| 48 |  | #include "primitives/Molecule.hpp" | 
| 49 |  | #include "utils/NumericConstant.hpp" | 
| 50 |  | #include "utils/PhysicalConstants.hpp" | 
| 51 | < | #include "math/Polynomial.hpp" | 
| 51 | > | #include "math/Eigenvalue.hpp" | 
| 52 |  |  | 
| 53 |  | namespace OpenMD { | 
| 54 |  |  | 
| 55 |  | ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename, | 
| 56 |  | const std::string& sele, RealType solidZ, | 
| 57 | < | RealType threshDens, int nrbins, int nzbins) | 
| 57 | > | RealType threshDens, RealType bufferLength, | 
| 58 | > | int nrbins, int nzbins) | 
| 59 |  | : SequentialAnalyzer(info, filename), selectionScript_(sele), | 
| 60 |  | evaluator_(info), seleMan_(info), solidZ_(solidZ), | 
| 61 | < | threshDens_(threshDens), nRBins_(nrbins), nZBins_(nzbins) { | 
| 62 | < |  | 
| 61 | > | threshDens_(threshDens), bufferLength_(bufferLength), | 
| 62 | > | nRBins_(nrbins), nZBins_(nzbins) { | 
| 63 | > |  | 
| 64 |  | setOutputName(getPrefix(filename) + ".ca2"); | 
| 65 |  |  | 
| 66 |  | evaluator_.loadScriptString(sele); | 
| 79 |  | Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); | 
| 80 |  | RealType len = std::min(hmat(0, 0), hmat(1, 1)); | 
| 81 |  | RealType zLen = hmat(2,2); | 
| 82 | + |  | 
| 83 |  | RealType dr = len / (RealType) nRBins_; | 
| 84 |  | RealType dz = zLen / (RealType) nZBins_; | 
| 85 |  |  | 
| 86 |  | std::vector<std::vector<RealType> > histo; | 
| 87 |  | histo.resize(nRBins_); | 
| 85 | – | for (int i = 0 ; i < nRBins_; ++i) { | 
| 86 | – | histo[i].resize(nZBins_); | 
| 87 | – | } | 
| 88 |  | for (unsigned int i = 0; i < histo.size(); ++i){ | 
| 89 | + | histo[i].resize(nZBins_); | 
| 90 |  | std::fill(histo[i].begin(), histo[i].end(), 0.0); | 
| 91 |  | } | 
| 92 |  |  | 
| 116 |  | for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 117 |  | sd = seleMan_.nextSelected(i)) { | 
| 118 |  | pos = sd->getPos() - com; | 
| 119 | < |  | 
| 119 | > |  | 
| 120 | > | // r goes from zero upwards | 
| 121 |  | r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); | 
| 122 | < | z = pos.z() - solidZ_; | 
| 123 | < |  | 
| 122 | > | // z is possibly symmetric around 0 | 
| 123 | > | z = pos.z(); | 
| 124 | > |  | 
| 125 |  | int whichRBin = int(r / dr); | 
| 126 | < | int whichZBin = int(z/ dz); | 
| 126 | > | int whichZBin = int( (zLen/2.0 + z) / dz); | 
| 127 |  |  | 
| 128 | < | if ((r <= len) && (z <= zLen)) | 
| 128 | > | if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_)) | 
| 129 |  | histo[whichRBin][whichZBin] += sd->getMass(); | 
| 130 |  |  | 
| 131 |  | } | 
| 136 |  | RealType rU = rL + dr; | 
| 137 |  | RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); | 
| 138 |  |  | 
| 139 | < | for (unsigned int j = 0; j < histo[i].size(); ++j){ | 
| 139 | > | for (unsigned int j = 0; j < histo[i].size(); ++j) { | 
| 140 |  | histo[i][j] *= PhysicalConstants::densityConvert / volSlice; | 
| 141 |  | } | 
| 142 |  | } | 
| 143 |  |  | 
| 144 | < | for (unsigned int i = 0; i < histo.size(); ++i) { | 
