| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "applications/hydrodynamics/ApproximationModel.hpp" | 
| 43 | #include "math/LU.hpp" | 
| 44 | #include "math/DynamicRectMatrix.hpp" | 
| 45 | #include "math/SquareMatrix3.hpp" | 
| 46 | #include "utils/OOPSEConstant.hpp" | 
| 47 | #include "applications/hydrodynamics/Spheric.hpp" | 
| 48 | #include "applications/hydrodynamics/Ellipsoid.hpp" | 
| 49 | #include "applications/hydrodynamics/CompositeShape.hpp" | 
| 50 | #include "math/LU.hpp" | 
| 51 | #include "utils/simError.h" | 
| 52 | namespace oopse { | 
| 53 | /** | 
| 54 | * Reference: | 
| 55 | * Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles: | 
| 56 | * Comparison of Different Modeling and Computational Procedures. | 
| 57 | * Biophysical Journal, 75(6), 3044, 1999 | 
| 58 | */ | 
| 59 |  | 
| 60 | ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ | 
| 61 |  | 
| 62 | } | 
| 63 |  | 
| 64 | bool ApproximationModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) { | 
| 65 | return internalCalcHydroProps(static_cast<Shape*>(spheric), viscosity, temperature); | 
| 66 | } | 
| 67 |  | 
| 68 | bool ApproximationModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { | 
| 69 | return internalCalcHydroProps(static_cast<Shape*>(ellipsoid), viscosity, temperature); | 
| 70 | } | 
| 71 | bool ApproximationModel::calcHydroProps(CompositeShape* compositeShape, double viscosity, double temperature) { | 
| 72 | return internalCalcHydroProps(static_cast<Shape*>(compositeShape), viscosity, temperature); | 
| 73 | } | 
| 74 |  | 
| 75 | void ApproximationModel::init() { | 
| 76 | if (!createBeads(beads_)) { | 
| 77 | sprintf(painCave.errMsg, "ApproximationModel::init() : Can not create beads\n"); | 
| 78 | painCave.isFatal = 1; | 
| 79 | simError(); | 
| 80 | } | 
| 81 |  | 
| 82 | } | 
| 83 |  | 
| 84 | bool ApproximationModel::internalCalcHydroProps(Shape* shape, double viscosity, double temperature) { | 
| 85 |  | 
| 86 | bool ret = true; | 
| 87 | HydroProps cr; | 
| 88 | HydroProps cd; | 
| 89 | calcHydroPropsAtCR(beads_, viscosity, temperature, cr); | 
| 90 | //calcHydroPropsAtCD(beads_, viscosity, temperature, cd); | 
| 91 | setCR(cr); | 
| 92 | setCD(cd); | 
| 93 |  | 
| 94 | return true; | 
| 95 | } | 
| 96 |  | 
| 97 | bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { | 
| 98 |  | 
| 99 | int nbeads = beads.size(); | 
| 100 | DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); | 
| 101 | DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); | 
| 102 | Mat3x3d I; | 
| 103 | I(0, 0) = 1.0; | 
| 104 | I(1, 1) = 1.0; | 
| 105 | I(2, 2) = 1.0; | 
| 106 |  | 
| 107 | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 108 | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 109 | Mat3x3d Tij; | 
| 110 | if (i != j ) { | 
| 111 | Vector3d Rij = beads[i].pos - beads[j].pos; | 
| 112 | double rij = Rij.length(); | 
| 113 | double rij2 = rij * rij; | 
| 114 | double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; | 
| 115 | Mat3x3d tmpMat; | 
| 116 | tmpMat = outProduct(Rij, Rij) / rij2; | 
| 117 | double constant = 8.0 * NumericConstant::PI * viscosity * rij; | 
