| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include <algorithm> | 
| 44 | #include <functional> | 
| 45 | #include "applications/sequentialProps/ContactAngle2.hpp" | 
| 46 | #include "utils/simError.h" | 
| 47 | #include "io/DumpReader.hpp" | 
| 48 | #include "primitives/Molecule.hpp" | 
| 49 | #include "utils/NumericConstant.hpp" | 
| 50 | #include "utils/PhysicalConstants.hpp" | 
| 51 | #include "math/Eigenvalue.hpp" | 
| 52 |  | 
| 53 | namespace OpenMD { | 
| 54 |  | 
| 55 | ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename, | 
| 56 | const std::string& sele, RealType solidZ, | 
| 57 | RealType threshDens, RealType bufferLength, | 
| 58 | int nrbins, int nzbins) | 
| 59 | : SequentialAnalyzer(info, filename), selectionScript_(sele), | 
| 60 | evaluator_(info), seleMan_(info), solidZ_(solidZ), | 
| 61 | threshDens_(threshDens), bufferLength_(bufferLength), | 
| 62 | nRBins_(nrbins), nZBins_(nzbins) { | 
| 63 |  | 
| 64 | setOutputName(getPrefix(filename) + ".ca2"); | 
| 65 |  | 
| 66 | evaluator_.loadScriptString(sele); | 
| 67 |  | 
| 68 | if (!evaluator_.isDynamic()) { | 
| 69 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 70 | } | 
| 71 | } | 
| 72 |  | 
| 73 | void ContactAngle2::doFrame() { | 
| 74 | StuntDouble* sd; | 
| 75 | int i; | 
| 76 |  | 
| 77 | // set up the bins for density analysis | 
| 78 |  | 
| 79 | Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); | 
| 80 | RealType len = std::min(hmat(0, 0), hmat(1, 1)); | 
| 81 | RealType zLen = hmat(2,2); | 
| 82 |  | 
| 83 | RealType dr = len / (RealType) nRBins_; | 
| 84 | RealType dz = zLen / (RealType) nZBins_; | 
| 85 |  | 
| 86 | std::vector<std::vector<RealType> > histo; | 
| 87 | histo.resize(nRBins_); | 
| 88 | for (unsigned int i = 0; i < histo.size(); ++i){ | 
| 89 | histo[i].resize(nZBins_); | 
| 90 | std::fill(histo[i].begin(), histo[i].end(), 0.0); | 
| 91 | } | 
| 92 |  | 
| 93 | if (evaluator_.isDynamic()) { | 
| 94 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 95 | } | 
| 96 |  | 
| 97 |  | 
| 98 | RealType mtot = 0.0; | 
| 99 | Vector3d com(V3Zero); | 
| 100 | RealType mass; | 
| 101 |  | 
| 102 | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 103 | sd = seleMan_.nextSelected(i)) { | 
| 104 | mass = sd->getMass(); | 
| 105 | mtot += mass; | 
| 106 | com += sd->getPos() * mass; | 
| 107 | } | 
| 108 |  | 
| 109 | com /= mtot; | 
| 110 |  | 
| 111 | // now that we have the centroid, we can make cylindrical density maps | 
| 112 | Vector3d pos; | 
| 113 | RealType r; | 
| 114 | RealType z; | 
| 115 |  | 
| 116 | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 117 | sd = seleMan_.nextSelected(i)) { | 
| 118 | pos = sd->getPos() - com; | 
| 119 |  | 
| 120 | // r goes from zero upwards | 
| 121 | r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); | 
| 122 | // z is possibly symmetric around 0 | 
| 123 | z = pos.z(); | 
