# | Line 44 | Line 44 | |
---|---|---|
44 | #include "math/DynamicRectMatrix.hpp" | |
45 | #include "math/SquareMatrix3.hpp" | |
46 | #include "utils/OOPSEConstant.hpp" | |
47 | < | #include "applications/hydrodynamics/Spheric.hpp" |
48 | < | #include "applications/hydrodynamics/Ellipsoid.hpp" |
47 | > | #include "hydrodynamics/Sphere.hpp" |
48 | > | #include "hydrodynamics/Ellipsoid.hpp" |
49 | #include "applications/hydrodynamics/CompositeShape.hpp" | |
50 | #include "math/LU.hpp" | |
51 | + | #include "utils/simError.h" |
52 | namespace oopse { | |
53 | /** | |
54 | * Reference: | |
# | Line 56 | Line 57 | namespace oopse { | |
57 | * Biophysical Journal, 75(6), 3044, 1999 | |
58 | */ | |
59 | ||
60 | < | ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ |
61 | < | /* |
62 | < | DynamicProperty::const_iterator iter; |
63 | < | |
63 | < | iter = extraParams.find("Viscosity"); |
64 | < | if (iter != extraParams.end()) { |
65 | < | boost::any param = iter->second; |
66 | < | viscosity = boost::any_cast<double>(param); |
67 | < | }else { |
68 | < | std::cout << "ApproximationModel Error\n" ; |
69 | < | } |
70 | < | |
71 | < | iter = extraParams.find("Temperature"); |
72 | < | if (iter != extraParams.end()) { |
73 | < | boost::any param = iter->second; |
74 | < | temperature = boost::any_cast<double>(param); |
75 | < | }else { |
76 | < | std::cout << "ApproximationModel Error\n" ; |
77 | < | } |
78 | < | */ |
79 | < | } |
80 | < | |
81 | < | bool ApproximationModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) { |
82 | < | return internalCalcHydroProps(static_cast<Shape*>(spheric), viscosity, temperature); |
83 | < | } |
84 | < | |
85 | < | bool ApproximationModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { |
86 | < | return internalCalcHydroProps(static_cast<Shape*>(ellipsoid), viscosity, temperature); |
87 | < | } |
88 | < | bool ApproximationModel::calcHydroProps(CompositeShape* compositeShape, double viscosity, double temperature) { |
89 | < | return internalCalcHydroProps(static_cast<Shape*>(compositeShape), viscosity, temperature); |
90 | < | } |
91 | < | |
92 | < | |
93 | < | bool ApproximationModel::internalCalcHydroProps(Shape* shape, double viscosity, double temperature) { |
60 | > | ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ |
61 | > | } |
62 | > | |
63 | > | void ApproximationModel::init() { |
64 | if (!createBeads(beads_)) { | |
65 | < | std::cout << "can not create beads" << std::endl; |
66 | < | return false; |
65 | > | sprintf(painCave.errMsg, "ApproximationModel::init() : Can not create beads\n"); |
66 | > | painCave.isFatal = 1; |
67 | > | simError(); |
68 | } | |
69 | < | |
69 | > | |
70 | > | } |
71 | > | |
72 | > | bool ApproximationModel::calcHydroProps(Shape* shape, double viscosity, double temperature) { |
73 | > | |
74 | bool ret = true; | |
75 | HydroProps cr; | |
76 | HydroProps cd; | |
77 | calcHydroPropsAtCR(beads_, viscosity, temperature, cr); | |
78 | < | calcHydroPropsAtCD(beads_, viscosity, temperature, cd); |
78 | > | //calcHydroPropsAtCD(beads_, viscosity, temperature, cd); |
79 | setCR(cr); | |
80 | setCD(cd); | |
81 | ||
82 | return true; | |
83 | < | } |
84 | < | |
85 | < | bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
86 | < | |
83 | > | } |
84 | > | |
85 | > | bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
86 | > | |
87 | int nbeads = beads.size(); | |
88 | DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); | |
89 | DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); | |
# | Line 118 | Line 93 | bool ApproximationModel::calcHydroPropsAtCR(std::vecto | |
93 | I(2, 2) = 1.0; | |
94 | ||
95 | for (std::size_t i = 0; i < nbeads; ++i) { | |
96 | < | for (std::size_t j = 0; j < nbeads; ++j) { |
97 | < | Mat3x3d Tij; |
96 | > | for (std::size_t j = 0; j < nbeads; ++j) { |
97 | > | Mat3x3d Tij; |
98 | if (i != j ) { | |
99 | < | Vector3d Rij = beads[i].pos - beads[j].pos; |
100 | < | double rij = Rij.length(); |
101 | < | double rij2 = rij * rij; |
102 | < | double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
103 | < | Mat3x3d tmpMat; |
