--- trunk/src/applications/hydrodynamics/AnalyticalModel.cpp 2006/03/17 23:20:35 906 +++ trunk/src/applications/hydrodynamics/AnalyticalModel.cpp 2006/03/20 19:12:14 908 @@ -74,62 +74,55 @@ bool AnalyticalModel::calcHydroProps(Spheric* spheric, } /** - * calculate the ratio of friction coeffiction constant between ellipsoid and spheric - * with same volume. - * @param m - * @param n - * @note * Reference: - * - * (1) Victor A. Bloomfield, On-Line Biophysics Textbook, Volume: Separations and Hydrodynamics - * Chapter 1,Survey of Biomolecular Hydrodynamics - * http://www.biophysics.org/education/vbloomfield.pdf * (2) F. Perrin , J. Phys. Radium, [7] 5, 497-511, 1934 * (3) F. Perrin, J. Phys. Radium, [7] 7, 1-11, 1936 */ bool AnalyticalModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { - double ft; - double fra; - double frb; - double a = ellipsoid->getA(); - double b = ellipsoid->getB(); - double q = a/b; //? - if (q > 1.0) {//prolate - ft = sqrt(1-q*q)/(pow(q, 2.0/3.0)*log((1 + sqrt(1-q*q))/q)); - fra = 4*(1-q*q)/(3*(2 - 2*pow(q, 4.0/3.0)/ft)); //not sure - frb = 4*(1-q*q*q*q) /(3*q*q*(2*pow(q, -2.0/3.0)*(2-q*q)/ft-2)); - } else {//oblate - ft = sqrt(1-q*q)/(pow(q, 2.0/3.0)*atan(sqrt(q*q-1))); - fra = 4*(1-q*q)/(3*(2 - 2*pow(q, 4.0/3.0)/ft)); //not sure - frb = 4*(1-q*q*q*q) /(3*q*q*(2*pow(q, -2.0/3.0)*(2-q*q)/ft-2)); + + double rMajor = ellipsoid->getRMajor(); + double rMinor = ellipsoid->getRMinor(); + + double a = rMinor; + double b = rMajor; + double a2 = a * a; + double b2 = b* b; + + double p = a /b; + double S; + if (p > 1.0) { //prolate + S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); + } { //oblate + S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); } - - double radius = pow(a*a*b, 1.0/3.0); + + double P = 1.0/(a2 - b2) * (S - 2.0/a); + double Q = 0.5/(a2-b2) * (2.0*a/b2 - S); + + double transMinor = 16.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); + double transMajor = 32.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); + double rotMinor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); + double rotMajor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); + + HydroProps props; - double Xitt = 6.0 * NumericConstant::PI * viscosity * radius; - double Xirr = 8.0 * NumericConstant::PI * viscosity * radius * radius * radius; - props.Xi(0, 0) = Xitt; - props.Xi(1, 1) = Xitt; - props.Xi(2, 2) = Xitt; - props.Xi(3, 3) = Xirr; - props.Xi(4, 4) = Xirr; - props.Xi(5, 5) = Xirr; + + props.Xi(0,0) = transMajor; + props.Xi(1,1) = transMajor; + props.Xi(2,2) = transMinor; + props.Xi(3,3) = rotMajor; + props.Xi(4,4) = rotMajor; + props.Xi(5,5) = rotMinor; const double convertConstant = 6.023; //convert poise.angstrom to amu/fs props.Xi *= convertConstant; - props.Xi(0,0) *= ft; - props.Xi(1,1) *= ft; - props.Xi(2,2) *= ft; - props.Xi(3,3) *= fra; - props.Xi(4,4) *= fra; - props.Xi(5,5) *= frb; Mat6x6d XiCopy = props.Xi; - XiCopy /= OOPSEConstant::kb * temperature; invertMatrix(XiCopy, props.D); double kt = OOPSEConstant::kB * temperature; props.D *= kt; - + props.Xi *= OOPSEConstant::kb * temperature; + setCR(props); setCD(props);