz.hpp" |
| 44 |
|
|
#include "math/LegendrePolynomial.hpp" |
| 45 |
|
|
#include "utils/simError.h" |
| 46 |
|
|
|
| 47 |
|
|
namespace OpenMD { |
| 48 |
|
|
COHZ::COHZ(SimInfo* info, |
| 49 |
|
|
const std::string& filename, |
| 50 |
|
|
const std::string& sele1, |
| 51 |
|
|
const std::string& sele2, |
| 52 |
|
|
int order, int nZbins, |
| 53 |
|
|
long long int memSize) |
| 54 |
|
|
: ParticleTimeCorrFunc(info, filename, sele1, sele2, |
| 55 |
|
|
DataStorage::dslAmat, memSize), nZBins_(nZbins) { |
| 56 |
|
|
|
| 57 |
|
|
setCorrFuncType("Legendre Correlation Function for OH bond vector of Z"); |
| 58 |
|
|
setOutputName1(getPrefix(dumpFilename_) + ".cohZ"); |
| 59 |
|
|
setOutputName2(getPrefix(dumpFilename_) + ".lcorrZ"); |
| 60 |
|
|
histogram_.resize(nTimeBins_); |
| 61 |
|
|
counts_.resize(nTimeBins_); |
| 62 |
|
|
for (int i = 0; i < nTimeBins_; i++) { |
| 63 |
|
|
histogram_[i].resize(nZBins_); |
| 64 |
|
|
counts_[i].resize(nZBins_); |
| 65 |
|
|
} |
| 66 |
|
|
LegendrePolynomial polynomial(order); |
| 67 |
|
|
legendre_ = polynomial.getLegendrePolynomial(order); |
| 68 |
|
|
} |
| 69 |
|
|
|
| 70 |
|
|
void COHZ::correlateFrames(int frame1, int frame2) { |
| 71 |
|
|
Snapshot* snapshot1 = bsMan_->getSnapshot(frame1); |
| 72 |
|
|
Snapshot* snapshot2 = bsMan_->getSnapshot(frame2); |
| 73 |
|
|
assert(snapshot1 && snapshot2); |
| 74 |
|
|
|
| 75 |
|
|
Mat3x3d hmat = snapshot1->getHmat(); |
| 76 |
|
|
RealType halfBoxZ_ = hmat(2,2) / 2.0; |
| 77 |
|
|
|
| 78 |
|
|
RealType time1 = snapshot1->getTime(); |
| 79 |
|
|
RealType time2 = snapshot2->getTime(); |
| 80 |
|
|
|
| 81 |
|
|
int timeBin = int ((time2 - time1) /deltaTime_ + 0.5); |
| 82 |
|
|
|
| 83 |
|
|
int i; |
| 84 |
|
|
int j; |
| 85 |
|
|
StuntDouble* sd1; |
| 86 |
|
|
StuntDouble* sd2; |
| 87 |
|
|
|
| 88 |
|
|
for (sd1 = seleMan1_.beginSelected(i), sd2 = seleMan2_.beginSelected(j); |
| 89 |
|
|
sd1 != NULL && sd2 != NULL; |
| 90 |
|
|
sd1 = seleMan1_.nextSelected(i), sd2 = seleMan2_.nextSelected(j)) { |
| 91 |
|
|
|
| 92 |
|
|
Vector3d pos = sd1->getPos(); |
| 93 |
|
|
if (info_->getSimParams()->getUsePeriodicBoundaryConditions()) |
| 94 |
|
|
snapshot1->wrapVector(pos); |
| 95 |
|
|
int zBin = int(nZBins_ * (halfBoxZ_ + pos.z()) / hmat(2,2)); |
| 96 |
|
|
|
| 97 |
|
|
Vector3d corrVals = calcCorrVals(frame1, frame2, sd1, sd2); |
| 98 |
|
|
histogram_[timeBin][zBin] += corrVals; |