| 118 | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; | 
| 119 | }else { | 
| 120 | double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); | 
| 121 | Tij(0, 0) = constant; | 
| 122 | Tij(1, 1) = constant; | 
| 123 | Tij(2, 2) = constant; | 
| 124 | } | 
| 125 | B.setSubMatrix(i*3, j*3, Tij); | 
| 126 | } | 
| 127 | } | 
| 128 |  | 
| 129 | //invert B Matrix | 
| 130 | invertMatrix(B, C); | 
| 131 |  | 
| 132 | //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) | 
| 133 | std::vector<Mat3x3d> U; | 
| 134 | for (int i = 0; i < nbeads; ++i) { | 
| 135 | Mat3x3d currU; | 
| 136 | currU.setupSkewMat(beads[i].pos); | 
| 137 | U.push_back(currU); | 
| 138 | } | 
| 139 |  | 
| 140 | //calculate Xi matrix at arbitrary origin O | 
| 141 | Mat3x3d Xiott; | 
| 142 | Mat3x3d Xiorr; | 
| 143 | Mat3x3d Xiotr; | 
| 144 |  | 
| 145 | //calculate the total volume | 
| 146 |  | 
| 147 | double volume = 0.0; | 
| 148 | for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { | 
| 149 | volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); | 
| 150 | } | 
| 151 |  | 
| 152 | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 153 | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 154 | Mat3x3d Cij; | 
| 155 | C.getSubMatrix(i*3, j*3, Cij); | 
| 156 |  | 
| 157 | Xiott += Cij; | 
| 158 | Xiotr += U[i] * Cij; | 
| 159 | //Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; | 
| 160 | Xiorr += -U[i] * Cij * U[j]; | 
| 161 | } | 
| 162 | } | 
| 163 |  | 
| 164 | const double convertConstant = 6.023; //convert poise.angstrom to amu/fs | 
| 165 | Xiott *= convertConstant; | 
| 166 | Xiotr *= convertConstant; | 
| 167 | Xiorr *= convertConstant; | 
| 168 |  | 
| 169 |  | 
| 170 |  | 
| 171 | Mat3x3d tmp; | 
| 172 | Mat3x3d tmpInv; | 
| 173 | Vector3d tmpVec; | 
| 174 | tmp(0, 0) = Xiott(1, 1) + Xiott(2, 2); | 
| 175 | tmp(0, 1) = - Xiott(0, 1); | 
| 176 | tmp(0, 2) = -Xiott(0, 2); | 
| 177 | tmp(1, 0) = -Xiott(0, 1); | 
| 178 | tmp(1, 1) = Xiott(0, 0)  + Xiott(2, 2); | 
| 179 | tmp(1, 2) = -Xiott(1, 2); | 
| 180 | tmp(2, 0) = -Xiott(0, 2); | 
| 181 | tmp(2, 1) = -Xiott(1, 2); | 
| 182 | tmp(2, 2) = Xiott(1, 1) + Xiott(0, 0); | 
| 183 | tmpVec[0] = Xiotr(2, 1) - Xiotr(1, 2); | 
| 184 | tmpVec[1] = Xiotr(0, 2) - Xiotr(2, 0); | 
| 185 | tmpVec[2] = Xiotr(1, 0) - Xiotr(0, 1); | 
| 186 | tmpInv = tmp.inverse(); | 
| 187 | Vector3d ror = tmpInv * tmpVec; //center of resistance | 
| 188 | Mat3x3d Uor; | 
| 189 | Uor.setupSkewMat(ror); | 
| 190 |  | 
| 191 | Mat3x3d Xirtt; | 
| 192 | Mat3x3d Xirrr; | 
| 193 | Mat3x3d Xirtr; | 
| 194 |  | 
| 195 | Xirtt = Xiott; | 
| 196 | Xirtr = (Xiotr - Uor * Xiott); | 
| 197 | Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose(); | 
| 198 |  | 
| 199 |  | 
| 200 | SquareMatrix<double,6> Xir6x6; | 
| 201 | SquareMatrix<double,6> Dr6x6; | 
| 202 |  | 
| 203 | Xir6x6.setSubMatrix(0, 0, Xirtt); | 
| 204 | Xir6x6.setSubMatrix(0, 3, Xirtr.transpose()); | 
| 205 | Xir6x6.setSubMatrix(3, 0, Xirtr); | 
| 206 | Xir6x6.setSubMatrix(3, 3, Xirrr); | 
| 207 |  | 
| 208 | invertMatrix(Xir6x6, Dr6x6); | 
| 209 | Mat3x3d Drtt; | 
| 210 | Mat3x3d Drtr; | 
| 211 | Mat3x3d Drrt; | 
| 212 | Mat3x3d Drrr; | 