| 124 |  | 
| 125 | int whichRBin = int(r / dr); | 
| 126 | int whichZBin = int( (zLen/2.0 + z) / dz); | 
| 127 |  | 
| 128 | if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_)) | 
| 129 | histo[whichRBin][whichZBin] += sd->getMass(); | 
| 130 |  | 
| 131 | } | 
| 132 |  | 
| 133 | for(unsigned int i = 0 ; i < histo.size(); ++i){ | 
| 134 |  | 
| 135 | RealType rL = i * dr; | 
| 136 | RealType rU = rL + dr; | 
| 137 | RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); | 
| 138 |  | 
| 139 | for (unsigned int j = 0; j < histo[i].size(); ++j) { | 
| 140 | histo[i][j] *= PhysicalConstants::densityConvert / volSlice; | 
| 141 | } | 
| 142 | } | 
| 143 |  | 
| 144 | std::vector<Vector<RealType, 2> > points; | 
| 145 | points.clear(); | 
| 146 |  | 
| 147 | for (unsigned int j = 0; j < nZBins_;  ++j) { | 
| 148 |  | 
| 149 | // The z coordinates were measured relative to the selection | 
| 150 | // center of mass.  However, we're interested in the elevation | 
| 151 | // above the solid surface.  Also, the binning was done around | 
| 152 | // zero with enough bins to cover the zLength of the box: | 
| 153 |  | 
| 154 | RealType thez =  com.z() - solidZ_  - zLen/2.0 + dz * (j + 0.5); | 
| 155 | bool aboveThresh = false; | 
| 156 | bool foundThresh = false; | 
| 157 | int rloc = 0; | 
| 158 |  | 
| 159 | for (unsigned int i = 0; i < nRBins_;  ++i) { | 
| 160 | RealType ther = dr * (i + 0.5); | 
| 161 | if (histo[i][j] >= threshDens_) aboveThresh = true; | 
| 162 |  | 
| 163 | if (aboveThresh && (histo[i][j] <= threshDens_)) { | 
| 164 | rloc = i; | 
| 165 | foundThresh = true; | 
| 166 | aboveThresh = false; | 
| 167 | } | 
| 168 |  | 
| 169 | } | 
| 170 | if (foundThresh) { | 
| 171 | Vector<RealType,2> point; | 
| 172 | point[0] = dr*(rloc+0.5); | 
| 173 | point[1] = thez; | 
| 174 |  | 
| 175 | if (thez > bufferLength_) { | 
| 176 | points.push_back( point ); | 
| 177 | } | 
| 178 | } | 
| 179 | } | 
| 180 |  | 
| 181 | int numPoints = points.size(); | 
| 182 |  | 
| 183 | // Compute the average of the data points. | 
| 184 | Vector<RealType, 2> average = points[0]; | 
| 185 | int i0; | 
| 186 | for (i0 = 1; i0 < numPoints; ++i0) { | 
| 187 | average += points[i0]; | 
| 188 | } | 
| 189 | RealType invNumPoints = ((RealType)1)/(RealType)numPoints; | 
| 190 | average *= invNumPoints; | 
| 191 |  | 
| 192 | DynamicRectMatrix<RealType> mat(4, 4); | 
| 193 | int row, col; | 
| 194 | for (row = 0; row < 4; ++row) { | 
| 195 | for (col = 0; col < 4; ++col){ | 
| 196 | mat(row,col) = 0.0; | 
| 197 | } | 
| 198 | } | 
| 199 | for (int i = 0; i < numPoints; ++i) { | 
| 200 | RealType x = points[i][0]; | 
| 201 | RealType y = points[i][1]; | 
| 202 | RealType x2 = x*x; | 
| 203 | RealType y2 = y*y; | 
| 204 | RealType xy = x*y; | 
| 205 | RealType r2 = x2+y2; | 
| 206 | RealType xr2 = x*r2; | 
| 207 | RealType yr2 = y*r2; | 
| 208 | RealType r4 = r2*r2; | 