| 99 |
|
|
counts_[timeBin][zBin]++; |
| 100 |
|
|
} |
| 101 |
|
|
|
| 102 |
|
|
} |
| 103 |
|
|
|
| 104 |
|
|
void COHZ::postCorrelate() { |
| 105 |
|
|
for (int i =0 ; i < nTimeBins_; ++i) { |
| 106 |
|
|
for (int j = 0; j < nZBins_; ++j) { |
| 107 |
|
|
if (counts_[i][j] > 0) { |
| 108 |
|
|
histogram_[i][j] /= counts_[i][j]; |
| 109 |
|
|
} |
| 110 |
|
|
} |
| 111 |
|
|
} |
| 112 |
|
|
} |
| 113 |
|
|
|
| 114 |
|
|
void COHZ::preCorrelate() { |
| 115 |
|
|
for (int i = 0; i < nTimeBins_; i++) { |
| 116 |
|
|
std::fill(histogram_[i].begin(), histogram_[i].end(), Vector3d(0.0)); |
| 117 |
|
|
std::fill(counts_[i].begin(), counts_[i].end(), 0); |
| 118 |
|
|
} |
| 119 |
|
|
} |
| 120 |
|
|
|
| 121 |
|
|
Vector3d COHZ::calcCorrVals(int frame1, int frame2, StuntDouble* sd1, StuntDouble* sd2) { |
| 122 |
|
|
|
| 123 |
|
|
// Vectors v1x, v1y, and v1z are the body-fixed axes on the |
| 124 |
|
|
// molecule in frame 1 in the laboratory frame. |
| 125 |
|
|
|
| 126 |
|
|
// Vectors v2x, v2y, and v2z are the body-fixed axes on the |
| 127 |
|
|
// molecule in frame 2 in the laboratory frame. |
| 128 |
|
|
|
| 129 |
|
|
// Vectors u1 & u2 are the first OH bond vector in frames 1 & 2 |
| 130 |
|
|
// respectively. Here we assume SPC/E geometry. |
| 131 |
|
|
|
| 132 |
|
|
// Vectors w1 & w2 are the second OH bond vector in frames 1 & 2 |
| 133 |
|
|
// respectively. Here we assume SPC/E geometry. |
| 134 |
|
|
|
| 135 |
|
|
Vector3d v1x = sd1->getA(frame1).getRow(0); |
| 136 |
|
|
Vector3d v2x = sd2->getA(frame2).getRow(0); |
| 137 |
|
|
|
| 138 |
|
|
Vector3d v1y = sd1->getA(frame1).getRow(1); |
| 139 |
|
|
Vector3d v2y = sd2->getA(frame2).getRow(1); |
| 140 |
|
|
|
| 141 |
|
|
Vector3d v1z = sd1->getA(frame1).getRow(2); |
| 142 |
|
|
Vector3d v2z = sd2->getA(frame2).getRow(2); |
| 143 |
|
|
|
| 144 |
|
|
Vector3d u1 = 0.81649 * v1y + 0.57736 * v1z; |
| 145 |
|
|
Vector3d u2 = 0.81649 * v2y + 0.57736 * v2z; |
| 146 |
|
|
|
| 147 |
|
|
Vector3d w1 = -0.81649 * v1y + 0.57736 * v1z; |
| 148 |
|
|
Vector3d w2 = -0.81649 * v2y + 0.57736 * v2z; |
| 149 |
|
|
|
| 150 |
|
|
|
| 151 |
|
|
RealType vprod = legendre_.evaluate(dot(v1z, v2z)/(v1z.length()*v2z.length())); |
| 152 |
|
|
RealType uprod = legendre_.evaluate(dot(u1, u2)/(u1.length()*u2.length())); |
| 153 |
|
|
RealType wprod = legendre_.evaluate(dot(w1, w2)/(w1.length()*w2.length())); |