| 213 | Dr6x6.getSubMatrix(0, 0, Drtt); | 
| 214 | Dr6x6.getSubMatrix(0, 3, Drrt); | 
| 215 | Dr6x6.getSubMatrix(3, 0, Drtr); | 
| 216 | Dr6x6.getSubMatrix(3, 3, Drrr); | 
| 217 | double kt = OOPSEConstant::kB * temperature ; | 
| 218 | Drtt *= kt; | 
| 219 | Drrt *= kt; | 
| 220 | Drtr *= kt; | 
| 221 | Drrr *= kt; | 
| 222 | Xirtt *= OOPSEConstant::kb * temperature; | 
| 223 | Xirtr *= OOPSEConstant::kb * temperature; | 
| 224 | Xirrr *= OOPSEConstant::kb * temperature; | 
| 225 |  | 
| 226 |  | 
| 227 | cr.center = ror; | 
| 228 | cr.Xi.setSubMatrix(0, 0, Xirtt); | 
| 229 | cr.Xi.setSubMatrix(0, 3, Xirtr); | 
| 230 | cr.Xi.setSubMatrix(3, 0, Xirtr); | 
| 231 | cr.Xi.setSubMatrix(3, 3, Xirrr); | 
| 232 | cr.D.setSubMatrix(0, 0, Drtt); | 
| 233 | cr.D.setSubMatrix(0, 3, Drrt); | 
| 234 | cr.D.setSubMatrix(3, 0, Drtr); | 
| 235 | cr.D.setSubMatrix(3, 3, Drrr); | 
| 236 |  | 
| 237 | std::cout << "-----------------------------------------\n"; | 
| 238 | std::cout << "center of resistance :" << std::endl; | 
| 239 | std::cout << ror << std::endl; | 
| 240 | std::cout << "resistant tensor at center of resistance" << std::endl; | 
| 241 | std::cout << "translation:" << std::endl; | 
| 242 | std::cout << Xirtt << std::endl; | 
| 243 | std::cout << "translation-rotation:" << std::endl; | 
| 244 | std::cout << Xirtr << std::endl; | 
| 245 | std::cout << "rotation:" << std::endl; | 
| 246 | std::cout << Xirrr << std::endl; | 
| 247 | std::cout << "diffusion tensor at center of resistance" << std::endl; | 
| 248 | std::cout << "translation:" << std::endl; | 
| 249 | std::cout << Drtt << std::endl; | 
| 250 | std::cout << "rotation-translation:" << std::endl; | 
| 251 | std::cout << Drrt << std::endl; | 
| 252 | std::cout << "translation-rotation:" << std::endl; | 
| 253 | std::cout << Drtr << std::endl; | 
| 254 | std::cout << "rotation:" << std::endl; | 
| 255 | std::cout << Drrr << std::endl; | 
| 256 | std::cout << "-----------------------------------------\n"; | 
| 257 |  | 
| 258 | return true; | 
| 259 | } | 
| 260 |  | 
| 261 | bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { | 
| 262 |  | 
| 263 | int nbeads = beads.size(); | 
| 264 | DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); | 
| 265 | DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); | 
| 266 | Mat3x3d I; | 
| 267 | I(0, 0) = 1.0; | 
| 268 | I(1, 1) = 1.0; | 
| 269 | I(2, 2) = 1.0; | 
| 270 |  | 
| 271 | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 272 | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 273 | Mat3x3d Tij; | 
| 274 | if (i != j ) { | 
| 275 | Vector3d Rij = beads[i].pos - beads[j].pos; | 
| 276 | double rij = Rij.length(); | 
| 277 | double rij2 = rij * rij; | 
| 278 | double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; | 
| 279 | Mat3x3d tmpMat; | 
| 280 | tmpMat = outProduct(Rij, Rij) / rij2; | 
| 281 | double constant = 8.0 * NumericConstant::PI * viscosity * rij; | 
| 282 | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; | 
| 283 | }else { | 
| 284 | double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); | 
| 285 | Tij(0, 0) = constant; | 
| 286 | Tij(1, 1) = constant; | 
| 287 | Tij(2, 2) = constant; | 
