35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <cstdlib> |
72 |
|
|
73 |
|
int main(int argc, char *argv []) { |
74 |
|
|
74 |
– |
//register force fields |
75 |
– |
registerForceFields(); |
75 |
|
registerLattice(); |
76 |
|
|
77 |
|
gengetopt_args_info args_info; |
78 |
|
std::string latticeType; |
79 |
|
std::string inputFileName; |
80 |
|
std::string outputFileName; |
82 |
– |
|
81 |
|
MoLocator* locator; |
82 |
|
int nComponents; |
83 |
|
double latticeConstant; |
86 |
– |
std::vector<double> lc; |
87 |
– |
|
84 |
|
RealType particleRadius; |
89 |
– |
|
85 |
|
Mat3x3d hmat; |
91 |
– |
std::vector<Vector3d> latticePos; |
92 |
– |
std::vector<Vector3d> latticeOrt; |
93 |
– |
|
86 |
|
DumpWriter *writer; |
87 |
|
|
88 |
|
// Parse Command Line Arguments |
118 |
|
/* Build a lattice and get lattice points for this lattice constant */ |
119 |
|
vector<Vector3d> sites = nanoParticle.getSites(); |
120 |
|
vector<Vector3d> orientations = nanoParticle.getOrientations(); |
121 |
+ |
|
122 |
+ |
|
123 |
|
std::vector<int> vacancyTargets; |
124 |
|
vector<bool> isVacancy; |
125 |
|
|
126 |
|
Vector3d myLoc; |
127 |
|
RealType myR; |
128 |
|
|
129 |
< |
for (int i = 0; i < sites.size(); i++) |
129 |
> |
for (unsigned int i = 0; i < sites.size(); i++) |
130 |
|
isVacancy.push_back(false); |
131 |
|
|
132 |
|
if (args_info.vacancyPercent_given) { |
150 |
|
} |
151 |
|
if (vIR >= 0.0 && vOR <= particleRadius && vOR >= vIR) { |
152 |
|
|
153 |
< |
for (int i = 0; i < sites.size(); i++) { |
153 |
> |
for (unsigned int i = 0; i < sites.size(); i++) { |
154 |
|
myLoc = sites[i]; |
155 |
|
myR = myLoc.length(); |
156 |
|
if (myR >= vIR && myR <= vOR) { |
167 |
|
"\tsites between %lf and %lf.", (int) vacancyTargets.size(), |
168 |
|
vIR, vOR); |
169 |
|
painCave.isFatal = 0; |
170 |
+ |
painCave.severity = OPENMD_INFO; |
171 |
|
simError(); |
172 |
|
|
173 |
|
isVacancy.clear(); |
174 |
< |
for (int i = 0; i < sites.size(); i++) { |
174 |
> |
for (unsigned int i = 0; i < sites.size(); i++) { |
175 |
|
bool vac = false; |
176 |
< |
for (int j = 0; j < vacancyTargets.size(); j++) { |
176 |
> |
for (unsigned int j = 0; j < vacancyTargets.size(); j++) { |
177 |
|
if (i == vacancyTargets[j]) vac = true; |
178 |
|
} |
179 |
|
isVacancy.push_back(vac); |
194 |
|
std::vector<Component*> components = simParams->getComponents(); |
195 |
|
std::vector<RealType> molFractions; |
196 |
|
std::vector<RealType> shellRadii; |
202 |
– |
std::vector<RealType> molecularMasses; |
197 |
|
std::vector<int> nMol; |
198 |
|
std::map<int, int> componentFromSite; |
199 |
|
nComponents = components.size(); |
298 |
|
} |
299 |
|
} else { |
300 |
|
|
301 |
< |
for (int i = 0; i < shellRadii.size(); i++) { |
301 |
> |
for (unsigned int i = 0; i < shellRadii.size(); i++) { |
302 |
|
if (shellRadii.at(i) > particleRadius + 1e-6 ) { |
303 |
|
sprintf(painCave.errMsg, "One of the shellRadius values exceeds the particle Radius."); |
304 |
|
painCave.isFatal = 1; |
316 |
|
if ((int)args_info.molFraction_given){ |
317 |
|
sprintf(painCave.errMsg, "Creating a randomized spherical nanoparticle."); |
318 |
|
painCave.isFatal = 0; |
319 |
+ |
painCave.severity = OPENMD_INFO; |
320 |
|
simError(); |
321 |
|
/* Random particle is the default case*/ |
322 |
|
|
323 |
< |
for (int i = 0; i < sites.size(); i++) |
323 |
> |
for (unsigned int i = 0; i < sites.size(); i++) |
324 |
|
if (!isVacancy[i]) ids.push_back(i); |
325 |
|
|
326 |
|
std::random_shuffle(ids.begin(), ids.end()); |
328 |
|
} else{ |
329 |
|
sprintf(painCave.errMsg, "Creating a core-shell spherical nanoparticle."); |
330 |
|
painCave.isFatal = 0; |
331 |
+ |
painCave.severity = OPENMD_INFO; |
332 |
|
simError(); |
333 |
|
|
334 |
|
RealType smallestSoFar; |
336 |
|
nMol.clear(); |
337 |
|
nMol.resize(nComponents); |
338 |
|
|
339 |
< |
for (int i = 0; i < sites.size(); i++) { |
339 |
> |
for (unsigned int i = 0; i < sites.size(); i++) { |
340 |
|
myLoc = sites[i]; |
341 |
|
myR = myLoc.length(); |
342 |
|
smallestSoFar = particleRadius; |
360 |
|
//creat new .md file on fly which corrects the number of molecule |
361 |
|
createMdFile(inputFileName, outputFileName, nMol); |
362 |
|
|
363 |
< |
if (oldInfo != NULL) |
368 |
< |
delete oldInfo; |
363 |
> |
delete oldInfo; |
364 |
|
|
365 |
|
SimCreator newCreator; |
366 |
|
SimInfo* NewInfo = newCreator.createSim(outputFileName, false); |
371 |
|
mol = NewInfo->beginMolecule(mi); |
372 |
|
|
373 |
|
int l = 0; |
379 |
– |
int whichSite = 0; |
374 |
|
|
375 |
|
for (int i = 0; i < nComponents; i++){ |
376 |
|
locator = new MoLocator(NewInfo->getMoleculeStamp(i), |
377 |
|
NewInfo->getForceField()); |
378 |
|
|
379 |
|
if (!args_info.molFraction_given) { |
380 |
< |
for (int n = 0; n < sites.size(); n++) { |
380 |
> |
for (unsigned int n = 0; n < sites.size(); n++) { |
381 |
|
if (!isVacancy[n]) { |
382 |
|
if (componentFromSite[n] == i) { |
383 |
|
mol = NewInfo->getMoleculeByGlobalIndex(l); |
431 |
|
sprintf(painCave.errMsg, "A new OpenMD file called \"%s\" has been " |
432 |
|
"generated.\n", outputFileName.c_str()); |
433 |
|
painCave.isFatal = 0; |
434 |
+ |
painCave.severity = OPENMD_INFO; |
435 |
|
simError(); |
436 |
|
return 0; |
437 |
|
} |
449 |
|
newMdFile.open(newMdFileName.c_str()); |
450 |
|
oldMdFile.getline(buffer, MAXLEN); |
451 |
|
|
452 |
< |
int i = 0; |
452 |
> |
unsigned int i = 0; |
453 |
|
while (!oldMdFile.eof()) { |
454 |
|
|
455 |
|
//correct molecule number |