| 209 |  | 
| 210 | mat(0,1) += x; | 
| 211 | mat(0,2) += y; | 
| 212 | mat(0,3) += r2; | 
| 213 | mat(1,1) += x2; | 
| 214 | mat(1,2) += xy; | 
| 215 | mat(1,3) += xr2; | 
| 216 | mat(2,2) += y2; | 
| 217 | mat(2,3) += yr2; | 
| 218 | mat(3,3) += r4; | 
| 219 | } | 
| 220 | mat(0,0) = (RealType)numPoints; | 
| 221 |  | 
| 222 | for (row = 0; row < 4; ++row) { | 
| 223 | for (col = 0; col < row; ++col) { | 
| 224 | mat(row,col) = mat(col,row); | 
| 225 | } | 
| 226 | } | 
| 227 |  | 
| 228 | for (row = 0; row < 4; ++row) { | 
| 229 | for (col = 0; col < 4; ++col) { | 
| 230 | mat(row,col) *= invNumPoints; | 
| 231 | } | 
| 232 | } | 
| 233 |  | 
| 234 | JAMA::Eigenvalue<RealType> eigensystem(mat); | 
| 235 | DynamicRectMatrix<RealType> evects(4, 4); | 
| 236 | DynamicVector<RealType> evals(4); | 
| 237 |  | 
| 238 | eigensystem.getRealEigenvalues(evals); | 
| 239 | eigensystem.getV(evects); | 
| 240 |  | 
| 241 | DynamicVector<RealType> evector = evects.getColumn(0); | 
| 242 | RealType inv = ((RealType)1)/evector[3];  // beware zero divide | 
| 243 | RealType coeff[3]; | 
| 244 | for (row = 0; row < 3; ++row) { | 
| 245 | coeff[row] = inv*evector[row]; | 
| 246 | } | 
| 247 |  | 
| 248 | Vector<RealType, 2> center; | 
| 249 |  | 
| 250 | center[0] = -((RealType)0.5)*coeff[1]; | 
| 251 | center[1] = -((RealType)0.5)*coeff[2]; | 
| 252 | RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1] | 
| 253 | - coeff[0])); | 
| 254 | RealType ev0 =  fabs(evals[0]); | 
| 255 |  | 
| 256 | int i1; | 
| 257 | for (i1 = 0; i1 < 100; ++i1) { | 
| 258 | // Update the iterates. | 
| 259 | Vector<RealType, 2> current = center; | 
| 260 |  | 
| 261 | // Compute average L, dL/da, dL/db. | 
| 262 | RealType lenAverage = (RealType)0; | 
| 263 | Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0); | 
| 264 | for (i0 = 0; i0 < numPoints; ++i0) { | 
| 265 | Vector<RealType, 2> diff = points[i0] - center; | 
| 266 | RealType length = diff.length(); | 
| 267 | if (length > 1e-6) { | 
| 268 | lenAverage += length; | 
| 269 | RealType invLength = ((RealType)1)/length; | 
| 270 | derLenAverage -= invLength*diff; | 
| 271 | } | 
| 272 | } | 
| 273 | lenAverage *= invNumPoints; | 
| 274 | derLenAverage *= invNumPoints; | 
| 275 |  | 
| 276 | center = average + lenAverage*derLenAverage; | 
| 277 | radius = lenAverage; | 
| 278 |  | 
| 279 | Vector<RealType, 2> diff = center - current; | 
| 280 | if (fabs(diff[0]) <= 1e-6 &&  fabs(diff[1]) <= 1e-6) { | 
| 281 | break; | 
| 282 | } | 
| 283 | } | 
| 284 |  | 
| 285 | RealType zCen = center[1]; | 
| 286 | RealType rDrop = radius; | 
| 287 | RealType ca; | 
| 288 |  | 
| 289 | if (fabs(zCen) > rDrop) { | 
| 290 | ca = 180.0; | 
| 291 | } else { | 
| 292 | ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI); | 
| 293 | } | 
| 294 |  | 
| 295 | values_.push_back( ca ); | 
| 296 |  | 
| 297 | } | 
| 298 | } | 
| 299 |  | 
| 300 |  |