| 1 | gezelter | 2035 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  |  | */ | 
| 42 |  |  |  | 
| 43 |  |  | #include <algorithm> | 
| 44 |  |  | #include <functional> | 
| 45 |  |  | #include "applications/sequentialProps/ContactAngle2.hpp" | 
| 46 |  |  | #include "utils/simError.h" | 
| 47 |  |  | #include "io/DumpReader.hpp" | 
| 48 |  |  | #include "primitives/Molecule.hpp" | 
| 49 |  |  | #include "utils/NumericConstant.hpp" | 
| 50 |  |  | #include "utils/PhysicalConstants.hpp" | 
| 51 | gezelter | 2037 | #include "math/Eigenvalue.hpp" | 
| 52 | gezelter | 2035 |  | 
| 53 |  |  | namespace OpenMD { | 
| 54 | gezelter | 2071 |  | 
| 55 | gezelter | 2035 | ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename, | 
| 56 |  |  | const std::string& sele, RealType solidZ, | 
| 57 | gezelter | 2039 | RealType threshDens, RealType bufferLength, | 
| 58 |  |  | int nrbins, int nzbins) | 
| 59 | gezelter | 2071 | : SequentialAnalyzer(info, filename), solidZ_(solidZ), | 
| 60 |  |  | threshDens_(threshDens), bufferLength_(bufferLength), nRBins_(nrbins), | 
| 61 |  |  | nZBins_(nzbins), selectionScript_(sele), seleMan_(info), | 
| 62 |  |  | evaluator_(info) { | 
| 63 |  |  |  | 
| 64 | gezelter | 2035 | setOutputName(getPrefix(filename) + ".ca2"); | 
| 65 |  |  |  | 
| 66 |  |  | evaluator_.loadScriptString(sele); | 
| 67 |  |  |  | 
| 68 |  |  | if (!evaluator_.isDynamic()) { | 
| 69 |  |  | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 70 |  |  | } | 
| 71 |  |  | } | 
| 72 |  |  |  | 
| 73 |  |  | void ContactAngle2::doFrame() { | 
| 74 |  |  | StuntDouble* sd; | 
| 75 |  |  | int i; | 
| 76 |  |  |  | 
| 77 |  |  | // set up the bins for density analysis | 
| 78 |  |  |  | 
| 79 |  |  | Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); | 
| 80 |  |  | RealType len = std::min(hmat(0, 0), hmat(1, 1)); | 
| 81 |  |  | RealType zLen = hmat(2,2); | 
| 82 | gezelter | 2037 |  | 
| 83 | gezelter | 2035 | RealType dr = len / (RealType) nRBins_; | 
| 84 |  |  | RealType dz = zLen / (RealType) nZBins_; | 
| 85 |  |  |  | 
| 86 |  |  | std::vector<std::vector<RealType> > histo; | 
| 87 |  |  | histo.resize(nRBins_); | 
| 88 | gezelter | 2037 | for (unsigned int i = 0; i < histo.size(); ++i){ | 
| 89 | gezelter | 2035 | histo[i].resize(nZBins_); | 
| 90 |  |  | std::fill(histo[i].begin(), histo[i].end(), 0.0); | 
| 91 |  |  | } | 
| 92 |  |  |  | 
| 93 |  |  | if (evaluator_.isDynamic()) { | 
| 94 |  |  | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 95 |  |  | } | 
| 96 |  |  |  | 
| 97 |  |  |  | 
| 98 |  |  | RealType mtot = 0.0; | 
| 99 |  |  | Vector3d com(V3Zero); | 
| 100 |  |  | RealType mass; | 
| 101 |  |  |  | 
| 102 |  |  | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 103 |  |  | sd = seleMan_.nextSelected(i)) { | 
| 104 |  |  | mass = sd->getMass(); | 
| 105 |  |  | mtot += mass; | 
| 106 |  |  | com += sd->getPos() * mass; | 
| 107 |  |  | } | 
| 108 |  |  |  | 
| 109 |  |  | com /= mtot; | 
| 110 |  |  |  | 
| 111 |  |  | // now that we have the centroid, we can make cylindrical density maps | 
| 112 |  |  | Vector3d pos; | 
| 113 |  |  | RealType r; | 
| 114 |  |  | RealType z; | 
| 115 |  |  |  | 
| 116 |  |  | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 117 |  |  | sd = seleMan_.nextSelected(i)) { | 
| 118 |  |  | pos = sd->getPos() - com; | 
| 119 | gezelter | 2037 |  | 
| 120 |  |  | // r goes from zero upwards | 
| 121 | gezelter | 2035 | r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); | 
| 122 | gezelter | 2037 | // z is possibly symmetric around 0 | 