| 288 | } | 
| 289 | B.setSubMatrix(i*3, j*3, Tij); | 
| 290 | } | 
| 291 | } | 
| 292 |  | 
| 293 | //invert B Matrix | 
| 294 | invertMatrix(B, C); | 
| 295 |  | 
| 296 | //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) | 
| 297 | std::vector<Mat3x3d> U; | 
| 298 | for (int i = 0; i < nbeads; ++i) { | 
| 299 | Mat3x3d currU; | 
| 300 | currU.setupSkewMat(beads[i].pos); | 
| 301 | U.push_back(currU); | 
| 302 | } | 
| 303 |  | 
| 304 | //calculate Xi matrix at arbitrary origin O | 
| 305 | Mat3x3d Xitt; | 
| 306 | Mat3x3d Xirr; | 
| 307 | Mat3x3d Xitr; | 
| 308 |  | 
| 309 | //calculate the total volume | 
| 310 |  | 
| 311 | double volume = 0.0; | 
| 312 | for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { | 
| 313 | volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); | 
| 314 | } | 
| 315 |  | 
| 316 | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 317 | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 318 | Mat3x3d Cij; | 
| 319 | C.getSubMatrix(i*3, j*3, Cij); | 
| 320 |  | 
| 321 | Xitt += Cij; | 
| 322 | Xitr += U[i] * Cij; | 
| 323 | //Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; | 
| 324 | Xirr += -U[i] * Cij * U[j]; | 
| 325 | } | 
| 326 | } | 
| 327 |  | 
| 328 | const double convertConstant = 6.023; //convert poise.angstrom to amu/fs | 
| 329 | Xitt *= convertConstant; | 
| 330 | Xitr *= convertConstant; | 
| 331 | Xirr *= convertConstant; | 
| 332 |  | 
| 333 | double kt = OOPSEConstant::kB * temperature; | 
| 334 |  | 
| 335 | Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O | 
| 336 | Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O | 
| 337 | Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O | 
| 338 |  | 
| 339 | const static Mat3x3d zeroMat(0.0); | 
| 340 |  | 
| 341 | Mat3x3d XittInv(0.0); | 
| 342 | XittInv = Xitt.inverse(); | 
| 343 |  | 
| 344 | Mat3x3d XirrInv; | 
| 345 | XirrInv = Xirr.inverse(); | 
| 346 |  | 
| 347 | Mat3x3d tmp; | 
| 348 | Mat3x3d tmpInv; | 
| 349 | tmp = Xitt - Xitr.transpose() * XirrInv * Xitr; | 
| 350 | tmpInv = tmp.inverse(); | 
| 351 |  | 
| 352 | Dott = tmpInv; | 
| 353 | Dotr = -XirrInv * Xitr * tmpInv; | 
| 354 |  | 
| 355 | tmp = Xirr - Xitr * XittInv * Xitr.transpose(); | 
| 356 | tmpInv = tmp.inverse(); | 
| 357 |  | 
| 358 | Dorr = tmpInv; | 
| 359 |  | 
| 360 | //calculate center of diffusion | 
| 361 | tmp(0, 0) = Dorr(1, 1) + Dorr(2, 2); | 
| 362 | tmp(0, 1) = - Dorr(0, 1); | 
| 363 | tmp(0, 2) = -Dorr(0, 2); | 
| 364 | tmp(1, 0) = -Dorr(0, 1); | 
| 365 | tmp(1, 1) = Dorr(0, 0)  + Dorr(2, 2); | 
| 366 | tmp(1, 2) = -Dorr(1, 2); | 
| 367 | tmp(2, 0) = -Dorr(0, 2); | 
| 368 | tmp(2, 1) = -Dorr(1, 2); | 
| 369 | tmp(2, 2) = Dorr(1, 1) + Dorr(0, 0); | 
| 370 |  | 
| 371 | Vector3d tmpVec; | 
| 372 | tmpVec[0] = Dotr(1, 2) - Dotr(2, 1); | 
| 373 | tmpVec[1] = Dotr(2, 0) - Dotr(0, 2); | 
| 374 | tmpVec[2] = Dotr(0, 1) - Dotr(1, 0); | 
| 375 |  | 
| 376 | tmpInv = tmp.inverse(); | 
| 377 |  | 
| 378 | Vector3d rod = tmpInv * tmpVec; | 
| 379 |  | 
| 380 | //calculate Diffusion Tensor at center of diffusion | 
| 381 | Mat3x3d Uod; | 
| 382 | Uod.setupSkewMat(rod); | 
| 383 |  | 
