| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include <algorithm> | 
| 43 | #include <fstream> | 
| 44 | #include "applications/staticProps/GofR.hpp" | 
| 45 | #include "utils/simError.h" | 
| 46 |  | 
| 47 | namespace oopse { | 
| 48 |  | 
| 49 | GofR::GofR(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2) | 
| 50 | : RadialDistrFunc(info, filename, sele1, sele2){ | 
| 51 |  | 
| 52 | deltaR_ = len_ /nRBins_; | 
| 53 |  | 
| 54 | histogram_.resize(nRBins_); | 
| 55 | avgGofr_.resize(nRBins_); | 
| 56 |  | 
| 57 | setOutputName(getPrefix(filename) + ".gr"); | 
| 58 | } | 
| 59 |  | 
| 60 |  | 
| 61 | void GofR::preProcess() { | 
| 62 | std::fill(avgGofr_.begin(), avgGofr_.end(), 0.0); | 
| 63 | } | 
| 64 |  | 
| 65 | void GofR::initalizeHistogram() { | 
| 66 | npairs_ = 0; | 
| 67 | std::fill(histogram_.begin(), histogram_.end(), 0); | 
| 68 | } | 
| 69 |  | 
| 70 |  | 
| 71 | void GofR::processHistogram() { | 
| 72 |  | 
| 73 | double volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); | 
| 74 | double pairDensity = npairs_ /volume; | 
| 75 | double pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; | 
| 76 |  | 
| 77 | for(int i = 0 ; i < histogram_.size(); ++i){ | 
| 78 |  | 
| 79 | double rLower = i * deltaR_; | 
| 80 | double rUpper = rLower + deltaR_; | 
| 81 | double volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); | 
| 82 | double nIdeal = volSlice * pairConstant; | 
| 83 |  | 
| 84 | avgGofr_[i] += histogram_[i] / nIdeal; | 
| 85 | } | 
| 86 |  | 
| 87 | } | 
| 88 |  | 
| 89 | void GofR::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 90 |  | 
| 91 | if (sd1 == sd2) { | 
| 92 | return; | 
| 93 | } | 
| 94 |  | 
| 95 | Vector3d pos1 = sd1->getPos(); | 
| 96 | Vector3d pos2 = sd2->getPos(); | 
| 97 | Vector3d r12 = pos1 - pos2; | 
| 98 | currentSnapshot_->wrapVector(r12); | 
| 99 |  | 
| 100 | double distance = r12.length(); | 
| 101 |  | 
| 102 | int whichBin = distance / deltaR_; | 
| 103 | ++histogram_[whichBin]; | 
| 104 | ++npairs_; | 
| 105 | } | 
| 106 |  | 
| 107 |  | 
| 108 | void GofR::writeRdf() { | 
| 109 | std::ofstream rdfStream(outputFilename_.c_str()); | 
| 110 | if (rdfStream.is_open()) { | 
| 111 | rdfStream << "#radial distribution function\n"; | 
| 112 | rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 113 | rdfStream << "selection2: (" << selectionScript2_ << ")\n"; | 
| 114 | rdfStream << "#r\tcorrValue\n"; | 
| 115 | for (int i = 0; i < avgGofr_.size(); ++i) { | 
| 116 | double r = deltaR_ * (i + 0.5); | 
| 117 | rdfStream << r << "\t" << avgGofr_[i]/nProcessed_ << "\n"; | 
| 118 | } | 
| 119 |  | 
| 120 | } else { | 
| 121 |  | 
| 122 |  | 
| 123 | } | 
| 124 |  | 
| 125 | rdfStream.close(); | 
| 126 | } | 
| 127 |  | 
| 128 | } | 
| 129 |  |