| 123 |  |  | z = pos.z(); | 
| 124 |  |  |  | 
| 125 | gezelter | 2071 | std::size_t whichRBin = int(r / dr); | 
| 126 |  |  | std::size_t whichZBin = int( (zLen/2.0 + z) / dz); | 
| 127 | gezelter | 2035 |  | 
| 128 | gezelter | 2037 | if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_)) | 
| 129 | gezelter | 2035 | histo[whichRBin][whichZBin] += sd->getMass(); | 
| 130 |  |  |  | 
| 131 |  |  | } | 
| 132 |  |  |  | 
| 133 |  |  | for(unsigned int i = 0 ; i < histo.size(); ++i){ | 
| 134 |  |  |  | 
| 135 |  |  | RealType rL = i * dr; | 
| 136 |  |  | RealType rU = rL + dr; | 
| 137 |  |  | RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); | 
| 138 |  |  |  | 
| 139 | gezelter | 2037 | for (unsigned int j = 0; j < histo[i].size(); ++j) { | 
| 140 | gezelter | 2035 | histo[i][j] *= PhysicalConstants::densityConvert / volSlice; | 
| 141 |  |  | } | 
| 142 |  |  | } | 
| 143 |  |  |  | 
| 144 | gezelter | 2037 | std::vector<Vector<RealType, 2> > points; | 
| 145 |  |  | points.clear(); | 
| 146 |  |  |  | 
| 147 | gezelter | 2036 | for (unsigned int j = 0; j < nZBins_;  ++j) { | 
| 148 | gezelter | 2037 |  | 
| 149 |  |  | // The z coordinates were measured relative to the selection | 
| 150 |  |  | // center of mass.  However, we're interested in the elevation | 
| 151 |  |  | // above the solid surface.  Also, the binning was done around | 
| 152 |  |  | // zero with enough bins to cover the zLength of the box: | 
| 153 |  |  |  | 
| 154 |  |  | RealType thez =  com.z() - solidZ_  - zLen/2.0 + dz * (j + 0.5); | 
| 155 | gezelter | 2036 | bool aboveThresh = false; | 
| 156 | gezelter | 2037 | bool foundThresh = false; | 
| 157 |  |  | int rloc = 0; | 
| 158 |  |  |  | 
| 159 | gezelter | 2071 | for (std::size_t i = 0; i < nRBins_;  ++i) { | 
| 160 |  |  |  | 
| 161 | gezelter | 2036 | if (histo[i][j] >= threshDens_) aboveThresh = true; | 
| 162 |  |  |  | 
| 163 |  |  | if (aboveThresh && (histo[i][j] <= threshDens_)) { | 
| 164 | gezelter | 2037 | rloc = i; | 
| 165 |  |  | foundThresh = true; | 
| 166 |  |  | aboveThresh = false; | 
| 167 | gezelter | 2035 | } | 
| 168 | gezelter | 2037 |  | 
| 169 | gezelter | 2035 | } | 
| 170 | gezelter | 2037 | if (foundThresh) { | 
| 171 |  |  | Vector<RealType,2> point; | 
| 172 |  |  | point[0] = dr*(rloc+0.5); | 
| 173 |  |  | point[1] = thez; | 
| 174 | gezelter | 2039 |  | 
| 175 |  |  | if (thez > bufferLength_) { | 
| 176 |  |  | points.push_back( point ); | 
| 177 |  |  | } | 
| 178 | gezelter | 2037 | } | 
| 179 | gezelter | 2035 | } | 
| 180 | gezelter | 2037 |  | 
| 181 |  |  | int numPoints = points.size(); | 
| 182 |  |  |  | 
| 183 |  |  | // Compute the average of the data points. | 
| 184 |  |  | Vector<RealType, 2> average = points[0]; | 
| 185 |  |  | int i0; | 
| 186 |  |  | for (i0 = 1; i0 < numPoints; ++i0) { | 
| 187 |  |  | average += points[i0]; | 
| 188 |  |  | } | 
| 189 |  |  | RealType invNumPoints = ((RealType)1)/(RealType)numPoints; | 
| 190 |  |  | average *= invNumPoints; | 
| 191 | gezelter | 2036 |  | 
| 192 | gezelter | 2037 | DynamicRectMatrix<RealType> mat(4, 4); | 
| 193 |  |  | int row, col; | 
| 194 |  |  | for (row = 0; row < 4; ++row) { | 
| 195 |  |  | for (col = 0; col < 4; ++col){ | 
| 196 |  |  | mat(row,col) = 0.0; | 
| 197 |  |  | } | 
| 198 |  |  | } | 
| 199 |  |  | for (int i = 0; i < numPoints; ++i) { | 
| 200 |  |  | RealType x = points[i][0]; | 
| 201 |  |  | RealType y = points[i][1]; | 
| 202 |  |  | RealType x2 = x*x; | 
| 203 |  |  | RealType y2 = y*y; | 
| 204 |  |  | RealType xy = x*y; | 
| 205 |  |  | RealType r2 = x2+y2; | 