104 | < | tmpMat = outProduct(Rij, Rij) / rij2; |
105 | < | double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
106 | < | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
99 | > | Vector3d Rij = beads[i].pos - beads[j].pos; |
100 | > | double rij = Rij.length(); |
101 | > | double rij2 = rij * rij; |
102 | > | double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
103 | > | Mat3x3d tmpMat; |
104 | > | tmpMat = outProduct(Rij, Rij) / rij2; |
105 | > | double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
106 | > | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
107 | }else { | |
108 | < | double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
109 | < | Tij(0, 0) = constant; |
110 | < | Tij(1, 1) = constant; |
111 | < | Tij(2, 2) = constant; |
108 | > | double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
109 | > | Tij(0, 0) = constant; |
110 | > | Tij(1, 1) = constant; |
111 | > | Tij(2, 2) = constant; |
112 | } | |
113 | B.setSubMatrix(i*3, j*3, Tij); | |
114 | < | } |
114 | > | } |
115 | } | |
116 | < | |
116 | > | |
117 | //invert B Matrix | |
118 | invertMatrix(B, C); | |
119 | ||
120 | //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) | |
121 | std::vector<Mat3x3d> U; | |
122 | for (int i = 0; i < nbeads; ++i) { | |
123 | < | Mat3x3d currU; |
124 | < | currU.setupSkewMat(beads[i].pos); |
125 | < | U.push_back(currU); |
123 | > | Mat3x3d currU; |
124 | > | currU.setupSkewMat(beads[i].pos); |
125 | > | U.push_back(currU); |
126 | } | |
127 | ||
128 | //calculate Xi matrix at arbitrary origin O | |
129 | Mat3x3d Xiott; | |
130 | Mat3x3d Xiorr; | |
131 | Mat3x3d Xiotr; | |
132 | < | |
132 | > | |
133 | //calculate the total volume | |
134 | < | |
134 | > | |
135 | double volume = 0.0; | |
136 | for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { | |
137 | < | volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
137 | > | volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
138 | } | |
139 | < | |
139 | > | |
140 | for (std::size_t i = 0; i < nbeads; ++i) { | |
141 | < | for (std::size_t j = 0; j < nbeads; ++j) { |
142 | < | Mat3x3d Cij; |
143 | < | C.getSubMatrix(i*3, j*3, Cij); |
144 | < | |
145 | < | Xiott += Cij; |
146 | < | Xiotr += U[i] * Cij; |
147 | < | Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
148 | < | } |
141 | > | for (std::size_t j = 0; j < nbeads; ++j) { |
142 | > | Mat3x3d Cij; |
143 | > | C.getSubMatrix(i*3, j*3, Cij); |
144 | > | |
145 | > | Xiott += Cij; |
146 | > | Xiotr += U[i] * Cij; |
147 | > | //Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
148 | > | Xiorr += -U[i] * Cij * U[j]; |
149 | > | } |
150 | } | |
151 | < | |
151 | > | |
152 | const double convertConstant = 6.023; //convert poise.angstrom to amu/fs | |
153 | Xiott *= convertConstant; | |
154 | Xiotr *= convertConstant; | |
155 | Xiorr *= convertConstant; | |
156 | ||
181 | – | |
157 | ||
158 | + | |
159 | Mat3x3d tmp; | |
160 | Mat3x3d tmpInv; | |
161 | Vector3d tmpVec; | |
# | Line 269 | Line 245 | bool ApproximationModel::calcHydroPropsAtCR(std::vecto | |
245 | ||
246 | return true; | |
247 | } | |
248 | < | |
249 | < | bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
250 | < | |
248 | > | |
249 | > | bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
250 | > | |
251 | int nbeads = beads.size(); | |
252 | DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); | |
253 | DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); | |
# | Line 281 | Line 257 | bool ApproximationModel::calcHydroPropsAtCD(std::vecto | |
257 | I(2, 2) = 1.0; | |
258 | ||
259 | for (std::size_t i = 0; i < nbeads; ++i) { | |
260 | < | for (std::size_t j = 0; j < nbeads; ++j) { |
261 | < | Mat3x3d Tij; |
262 | < | if (i != j ) { |
263 | < | Vector3d Rij = beads[i].pos - beads[j].pos; |
264 | < | double rij = Rij.length(); |
265 | < | double rij2 = rij * rij; |
266 | < | double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
267 | < | Mat3x3d tmpMat; |
268 | < | tmpMat = outProduct(Rij, Rij) / rij2; |
269 | < | double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