| 145 | < | RealType ther = dr * (i + 0.5); | 
| 146 | < | for(unsigned int j = 0; j < histo[i].size(); ++j) { | 
| 147 | < | if (histo[i][j] <= threshDens_) { | 
| 148 | < | RealType thez = dz * (j + 0.5); | 
| 149 | < | cerr << ther << "\t" << thez << "\n"; | 
| 150 | < | break; | 
| 144 | > | std::vector<Vector<RealType, 2> > points; | 
| 145 | > | points.clear(); | 
| 146 | > |  | 
| 147 | > | for (unsigned int j = 0; j < nZBins_;  ++j) { | 
| 148 | > |  | 
| 149 | > | // The z coordinates were measured relative to the selection | 
| 150 | > | // center of mass.  However, we're interested in the elevation | 
| 151 | > | // above the solid surface.  Also, the binning was done around | 
| 152 | > | // zero with enough bins to cover the zLength of the box: | 
| 153 | > |  | 
| 154 | > | RealType thez =  com.z() - solidZ_  - zLen/2.0 + dz * (j + 0.5); | 
| 155 | > | bool aboveThresh = false; | 
| 156 | > | bool foundThresh = false; | 
| 157 | > | int rloc = 0; | 
| 158 | > |  | 
| 159 | > | for (unsigned int i = 0; i < nRBins_;  ++i) { | 
| 160 | > | RealType ther = dr * (i + 0.5); | 
| 161 | > | if (histo[i][j] >= threshDens_) aboveThresh = true; | 
| 162 | > |  | 
| 163 | > | if (aboveThresh && (histo[i][j] <= threshDens_)) { | 
| 164 | > | rloc = i; | 
| 165 | > | foundThresh = true; | 
| 166 | > | aboveThresh = false; | 
| 167 |  | } | 
| 168 | + |  | 
| 169 |  | } | 
| 170 | + | if (foundThresh) { | 
| 171 | + | Vector<RealType,2> point; | 
| 172 | + | point[0] = dr*(rloc+0.5); | 
| 173 | + | point[1] = thez; | 
| 174 | + |  | 
| 175 | + | if (thez > bufferLength_) { | 
| 176 | + | points.push_back( point ); | 
| 177 | + | } | 
| 178 | + | } | 
| 179 |  | } | 
| 180 |  |  | 
| 181 | < | // values_.push_back( acos(maxct)*(180.0/M_PI) ); | 
| 181 | > | int numPoints = points.size(); | 
| 182 | > |  | 
| 183 | > | // Compute the average of the data points. | 
| 184 | > | Vector<RealType, 2> average = points[0]; | 
| 185 | > | int i0; | 
| 186 | > | for (i0 = 1; i0 < numPoints; ++i0) { | 
| 187 | > | average += points[i0]; | 
| 188 | > | } | 
| 189 | > | RealType invNumPoints = ((RealType)1)/(RealType)numPoints; | 
| 190 | > | average *= invNumPoints; | 
| 191 |  |  | 
| 192 | + | DynamicRectMatrix<RealType> mat(4, 4); | 
| 193 | + | int row, col; | 
| 194 | + | for (row = 0; row < 4; ++row) { | 
| 195 | + | for (col = 0; col < 4; ++col){ | 
| 196 | + | mat(row,col) = 0.0; | 
| 197 | + | } | 
| 198 | + | } | 
| 199 | + | for (int i = 0; i < numPoints; ++i) { | 
| 200 | + | RealType x = points[i][0]; | 
| 201 | + | RealType y = points[i][1]; | 
| 202 | + | RealType x2 = x*x; | 
| 203 | + | RealType y2 = y*y; | 
| 204 | + | RealType xy = x*y; | 
| 205 | + | RealType r2 = x2+y2; | 
| 206 | + | RealType xr2 = x*r2; | 
| 207 | + | RealType yr2 = y*r2; | 
| 208 | + | RealType r4 = r2*r2; | 
| 209 | + |  | 
| 210 | + | mat(0,1) += x; | 
| 211 | + | mat(0,2) += y; | 
| 212 | + | mat(0,3) += r2; | 
| 213 | + | mat(1,1) += x2; | 
| 214 | + | mat(1,2) += xy; | 
| 215 | + | mat(1,3) += xr2; | 