| 384 | Mat3x3d Ddtt; //translational diffusion tensor at diffusion center | 
| 385 | Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center | 
| 386 | Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor | 
| 387 |  | 
| 388 | Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr; | 
| 389 | Ddrr = Dorr; | 
| 390 | Ddtr = Dotr + Dorr * Uod; | 
| 391 |  | 
| 392 | SquareMatrix<double, 6> Dd; | 
| 393 | Dd.setSubMatrix(0, 0, Ddtt); | 
| 394 | Dd.setSubMatrix(0, 3, Ddtr.transpose()); | 
| 395 | Dd.setSubMatrix(3, 0, Ddtr); | 
| 396 | Dd.setSubMatrix(3, 3, Ddrr); | 
| 397 | SquareMatrix<double, 6> Xid; | 
| 398 | Ddtt *= kt; | 
| 399 | Ddtr *=kt; | 
| 400 | Ddrr *= kt; | 
| 401 | invertMatrix(Dd, Xid); | 
| 402 |  | 
| 403 |  | 
| 404 |  | 
| 405 | //Xidtt in units of kcal*fs*mol^-1*Ang^-2 | 
| 406 | //Xid /= OOPSEConstant::energyConvert; | 
| 407 | Xid *= OOPSEConstant::kb * temperature; | 
| 408 |  | 
| 409 | cr.center = rod; | 
| 410 | cr.D.setSubMatrix(0, 0, Ddtt); | 
| 411 | cr.D.setSubMatrix(0, 3, Ddtr); | 
| 412 | cr.D.setSubMatrix(3, 0, Ddtr); | 
| 413 | cr.D.setSubMatrix(3, 3, Ddrr); | 
| 414 | cr.Xi = Xid; | 
| 415 |  | 
| 416 | std::cout << "viscosity = " << viscosity << std::endl; | 
| 417 | std::cout << "temperature = " << temperature << std::endl; | 
| 418 | std::cout << "center of diffusion :" << std::endl; | 
| 419 | std::cout << rod << std::endl; | 
| 420 | std::cout << "diffusion tensor at center of diffusion " << std::endl; | 
| 421 | std::cout << "translation(A^2/fs) :" << std::endl; | 
| 422 | std::cout << Ddtt << std::endl; | 
| 423 | std::cout << "translation-rotation(A^3/fs):" << std::endl; | 
| 424 | std::cout << Ddtr << std::endl; | 
| 425 | std::cout << "rotation(A^4/fs):" << std::endl; | 
| 426 | std::cout << Ddrr << std::endl; | 
| 427 |  | 
| 428 | std::cout << "resistance tensor at center of diffusion " << std::endl; | 
| 429 | std::cout << "translation(kcal*fs*mol^-1*Ang^-2) :" << std::endl; | 
| 430 |  | 
| 431 | Mat3x3d Xidtt; | 
| 432 | Mat3x3d Xidrt; | 
| 433 | Mat3x3d Xidtr; | 
| 434 | Mat3x3d Xidrr; | 
| 435 | Xid.getSubMatrix(0, 0, Xidtt); | 
| 436 | Xid.getSubMatrix(0, 3, Xidrt); | 
| 437 | Xid.getSubMatrix(3, 0, Xidtr); | 
| 438 | Xid.getSubMatrix(3, 3, Xidrr); | 
| 439 |  | 
| 440 | std::cout << Xidtt << std::endl; | 
| 441 | std::cout << "rotation-translation (kcal*fs*mol^-1*Ang^-3):" << std::endl; | 
| 442 | std::cout << Xidrt << std::endl; | 
| 443 | std::cout << "translation-rotation(kcal*fs*mol^-1*Ang^-3):" << std::endl; | 
| 444 | std::cout << Xidtr << std::endl; | 
| 445 | std::cout << "rotation(kcal*fs*mol^-1*Ang^-4):" << std::endl; | 
| 446 | std::cout << Xidrr << std::endl; | 
| 447 |  | 
| 448 | return true; | 
| 449 |  | 
| 450 | } | 
| 451 |  | 
| 452 |  | 
| 453 | void ApproximationModel::writeBeads(std::ostream& os) { | 
| 454 | std::vector<BeadParam>::iterator iter; | 
| 455 | os << beads_.size() << std::endl; | 
| 456 | os << "Generated by Hydro" << std::endl; | 
| 457 | for (iter = beads_.begin(); iter != beads_.end(); ++iter) { | 
| 458 | os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; | 
| 459 | } | 
| 460 |  | 
| 461 | } | 
| 462 |  | 
| 463 |  | 
| 464 |  | 
| 465 | } |