| 206 |  |  | RealType xr2 = x*r2; | 
| 207 |  |  | RealType yr2 = y*r2; | 
| 208 |  |  | RealType r4 = r2*r2; | 
| 209 |  |  |  | 
| 210 |  |  | mat(0,1) += x; | 
| 211 |  |  | mat(0,2) += y; | 
| 212 |  |  | mat(0,3) += r2; | 
| 213 |  |  | mat(1,1) += x2; | 
| 214 |  |  | mat(1,2) += xy; | 
| 215 |  |  | mat(1,3) += xr2; | 
| 216 |  |  | mat(2,2) += y2; | 
| 217 |  |  | mat(2,3) += yr2; | 
| 218 |  |  | mat(3,3) += r4; | 
| 219 |  |  | } | 
| 220 |  |  | mat(0,0) = (RealType)numPoints; | 
| 221 |  |  |  | 
| 222 |  |  | for (row = 0; row < 4; ++row) { | 
| 223 |  |  | for (col = 0; col < row; ++col) { | 
| 224 |  |  | mat(row,col) = mat(col,row); | 
| 225 |  |  | } | 
| 226 |  |  | } | 
| 227 |  |  |  | 
| 228 |  |  | for (row = 0; row < 4; ++row) { | 
| 229 |  |  | for (col = 0; col < 4; ++col) { | 
| 230 |  |  | mat(row,col) *= invNumPoints; | 
| 231 |  |  | } | 
| 232 |  |  | } | 
| 233 |  |  |  | 
| 234 |  |  | JAMA::Eigenvalue<RealType> eigensystem(mat); | 
| 235 |  |  | DynamicRectMatrix<RealType> evects(4, 4); | 
| 236 |  |  | DynamicVector<RealType> evals(4); | 
| 237 |  |  |  | 
| 238 |  |  | eigensystem.getRealEigenvalues(evals); | 
| 239 |  |  | eigensystem.getV(evects); | 
| 240 |  |  |  | 
| 241 |  |  | DynamicVector<RealType> evector = evects.getColumn(0); | 
| 242 |  |  | RealType inv = ((RealType)1)/evector[3];  // beware zero divide | 
| 243 |  |  | RealType coeff[3]; | 
| 244 |  |  | for (row = 0; row < 3; ++row) { | 
| 245 |  |  | coeff[row] = inv*evector[row]; | 
| 246 |  |  | } | 
| 247 |  |  |  | 
| 248 |  |  | Vector<RealType, 2> center; | 
| 249 | gezelter | 2035 |  | 
| 250 | gezelter | 2037 | center[0] = -((RealType)0.5)*coeff[1]; | 
| 251 |  |  | center[1] = -((RealType)0.5)*coeff[2]; | 
| 252 |  |  | RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1] | 
| 253 |  |  | - coeff[0])); | 
| 254 |  |  |  | 
| 255 |  |  | int i1; | 
| 256 |  |  | for (i1 = 0; i1 < 100; ++i1) { | 
| 257 |  |  | // Update the iterates. | 
| 258 |  |  | Vector<RealType, 2> current = center; | 
| 259 |  |  |  | 
| 260 |  |  | // Compute average L, dL/da, dL/db. | 
| 261 |  |  | RealType lenAverage = (RealType)0; | 
| 262 |  |  | Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0); | 
| 263 |  |  | for (i0 = 0; i0 < numPoints; ++i0) { | 
| 264 |  |  | Vector<RealType, 2> diff = points[i0] - center; | 
| 265 |  |  | RealType length = diff.length(); | 
| 266 |  |  | if (length > 1e-6) { | 
| 267 |  |  | lenAverage += length; | 
| 268 |  |  | RealType invLength = ((RealType)1)/length; | 
| 269 |  |  | derLenAverage -= invLength*diff; | 
| 270 |  |  | } | 
| 271 |  |  | } | 
| 272 |  |  | lenAverage *= invNumPoints; | 
| 273 |  |  | derLenAverage *= invNumPoints; | 
| 274 |  |  |  | 
| 275 |  |  | center = average + lenAverage*derLenAverage; | 
| 276 |  |  | radius = lenAverage; | 
| 277 |  |  |  | 
| 278 |  |  | Vector<RealType, 2> diff = center - current; | 
| 279 |  |  | if (fabs(diff[0]) <= 1e-6 &&  fabs(diff[1]) <= 1e-6) { | 
| 280 |  |  | break; | 
| 281 |  |  | } | 
| 282 |  |  | } | 
| 283 |  |  |  | 
| 284 |  |  | RealType zCen = center[1]; | 
| 285 |  |  | RealType rDrop = radius; | 
| 286 |  |  | RealType ca; | 
| 287 |  |  |  | 
| 288 |  |  | if (fabs(zCen) > rDrop) { | 
| 289 |  |  | ca = 180.0; | 
| 290 |  |  | } else { | 
| 291 | gezelter | 2038 | ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI); | 
| 292 | gezelter | 2037 | } | 
| 293 |  |  |  | 
| 294 |  |  | values_.push_back( ca ); | 
| 295 |  |  |  | 
| 296 | gezelter | 2035 | } | 
| 297 |  |  | } | 
| 298 |  |  |  | 
| 299 |  |  |  |