| 216 | + | mat(2,2) += y2; | 
| 217 | + | mat(2,3) += yr2; | 
| 218 | + | mat(3,3) += r4; | 
| 219 | + | } | 
| 220 | + | mat(0,0) = (RealType)numPoints; | 
| 221 | + |  | 
| 222 | + | for (row = 0; row < 4; ++row) { | 
| 223 | + | for (col = 0; col < row; ++col) { | 
| 224 | + | mat(row,col) = mat(col,row); | 
| 225 | + | } | 
| 226 | + | } | 
| 227 | + |  | 
| 228 | + | for (row = 0; row < 4; ++row) { | 
| 229 | + | for (col = 0; col < 4; ++col) { | 
| 230 | + | mat(row,col) *= invNumPoints; | 
| 231 | + | } | 
| 232 | + | } | 
| 233 | + |  | 
| 234 | + | JAMA::Eigenvalue<RealType> eigensystem(mat); | 
| 235 | + | DynamicRectMatrix<RealType> evects(4, 4); | 
| 236 | + | DynamicVector<RealType> evals(4); | 
| 237 | + |  | 
| 238 | + | eigensystem.getRealEigenvalues(evals); | 
| 239 | + | eigensystem.getV(evects); | 
| 240 | + |  | 
| 241 | + | DynamicVector<RealType> evector = evects.getColumn(0); | 
| 242 | + | RealType inv = ((RealType)1)/evector[3];  // beware zero divide | 
| 243 | + | RealType coeff[3]; | 
| 244 | + | for (row = 0; row < 3; ++row) { | 
| 245 | + | coeff[row] = inv*evector[row]; | 
| 246 | + | } | 
| 247 | + |  | 
| 248 | + | Vector<RealType, 2> center; | 
| 249 | + |  | 
| 250 | + | center[0] = -((RealType)0.5)*coeff[1]; | 
| 251 | + | center[1] = -((RealType)0.5)*coeff[2]; | 
| 252 | + | RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1] | 
| 253 | + | - coeff[0])); | 
| 254 | + | RealType ev0 =  fabs(evals[0]); | 
| 255 | + |  | 
| 256 | + | int i1; | 
| 257 | + | for (i1 = 0; i1 < 100; ++i1) { | 
| 258 | + | // Update the iterates. | 
| 259 | + | Vector<RealType, 2> current = center; | 
| 260 | + |  | 
| 261 | + | // Compute average L, dL/da, dL/db. | 
| 262 | + | RealType lenAverage = (RealType)0; | 
| 263 | + | Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0); | 
| 264 | + | for (i0 = 0; i0 < numPoints; ++i0) { | 
| 265 | + | Vector<RealType, 2> diff = points[i0] - center; | 
| 266 | + | RealType length = diff.length(); | 
| 267 | + | if (length > 1e-6) { | 
| 268 | + | lenAverage += length; | 
| 269 | + | RealType invLength = ((RealType)1)/length; | 
| 270 | + | derLenAverage -= invLength*diff; | 
| 271 | + | } | 
| 272 | + | } | 
| 273 | + | lenAverage *= invNumPoints; | 
| 274 | + | derLenAverage *= invNumPoints; | 
| 275 | + |  | 
| 276 | + | center = average + lenAverage*derLenAverage; | 
| 277 | + | radius = lenAverage; | 
| 278 | + |  | 
| 279 | + | Vector<RealType, 2> diff = center - current; | 
| 280 | + | if (fabs(diff[0]) <= 1e-6 &&  fabs(diff[1]) <= 1e-6) { | 
| 281 | + | break; | 
| 282 | + | } | 
| 283 | + | } | 
| 284 | + |  | 
| 285 | + | RealType zCen = center[1]; | 
| 286 | + | RealType rDrop = radius; | 
| 287 | + | RealType ca; | 
| 288 | + |  | 
| 289 | + | if (fabs(zCen) > rDrop) { | 
| 290 | + | ca = 180.0; | 
| 291 | + | } else { | 
| 292 | + | ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI); | 
| 293 | + | } | 
| 294 | + |  | 
| 295 | + | values_.push_back( ca ); | 
| 296 | + |  | 
| 297 |  | } | 
| 298 |  | } | 
| 299 |  |  |