| 154 |
|
|
|
| 155 |
|
|
return Vector3d(vprod, uprod, wprod); |
| 156 |
|
|
|
| 157 |
|
|
} |
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
|
|
void COHZ::validateSelection(const SelectionManager& seleMan) { |
| 161 |
|
|
StuntDouble* sd; |
| 162 |
|
|
int i; |
| 163 |
|
|
for (sd = seleMan1_.beginSelected(i); sd != NULL; sd = seleMan1_.nextSelected(i)) { |
| 164 |
|
|
if (!sd->isDirectionalAtom()) { |
| 165 |
|
|
sprintf(painCave.errMsg, |
| 166 |
|
|
"LegendreCorrFunc::validateSelection Error: selected atoms are not Directional\n"); |
| 167 |
|
|
painCave.isFatal = 1; |
| 168 |
|
|
simError(); |
| 169 |
|
|
} |
| 170 |
|
|
} |
| 171 |
|
|
|
| 172 |
|
|
} |
| 173 |
|
|
|
| 174 |
|
|
void COHZ::writeCorrelate() { |
| 175 |
|
|
std::ofstream ofs1(getOutputFileName1().c_str()); |
| 176 |
|
|
std::ofstream ofs2(getOutputFileName2().c_str()); |
| 177 |
|
|
|
| 178 |
|
|
if (ofs1.is_open()) { |
| 179 |
|
|
|
| 180 |
|
|
ofs1 << "#" << getCorrFuncType() << "\n"; |
| 181 |
|
|
ofs1 << "#time\tPn(costheta_z)\n"; |
| 182 |
|
|
|
| 183 |
|
|
for (int i = 0; i < nTimeBins_; ++i) { |
| 184 |
|
|
|
| 185 |
|
|
ofs1 << time_[i]; |
| 186 |
|
|
|
| 187 |
|
|
for (int j = 0; j < nZBins_; ++j) { |
| 188 |
|
|
ofs1 << "\t" << 0.5*(histogram_[i][j](1) + histogram_[i][j](2)); |
| 189 |
|
|
} |
| 190 |
|
|
ofs1 << "\n"; |
| 191 |
|
|
} |
| 192 |
|
|
|
| 193 |
|
|
} else { |
| 194 |
|
|
sprintf(painCave.errMsg, |
| 195 |
|
|
"cOHz::writeCorrelate Error: fail to open %s\n", getOutputFileName1().c_str()); |
| 196 |
|
|
painCave.isFatal = 1; |
| 197 |
|
|
simError(); |
| 198 |
|
|
} |
| 199 |
|
|
ofs1.close(); |
| 200 |
|
|
|
| 201 |
|
|
if (ofs2.is_open()) { |
| 202 |
|
|
|
| 203 |
|
|
ofs2 << "#" << getCorrFuncType() << "\n"; |
| 204 |
|
|
ofs2 << "#time\tPn(costheta_z)\n"; |
| 205 |
|
|
|
| 206 |
|
|
for (int i = 0; i < nTimeBins_; ++i) { |
| 207 |
|
|
|
| 208 |
|
|
ofs2 << time_[i]; |
| 209 |
|
|
|
| 210 |
|
|
for (int j = 0; j < nZBins_; ++j) { |
| 211 |
|
|
ofs2 << "\t" << histogram_[i][j](0); |
| 212 |
|
|
} |
| 213 |
|
|
ofs2 << "\n"; |
| 214 |
|
|
} |
| 215 |
|
|
|
| 216 |
|
|
} else { |
| 217 |
|
|
sprintf(painCave.errMsg, |
| 218 |
|
|
"cOHz::writeCorrelate Error: fail to open %s\n", getOutputFileName2().c_str()); |
| 219 |
|
|
painCave.isFatal = 1; |
| 220 |
|
|
simError(); |
| 221 |
|
|
} |
| 222 |
|
|
ofs2.close(); |
| 223 |
|
|
} |
| 224 |
|
|
} |