| 51 | 
  | 
#include "io/DumpReader.hpp" | 
| 52 | 
  | 
#include "primitives/Molecule.hpp" | 
| 53 | 
  | 
#include "utils/NumericConstant.hpp" | 
| 54 | 
< | 
#include "math/RealSphericalHarmonic.hpp" | 
| 54 | 
> | 
#include "math/SphericalHarmonic.hpp" | 
| 55 | 
  | 
 | 
| 56 | 
  | 
namespace oopse { | 
| 57 | 
  | 
 | 
| 104 | 
  | 
    Molecule* mol; | 
| 105 | 
  | 
    Atom* atom; | 
| 106 | 
  | 
    RigidBody* rb; | 
| 107 | 
+ | 
    int myIndex; | 
| 108 | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 109 | 
  | 
    Molecule::RigidBodyIterator rbIter; | 
| 110 | 
  | 
    Molecule::AtomIterator ai; | 
| 111 | 
  | 
    StuntDouble* sd; | 
| 112 | 
< | 
    RealType theta; | 
| 112 | 
> | 
    Vector3d vec; | 
| 113 | 
> | 
    RealType costheta; | 
| 114 | 
  | 
    RealType phi; | 
| 115 | 
  | 
    RealType r; | 
| 116 | 
  | 
    RealType dist; | 
| 117 | 
< | 
    std::map<int, RealType> QBar_lm; | 
| 117 | 
> | 
    std::map<int, ComplexType> QBar_lm; | 
| 118 | 
  | 
    RealType QSq_l; | 
| 119 | 
  | 
    RealType Q_l; | 
| 120 | 
+ | 
    ComplexType W_l; | 
| 121 | 
+ | 
    ComplexType W_l_hat; | 
| 122 | 
  | 
    int nBonds; | 
| 123 | 
< | 
    RealSphericalHarmonic sphericalHarmonic; | 
| 123 | 
> | 
    SphericalHarmonic sphericalHarmonic; | 
| 124 | 
  | 
    int i, j; | 
| 125 | 
< | 
   | 
| 125 | 
> | 
    // Make arrays for Wigner3jm | 
| 126 | 
> | 
    double* THRCOF = new double[mSize_]; | 
| 127 | 
> | 
    // Variables for Wigner routine | 
| 128 | 
> | 
    double l_ = (double)lNumber_; | 
| 129 | 
> | 
    double m1Pass, m2Min, m2Max; | 
| 130 | 
> | 
    int error, m1, m2, m3; | 
| 131 | 
> | 
 | 
| 132 | 
  | 
    // Set the l for the spherical harmonic, it doesn't change | 
| 133 | 
  | 
    sphericalHarmonic.setL(lNumber_); | 
| 134 | 
  | 
 | 
| 125 | 
– | 
 | 
| 135 | 
  | 
    DumpReader reader(info_, dumpFilename_);     | 
| 136 | 
  | 
    int nFrames = reader.getNFrames(); | 
| 137 | 
  | 
    frameCounter_ = 0; | 
| 160 | 
  | 
      for (sd = seleMan_.beginSelected(i); sd != NULL;  | 
| 161 | 
  | 
           sd = seleMan_.nextSelected(i)) { | 
| 162 | 
  | 
 | 
| 163 | 
+ | 
        myIndex = sd->getGlobalIndex(); | 
| 164 | 
+ | 
 | 
| 165 | 
  | 
        // For this central atom, zero out nBonds and QBar_lm | 
| 166 | 
  | 
 | 
| 167 | 
  | 
        nBonds = 0; | 
| 177 | 
  | 
          for (atom = mol->beginAtom(ai); atom != NULL;  | 
| 178 | 
  | 
               atom = mol->nextAtom(ai)) { | 
| 179 | 
  | 
 | 
| 180 | 
+ | 
            if (atom->getGlobalIndex() != myIndex) { | 
| 181 | 
  | 
 | 
| 182 | 
< | 
            Vector3d vec = sd->getPos() - atom->getPos();        | 
| 183 | 
< | 
            currentSnapshot_->wrapVector(vec); | 
| 184 | 
< | 
             | 
| 185 | 
< | 
            // Calculate "bonds" and build Q_lm(r) where  | 
| 186 | 
< | 
            //      Q_lm = Y_lm(theta(r),phi(r))                 | 
| 187 | 
< | 
            // The spherical harmonics are wrt any arbitrary coordinate | 
| 188 | 
< | 
            // system, we choose standard spherical coordinates  | 
| 189 | 
< | 
             | 
| 190 | 
< | 
            r = sqrt(pow(vec.x(),2)+pow(vec.y(),2)+pow(vec.z(),2)); | 
| 191 | 
< | 
             | 
| 192 | 
< | 
            // Check to see if neighbor is in bond cutoff  | 
| 193 | 
< | 
             | 
| 194 | 
< | 
            if (r < rCut_) {             | 
| 195 | 
< | 
              theta = atan2(vec.y(), vec.x()); | 
| 196 | 
< | 
              phi = acos(vec.z()/r); | 
| 197 | 
< | 
              for(int m = -lNumber_; m <= lNumber_; m++){ | 
| 198 | 
< | 
                sphericalHarmonic.setM(m); | 
| 199 | 
< | 
                QBar_lm[m] += sphericalHarmonic.getValueAt(theta,phi); | 
| 200 | 
< | 
              } | 
| 201 | 
< | 
              nBonds++; | 
| 202 | 
< | 
            }   | 
| 182 | 
> | 
              vec = sd->getPos() - atom->getPos();        | 
| 183 | 
> | 
              currentSnapshot_->wrapVector(vec); | 
| 184 | 
> | 
               | 
| 185 | 
> | 
              // Calculate "bonds" and build Q_lm(r) where  | 
| 186 | 
> | 
              //      Q_lm = Y_lm(theta(r),phi(r))                 | 
| 187 | 
> | 
              // The spherical harmonics are wrt any arbitrary coordinate | 
| 188 | 
> | 
              // system, we choose standard spherical coordinates  | 
| 189 | 
> | 
               | 
| 190 | 
> | 
              r = vec.length(); | 
| 191 | 
> | 
               | 
| 192 | 
> | 
              // Check to see if neighbor is in bond cutoff  | 
| 193 | 
> | 
               | 
| 194 | 
> | 
              if (r < rCut_) {  | 
| 195 | 
> | 
                costheta = vec.z() / r;  | 
| 196 | 
> | 
                phi = atan2(vec.y(), vec.x()); | 
| 197 | 
> | 
                 | 
| 198 | 
> | 
                for(int m = -lNumber_; m <= lNumber_; m++){ | 
| 199 | 
> | 
                  sphericalHarmonic.setM(m); | 
| 200 | 
> | 
                  QBar_lm[m] += sphericalHarmonic.getValueAt(costheta,phi); | 
| 201 | 
> | 
                } | 
| 202 | 
> | 
                nBonds++; | 
| 203 | 
> | 
              }   | 
| 204 | 
> | 
            } | 
| 205 | 
  | 
          } | 
| 206 | 
  | 
        } | 
| 207 | 
  | 
         | 
| 208 | 
< | 
        // Normalize Qbar | 
| 208 | 
> | 
        // Normalize Qbar2 | 
| 209 | 
  | 
        for (int m = -lNumber_;m <= lNumber_; m++){ | 
| 210 | 
  | 
          QBar_lm[m] /= nBonds;  | 
| 211 | 
+ | 
          std::cout << "m = " << m << " QBLM = " << QBar_lm[m] << "\n"; | 
| 212 | 
  | 
        } | 
| 213 | 
  | 
 | 
| 214 | 
  | 
        // Find second order invariant Q_l | 
| 215 | 
  | 
 | 
| 216 | 
  | 
        QSq_l = 0.0; | 
| 217 | 
  | 
        for (int m = -lNumber_; m <= lNumber_; m++){ | 
| 218 | 
< | 
          QSq_l += pow(QBar_lm[m], 2);   | 
| 218 | 
> | 
          QSq_l += norm(QBar_lm[m]); | 
| 219 | 
  | 
        } | 
| 220 | 
+ | 
        std::cout << "qsq_l = " << QSq_l << "\n"; | 
| 221 | 
  | 
        Q_l = sqrt(QSq_l*(4.0 * NumericConstant::PI / (2.0*(RealType)lNumber_ + 1))); | 
| 206 | 
– | 
      | 
| 207 | 
– | 
        // Find Third Order Invariant W_l | 
| 222 | 
  | 
 | 
| 223 | 
< | 
        // Make arrays for Wigner3jm | 
| 224 | 
< | 
        double* THRCOF = new double[mSize_]; | 
| 211 | 
< | 
        // Variables for Wigner routine | 
| 212 | 
< | 
        double l_ = (double)lNumber_; | 
| 213 | 
< | 
        double m1Pass, m2Min, m2Max; | 
| 214 | 
< | 
        int error, m1, m2, m3; | 
| 215 | 
< | 
 | 
| 216 | 
< | 
        RealType W_l; | 
| 217 | 
< | 
        RealType W_l_hat; | 
| 223 | 
> | 
        // Find Third Order Invariant W_l | 
| 224 | 
> | 
         | 
| 225 | 
  | 
        W_l = 0.0; | 
| 226 | 
  | 
        for (int m1 = -lNumber_; m1 <= lNumber_; m1++) { | 
| 227 | 
  | 
          // Zero work array | 
| 231 | 
  | 
          // Get Wigner coefficients | 
| 232 | 
  | 
          m1Pass = (double)m1; | 
| 233 | 
  | 
          Wigner3jm(&l_, &l_, &l_, &m1Pass, &m2Min, &m2Max, THRCOF, &mSize_, &error); | 
| 234 | 
< | 
          for (int m_index = 1; i < (int)(m2Max - m2Min-1.0); m_index++) { | 
| 234 | 
> | 
          for (int m_index = 1; m_index < (int)(m2Max - m2Min-1.0); m_index++) { | 
| 235 | 
  | 
            m2 = floor(m2Min) + m_index - 1; | 
| 236 | 
  | 
            m3 = -m1-m2; | 
| 237 | 
  | 
            W_l += THRCOF[m_index]*QBar_lm[m1+lNumber_]*QBar_lm[m2+lNumber_]*QBar_lm[m3+lNumber_]; | 
| 238 | 
  | 
          } | 
| 239 | 
  | 
        } | 
| 240 | 
< | 
 | 
| 240 | 
> | 
         | 
| 241 | 
  | 
        W_l_hat = W_l / pow(QSq_l, 1.5); | 
| 242 | 
< | 
 | 
| 242 | 
> | 
         | 
| 243 | 
  | 
        // accumulate histogram data for Q_l and W_l_hat: | 
| 244 | 
  | 
 | 
| 245 | 
< | 
        collectHistogram(Q_l, W_l_hat); | 
| 245 | 
> | 
        std::cout << "Ql = " << Q_l << " Wl = " << W_l_hat << "\n"; | 
| 246 | 
> | 
        collectHistogram(Q_l, real(W_l_hat)); | 
| 247 | 
  | 
                 | 
| 248 | 
  | 
      } | 
| 249 | 
  | 
    } |