| 1 | tim | 309 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | tim | 309 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | tim | 309 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1879 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1782 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | tim | 309 | */ | 
| 42 |  |  |  | 
| 43 |  |  | #include <algorithm> | 
| 44 |  |  | #include <fstream> | 
| 45 |  |  | #include "applications/staticProps/GofRAngle.hpp" | 
| 46 | gezelter | 1879 | #include "primitives/Atom.hpp" | 
| 47 |  |  | #include "types/MultipoleAdapter.hpp" | 
| 48 | tim | 309 | #include "utils/simError.h" | 
| 49 |  |  |  | 
| 50 | gezelter | 1390 | namespace OpenMD { | 
| 51 | gezelter | 2023 |  | 
| 52 |  |  | GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, | 
| 53 |  |  | const std::string& sele1, | 
| 54 |  |  | const std::string& sele2, | 
| 55 |  |  | RealType len, int nrbins, int nangleBins) | 
| 56 |  |  | : RadialDistrFunc(info, filename, sele1, sele2), len_(len), | 
| 57 |  |  | nRBins_(nrbins), nAngleBins_(nangleBins), evaluator3_(info), | 
| 58 |  |  | seleMan3_(info), doSele3_(false) { | 
| 59 |  |  |  | 
| 60 |  |  | deltaR_ = len_ /(double) nRBins_; | 
| 61 |  |  | deltaCosAngle_ = 2.0 / (double)nAngleBins_; | 
| 62 |  |  | histogram_.resize(nRBins_); | 
| 63 |  |  | avgGofr_.resize(nRBins_); | 
| 64 |  |  | for (int i = 0 ; i < nRBins_; ++i) { | 
| 65 |  |  | histogram_[i].resize(nAngleBins_); | 
| 66 |  |  | avgGofr_[i].resize(nAngleBins_); | 
| 67 |  |  | } | 
| 68 |  |  | } | 
| 69 |  |  |  | 
| 70 |  |  | GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, | 
| 71 |  |  | const std::string& sele1, | 
| 72 |  |  | const std::string& sele2, | 
| 73 |  |  | const std::string& sele3, | 
| 74 |  |  | RealType len, int nrbins, int nangleBins) | 
| 75 |  |  | : RadialDistrFunc(info, filename, sele1, sele2), len_(len), | 
| 76 |  |  | nRBins_(nrbins), nAngleBins_(nangleBins), selectionScript3_(sele3), | 
| 77 |  |  | evaluator3_(info), seleMan3_(info), doSele3_(true) { | 
| 78 | tim | 309 |  | 
| 79 | gezelter | 2023 | deltaR_ = len_ /(double) nRBins_; | 
| 80 |  |  | deltaCosAngle_ = 2.0 / (double)nAngleBins_; | 
| 81 |  |  | histogram_.resize(nRBins_); | 
| 82 |  |  | avgGofr_.resize(nRBins_); | 
| 83 |  |  | for (int i = 0 ; i < nRBins_; ++i) { | 
| 84 |  |  | histogram_[i].resize(nAngleBins_); | 
| 85 |  |  | avgGofr_[i].resize(nAngleBins_); | 
| 86 |  |  | } | 
| 87 | tim | 309 |  | 
| 88 | gezelter | 2023 | evaluator3_.loadScriptString(sele3); | 
| 89 |  |  | if (!evaluator3_.isDynamic()) { | 
| 90 |  |  | seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 91 |  |  | } | 
| 92 |  |  |  | 
| 93 |  |  | } | 
| 94 |  |  |  | 
| 95 |  |  | void GofRAngle::processNonOverlapping( SelectionManager& sman1, | 
| 96 |  |  | SelectionManager& sman2) { | 
| 97 |  |  | StuntDouble* sd1; | 
| 98 |  |  | StuntDouble* sd2; | 
| 99 |  |  | StuntDouble* sd3; | 
| 100 |  |  | int i; | 
| 101 |  |  | int j; | 
| 102 |  |  | int k; | 
| 103 |  |  |  | 
| 104 |  |  | // This is the same as a non-overlapping pairwise loop structure: | 
| 105 |  |  | // for (int i = 0;  i < ni ; ++i ) { | 
| 106 |  |  | //   for (int j = 0; j < nj; ++j) {} | 
| 107 |  |  | // } | 
| 108 |  |  |  | 
| 109 |  |  | if (doSele3_) { | 
| 110 |  |  | if  (evaluator3_.isDynamic()) { | 
| 111 |  |  | seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 112 | gezelter | 507 | } | 
| 113 | gezelter | 2023 | if (sman1.getSelectionCount() != seleMan3_.getSelectionCount() ) { | 
| 114 |  |  | RadialDistrFunc::processNonOverlapping( sman1, sman2 ); | 
| 115 |  |  | } | 
| 116 |  |  |  | 
| 117 |  |  | for (sd1 = sman1.beginSelected(i), sd3 = seleMan3_.beginSelected(k); | 
| 118 |  |  | sd1 != NULL && sd3 != NULL; | 
| 119 |  |  | sd1 = sman1.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { | 
| 120 |  |  | for (sd2 = sman2.beginSelected(j); sd2 != NULL; | 
| 121 |  |  | sd2 = sman2.nextSelected(j)) { | 
| 122 |  |  | collectHistogram(sd1, sd2, sd3); | 
| 123 |  |  | } | 
| 124 |  |  | } | 
| 125 |  |  | } else { | 
