| 1 | gezelter | 2035 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  |  | */ | 
| 42 |  |  |  | 
| 43 |  |  | #include <algorithm> | 
| 44 |  |  | #include <functional> | 
| 45 |  |  | #include "applications/sequentialProps/ContactAngle2.hpp" | 
| 46 |  |  | #include "utils/simError.h" | 
| 47 |  |  | #include "io/DumpReader.hpp" | 
| 48 |  |  | #include "primitives/Molecule.hpp" | 
| 49 |  |  | #include "utils/NumericConstant.hpp" | 
| 50 |  |  | #include "utils/PhysicalConstants.hpp" | 
| 51 |  |  | #include "math/Polynomial.hpp" | 
| 52 |  |  |  | 
| 53 |  |  | namespace OpenMD { | 
| 54 |  |  |  | 
| 55 |  |  | ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename, | 
| 56 |  |  | const std::string& sele, RealType solidZ, | 
| 57 |  |  | RealType threshDens, int nrbins, int nzbins) | 
| 58 |  |  | : SequentialAnalyzer(info, filename), selectionScript_(sele), | 
| 59 |  |  | evaluator_(info), seleMan_(info), solidZ_(solidZ), | 
| 60 |  |  | threshDens_(threshDens), nRBins_(nrbins), nZBins_(nzbins) { | 
| 61 |  |  |  | 
| 62 |  |  | setOutputName(getPrefix(filename) + ".ca2"); | 
| 63 |  |  |  | 
| 64 |  |  | evaluator_.loadScriptString(sele); | 
| 65 |  |  |  | 
| 66 |  |  | if (!evaluator_.isDynamic()) { | 
| 67 |  |  | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 68 |  |  | } | 
| 69 |  |  | } | 
| 70 |  |  |  | 
| 71 |  |  | void ContactAngle2::doFrame() { | 
| 72 |  |  | StuntDouble* sd; | 
| 73 |  |  | int i; | 
| 74 |  |  |  | 
| 75 |  |  | // set up the bins for density analysis | 
| 76 |  |  |  | 
| 77 |  |  | Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); | 
| 78 |  |  | RealType len = std::min(hmat(0, 0), hmat(1, 1)); | 
| 79 |  |  | RealType zLen = hmat(2,2); | 
| 80 |  |  | RealType dr = len / (RealType) nRBins_; | 
| 81 |  |  | RealType dz = zLen / (RealType) nZBins_; | 
| 82 |  |  |  | 
| 83 |  |  | std::vector<std::vector<RealType> > histo; | 
| 84 |  |  | histo.resize(nRBins_); | 
| 85 |  |  | for (int i = 0 ; i < nRBins_; ++i) { | 
| 86 |  |  | histo[i].resize(nZBins_); | 
| 87 |  |  | } | 
| 88 |  |  | for (unsigned int i = 0; i < histo.size(); ++i){ | 
| 89 |  |  | std::fill(histo[i].begin(), histo[i].end(), 0.0); | 
| 90 |  |  | } | 
| 91 |  |  |  | 
| 92 |  |  | if (evaluator_.isDynamic()) { | 
| 93 |  |  | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 94 |  |  | } | 
| 95 |  |  |  | 
| 96 |  |  |  | 
| 97 |  |  | RealType mtot = 0.0; | 
| 98 |  |  | Vector3d com(V3Zero); | 
| 99 |  |  | RealType mass; | 
| 100 |  |  |  | 
| 101 |  |  | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 102 |  |  | sd = seleMan_.nextSelected(i)) { | 
| 103 |  |  | mass = sd->getMass(); | 
| 104 |  |  | mtot += mass; | 
| 105 |  |  | com += sd->getPos() * mass; | 
| 106 |  |  | } | 
| 107 |  |  |  | 
| 108 |  |  | com /= mtot; | 
| 109 |  |  |  | 
| 110 |  |  | // now that we have the centroid, we can make cylindrical density maps | 
| 111 |  |  | Vector3d pos; | 
| 112 |  |  | RealType r; | 
| 113 |  |  | RealType z; | 
| 114 |  |  |  | 
| 115 |  |  | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 116 |  |  | sd = seleMan_.nextSelected(i)) { | 
| 117 |  |  | pos = sd->getPos() - com; | 
| 118 |  |  |  | 
| 119 |  |  | r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); | 
| 120 |  |  | z = pos.z() - solidZ_; | 
| 121 |  |  |  | 
| 122 |  |  | int whichRBin = int(r / dr); | 
| 123 |  |  | int whichZBin = int(z/ dz); | 
| 124 |  |  |  | 
| 125 |  |  | if ((r <= len) && (z <= zLen)) | 
| 126 |  |  | histo[whichRBin][whichZBin] += sd->getMass(); | 
| 127 |  |  |  | 
| 128 |  |  | } | 
| 129 |  |  |  | 
| 130 |  |  | for(unsigned int i = 0 ; i < histo.size(); ++i){ | 
| 131 |  |  |  | 
| 132 |  |  | RealType rL = i * dr; | 
| 133 |  |  | RealType rU = rL + dr; | 
| 134 |  |  | RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); | 
| 135 |  |  |  | 
| 136 |  |  | for (unsigned int j = 0; j < histo[i].size(); ++j){ | 
| 137 |  |  | histo[i][j] *= PhysicalConstants::densityConvert / volSlice; | 
| 138 |  |  | } | 
| 139 |  |  | } | 
| 140 |  |  |  | 
| 141 |  |  | for (unsigned int i = 0; i < histo.size(); ++i) { | 
| 142 |  |  | RealType ther = dr * (i + 0.5); | 
| 143 |  |  | for(unsigned int j = 0; j < histo[i].size(); ++j) { | 
| 144 |  |  | if (histo[i][j] <= threshDens_) { | 
| 145 |  |  | RealType thez = dz * (j + 0.5); | 
| 146 |  |  | cerr << ther << "\t" << thez << "\n"; | 
| 147 |  |  | break; | 
| 148 |  |  | } | 
| 149 |  |  | } | 
| 150 |  |  | } | 
| 151 |  |  |  | 
| 152 |  |  | // values_.push_back( acos(maxct)*(180.0/M_PI) ); | 
| 153 |  |  |  | 
| 154 |  |  | } | 
| 155 |  |  | } | 
| 156 |  |  |  | 
| 157 |  |  |  |