270 | < | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
271 | < | }else { |
272 | < | double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
273 | < | Tij(0, 0) = constant; |
274 | < | Tij(1, 1) = constant; |
275 | < | Tij(2, 2) = constant; |
300 | < | } |
301 | < | B.setSubMatrix(i*3, j*3, Tij); |
260 | > | for (std::size_t j = 0; j < nbeads; ++j) { |
261 | > | Mat3x3d Tij; |
262 | > | if (i != j ) { |
263 | > | Vector3d Rij = beads[i].pos - beads[j].pos; |
264 | > | double rij = Rij.length(); |
265 | > | double rij2 = rij * rij; |
266 | > | double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
267 | > | Mat3x3d tmpMat; |
268 | > | tmpMat = outProduct(Rij, Rij) / rij2; |
269 | > | double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
270 | > | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
271 | > | }else { |
272 | > | double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
273 | > | Tij(0, 0) = constant; |
274 | > | Tij(1, 1) = constant; |
275 | > | Tij(2, 2) = constant; |
276 | } | |
277 | + | B.setSubMatrix(i*3, j*3, Tij); |
278 | + | } |
279 | } | |
280 | < | |
280 | > | |
281 | //invert B Matrix | |
282 | invertMatrix(B, C); | |
283 | < | |
283 | > | |
284 | //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) | |
285 | std::vector<Mat3x3d> U; | |
286 | for (int i = 0; i < nbeads; ++i) { | |
287 | < | Mat3x3d currU; |
288 | < | currU.setupSkewMat(beads[i].pos); |
289 | < | U.push_back(currU); |
287 | > | Mat3x3d currU; |
288 | > | currU.setupSkewMat(beads[i].pos); |
289 | > | U.push_back(currU); |
290 | } | |
291 | ||
292 | //calculate Xi matrix at arbitrary origin O | |
# | Line 322 | Line 298 | bool ApproximationModel::calcHydroPropsAtCD(std::vecto | |
298 | ||
299 | double volume = 0.0; | |
300 | for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { | |
301 | < | volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
301 | > | volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
302 | } | |
303 | < | |
303 | > | |
304 | for (std::size_t i = 0; i < nbeads; ++i) { | |
305 | < | for (std::size_t j = 0; j < nbeads; ++j) { |
306 | < | Mat3x3d Cij; |
307 | < | C.getSubMatrix(i*3, j*3, Cij); |
305 | > | for (std::size_t j = 0; j < nbeads; ++j) { |
306 | > | Mat3x3d Cij; |
307 | > | C.getSubMatrix(i*3, j*3, Cij); |
308 | ||
309 | < | Xitt += Cij; |
310 | < | Xitr += U[i] * Cij; |
311 | < | Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
312 | < | } |
309 | > | Xitt += Cij; |
310 | > | Xitr += U[i] * Cij; |
311 | > | //Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
312 | > | Xirr += -U[i] * Cij * U[j]; |
313 | > | } |
314 | } | |
315 | < | |
315 | > | |
316 | const double convertConstant = 6.023; //convert poise.angstrom to amu/fs | |
317 | Xitt *= convertConstant; | |
318 | Xitr *= convertConstant; | |
319 | Xirr *= convertConstant; | |
320 | < | |
320 | > | |
321 | double kt = OOPSEConstant::kB * temperature; | |
322 | < | |
322 | > | |
323 | Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O | |
324 | Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O | |
325 | Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O | |
326 | < | |
326 | > | |
327 | const static Mat3x3d zeroMat(0.0); | |
328 | ||
329 | Mat3x3d XittInv(0.0); | |
# | Line 457 | Line 434 | bool ApproximationModel::calcHydroPropsAtCD(std::vecto | |
434 | std::cout << Xidrr << std::endl; | |
435 | ||
436 | return true; | |
437 | < | |
438 | < | } |
437 | > | |
438 | > | } |
439 | ||
440 | < | /* |
464 | < | void ApproximationModel::writeBeads(std::ostream& os) { |
440 | > | void ApproximationModel::writeBeads(std::ostream& os) { |
441 | std::vector<BeadParam>::iterator iter; | |
442 | os << beads_.size() << std::endl; | |
443 | os << "Generated by Hydro" << std::endl; | |
444 | for (iter = beads_.begin(); iter != beads_.end(); ++iter) { | |
445 | < | os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; |
445 | > | os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; |
446 | } | |
447 | < | |
447 | > | |
448 | > | } |
449 | } | |
473 | – | */ |
474 | – | |
475 | – | |
476 | – | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |