| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
#include <algorithm> |
| 43 |
+ |
#include <functional> |
| 44 |
|
#include "applications/staticProps/DensityPlot.hpp" |
| 45 |
|
#include "utils/simError.h" |
| 46 |
|
#include "io/DumpReader.hpp" |
| 47 |
|
#include "primitives/Molecule.hpp" |
| 48 |
|
#include "utils/NumericConstant.hpp" |
| 49 |
< |
namespace oopse { |
| 49 |
> |
namespace OpenMD { |
| 50 |
|
|
| 51 |
|
|
| 52 |
< |
DensityPlot::DensityPlot(SimInfo* info, const std::string& filename, const std::string& sele, const std::string& cmSele, double len, int nrbins) |
| 52 |
> |
DensityPlot::DensityPlot(SimInfo* info, const std::string& filename, const std::string& sele, const std::string& cmSele, RealType len, int nrbins) |
| 53 |
|
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), |
| 54 |
|
cmSelectionScript_(cmSele), cmEvaluator_(info), cmSeleMan_(info), |
| 55 |
|
len_(len), nRBins_(nrbins), halfLen_(len/2) { |
| 84 |
|
|
| 85 |
|
DumpReader reader(info_, dumpFilename_); |
| 86 |
|
int nFrames = reader.getNFrames(); |
| 86 |
– |
|
| 87 |
|
for (int i = 0; i < nFrames; i += step_) { |
| 88 |
|
reader.readFrame(i); |
| 89 |
|
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 107 |
|
Vector3d origin = calcNewOrigin(); |
| 108 |
|
|
| 109 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 110 |
< |
double slabVolume = deltaR_ * hmat(0, 0) * hmat(1, 1); |
| 111 |
< |
|
| 112 |
< |
int i; |
| 113 |
< |
for (StuntDouble* sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
| 110 |
> |
RealType slabVolume = deltaR_ * hmat(0, 0) * hmat(1, 1); |
| 111 |
> |
int k; |
| 112 |
> |
for (StuntDouble* sd = seleMan_.beginSelected(k); sd != NULL; sd = seleMan_.nextSelected(k)) { |
| 113 |
|
|
| 114 |
|
|
| 115 |
|
if (!sd->isAtom()) { |
| 116 |
|
sprintf( painCave.errMsg, "Can not calculate electron density if it is not atom\n"); |
| 117 |
< |
painCave.severity = OOPSE_ERROR; |
| 117 |
> |
painCave.severity = OPENMD_ERROR; |
| 118 |
|
painCave.isFatal = 1; |
| 119 |
|
simError(); |
| 120 |
|
} |
| 123 |
|
GenericData* data = atom->getAtomType()->getPropertyByName("nelectron"); |
| 124 |
|
if (data == NULL) { |
| 125 |
|
sprintf( painCave.errMsg, "Can not find Parameters for nelectron\n"); |
| 126 |
< |
painCave.severity = OOPSE_ERROR; |
| 126 |
> |
painCave.severity = OPENMD_ERROR; |
| 127 |
|
painCave.isFatal = 1; |
| 128 |
|
simError(); |
| 129 |
|
} |
| 132 |
|
if (doubleData == NULL) { |
| 133 |
|
sprintf( painCave.errMsg, |
| 134 |
|
"Can not cast GenericData to DoubleGenericData\n"); |
| 135 |
< |
painCave.severity = OOPSE_ERROR; |
| 135 |
> |
painCave.severity = OPENMD_ERROR; |
| 136 |
|
painCave.isFatal = 1; |
| 137 |
|
simError(); |
| 138 |
|
} |
| 139 |
|
|
| 140 |
< |
double nelectron = doubleData->getData(); |
| 140 |
> |
RealType nelectron = doubleData->getData(); |
| 141 |
|
|
| 142 |
|
data = atom->getAtomType()->getPropertyByName("LennardJones"); |
| 143 |
|
if (data == NULL) { |
| 144 |
|
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
| 145 |
< |
painCave.severity = OOPSE_ERROR; |
| 145 |
> |
painCave.severity = OPENMD_ERROR; |
| 146 |
|
painCave.isFatal = 1; |
| 147 |
|
simError(); |
| 148 |
|
} |
| 151 |
|
if (ljData == NULL) { |
| 152 |
|
sprintf( painCave.errMsg, |
| 153 |
|
"Can not cast GenericData to LJParam\n"); |
| 154 |
< |
painCave.severity = OOPSE_ERROR; |
| 154 |
> |
painCave.severity = OPENMD_ERROR; |
| 155 |
|
painCave.isFatal = 1; |
| 156 |
|
simError(); |
| 157 |
|
} |
| 158 |
|
|
| 159 |
|
LJParam ljParam = ljData->getData(); |
| 160 |
< |
double sigma = ljParam.sigma * 0.5; |
| 161 |
< |
double sigma2 = sigma * sigma; |
| 160 |
> |
RealType sigma = ljParam.sigma * 0.5; |
| 161 |
> |
RealType sigma2 = sigma * sigma; |
| 162 |
|
|
| 163 |
|
Vector3d pos = sd->getPos() - origin; |
| 165 |
– |
/* |
| 166 |
– |
currentSnapshot_->wrapVector(pos); |
| 167 |
– |
double wrappedZdist = pos.z() + halfLen_; |
| 168 |
– |
if (wrappedZdist < 0.0 || wrappedZdist > len_) { |
| 169 |
– |
continue; |
| 170 |
– |
} |
| 171 |
– |
|
| 172 |
– |
int which =wrappedZdist / deltaR_; |
| 173 |
– |
density_[which] += nelectron; |
| 174 |
– |
*/ |
| 164 |
|
for (int j =0; j < nRBins_; ++j) { |
| 165 |
|
Vector3d tmp(pos); |
| 166 |
< |
double zdist =j * deltaR_ - halfLen_; |
| 166 |
> |
RealType zdist =j * deltaR_ - halfLen_; |
| 167 |
|
tmp[2] += zdist; |
| 168 |
< |
currentSnapshot_->wrapVector(tmp); |
| 168 |
> |
if (usePeriodicBoundaryConditions_) |
| 169 |
> |
currentSnapshot_->wrapVector(tmp); |
| 170 |
|
|
| 171 |
< |
double wrappedZdist = tmp.z() + halfLen_; |
| 171 |
> |
RealType wrappedZdist = tmp.z() + halfLen_; |
| 172 |
|
if (wrappedZdist < 0.0 || wrappedZdist > len_) { |
| 173 |
|
continue; |
| 174 |
|
} |
| 184 |
|
} |
| 185 |
|
|
| 186 |
|
int nProcessed = nFrames /step_; |
| 187 |
< |
std::transform(density_.begin(), density_.end(), density_.begin(), std::bind2nd(std::divides<double>(), nProcessed)); |
| 187 |
> |
std::transform(density_.begin(), density_.end(), density_.begin(), std::bind2nd(std::divides<RealType>(), nProcessed)); |
| 188 |
|
writeDensity(); |
| 189 |
|
|
| 190 |
|
|
| 195 |
|
|
| 196 |
|
int i; |
| 197 |
|
Vector3d newOrigin(0.0); |
| 198 |
< |
double totalMass = 0.0; |
| 198 |
> |
RealType totalMass = 0.0; |
| 199 |
|
for (StuntDouble* sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
| 200 |
< |
double mass = sd->getMass(); |
| 200 |
> |
RealType mass = sd->getMass(); |
| 201 |
|
totalMass += mass; |
| 202 |
|
newOrigin += sd->getPos() * mass; |
| 203 |
|
} |