| 126 |  |  | RadialDistrFunc::processNonOverlapping( sman1, sman2 ); | 
| 127 | tim | 354 | } | 
| 128 | gezelter | 2023 | } | 
| 129 | tim | 309 |  | 
| 130 | gezelter | 2023 | void GofRAngle::processOverlapping( SelectionManager& sman) { | 
| 131 |  |  | StuntDouble* sd1; | 
| 132 |  |  | StuntDouble* sd2; | 
| 133 |  |  | StuntDouble* sd3; | 
| 134 |  |  | int i; | 
| 135 |  |  | int j; | 
| 136 |  |  | int k; | 
| 137 | tim | 309 |  | 
| 138 | gezelter | 2023 | // This is the same as a pairwise loop structure: | 
| 139 |  |  | // for (int i = 0;  i < n-1 ; ++i ) { | 
| 140 |  |  | //   for (int j = i + 1; j < n; ++j) {} | 
| 141 |  |  | // } | 
| 142 |  |  |  | 
| 143 |  |  | if (doSele3_) { | 
| 144 |  |  | if  (evaluator3_.isDynamic()) { | 
| 145 |  |  | seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 146 |  |  | } | 
| 147 |  |  | if (sman.getSelectionCount() != seleMan3_.getSelectionCount() ) { | 
| 148 |  |  | RadialDistrFunc::processOverlapping( sman); | 
| 149 |  |  | } | 
| 150 |  |  | for (sd1 = sman.beginSelected(i), sd3 = seleMan3_.beginSelected(k); | 
| 151 |  |  | sd1 != NULL && sd3 != NULL; | 
| 152 |  |  | sd1 = sman.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { | 
| 153 |  |  | for (j  = i, sd2 = sman.nextSelected(j); sd2 != NULL; | 
| 154 |  |  | sd2 = sman.nextSelected(j)) { | 
| 155 |  |  | collectHistogram(sd1, sd2, sd3); | 
| 156 |  |  | } | 
| 157 |  |  | } | 
| 158 |  |  | } else { | 
| 159 |  |  | RadialDistrFunc::processOverlapping( sman); | 
| 160 |  |  | } | 
| 161 |  |  | } | 
| 162 |  |  |  | 
| 163 |  |  |  | 
| 164 | gezelter | 507 | void GofRAngle::preProcess() { | 
| 165 | gezelter | 1782 | for (unsigned int i = 0; i < avgGofr_.size(); ++i) { | 
| 166 | gezelter | 507 | std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); | 
| 167 | tim | 310 | } | 
| 168 | gezelter | 507 | } | 
| 169 | tim | 309 |  | 
| 170 | jmichalk | 1785 | void GofRAngle::initializeHistogram() { | 
| 171 | tim | 309 | npairs_ = 0; | 
| 172 | gezelter | 1782 | for (unsigned int i = 0; i < histogram_.size(); ++i){ | 
| 173 | gezelter | 507 | std::fill(histogram_[i].begin(), histogram_[i].end(), 0); | 
| 174 | xsun | 1213 | } | 
| 175 | gezelter | 507 | } | 
| 176 | tim | 309 |  | 
| 177 | gezelter | 507 | void GofRAngle::processHistogram() { | 
| 178 | tim | 353 | int nPairs = getNPairs(); | 
| 179 | tim | 963 | RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); | 
| 180 |  |  | RealType pairDensity = nPairs /volume; | 
| 181 |  |  | RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; | 
| 182 | tim | 309 |  | 
| 183 | gezelter | 1782 | for(unsigned int i = 0 ; i < histogram_.size(); ++i){ | 
| 184 | tim | 309 |  | 
| 185 | tim | 963 | RealType rLower = i * deltaR_; | 
| 186 |  |  | RealType rUpper = rLower + deltaR_; | 
| 187 | gezelter | 2023 | RealType volSlice = ( rUpper * rUpper * rUpper ) - | 
| 188 |  |  | ( rLower * rLower * rLower ); | 
| 189 | tim | 963 | RealType nIdeal = volSlice * pairConstant; | 
| 190 | tim | 309 |  | 
| 191 | gezelter | 1782 | for (unsigned int j = 0; j < histogram_[i].size(); ++j){ | 
| 192 | gezelter | 507 | avgGofr_[i][j] += histogram_[i][j] / nIdeal; | 
| 193 |  |  | } | 
| 194 | tim | 309 | } | 
| 195 |  |  |  | 
| 196 | gezelter | 507 | } | 
| 197 | tim | 309 |  | 
| 198 | gezelter | 507 | void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 199 | tim | 309 |  | 
| 200 |  |  | if (sd1 == sd2) { | 
| 201 | gezelter | 507 | return; | 
| 202 | tim | 309 | } | 
| 203 |  |  | Vector3d pos1 = sd1->getPos(); | 
| 204 |  |  | Vector3d pos2 = sd2->getPos(); | 
| 205 | tim | 361 | Vector3d r12 = pos2 - pos1; | 
| 206 | gezelter | 1078 | if (usePeriodicBoundaryConditions_) | 
| 207 |  |  | currentSnapshot_->wrapVector(r12); | 
| 208 | tim | 309 |  | 
| 209 | tim | 963 | RealType distance = r12.length(); | 
| 210 | gezelter | 1790 | int whichRBin = int(distance / deltaR_); | 
| 211 | tim | 309 |  | 
| 212 | tim | 328 | if (distance <= len_) { | 
| 213 | xsun | 1213 |  | 
| 214 | tim | 963 | RealType cosAngle = evaluateAngle(sd1, sd2); | 
| 215 |  |  | RealType halfBin = (nAngleBins_ - 1) * 0.5; | 
| 216 | gezelter | 1790 | int whichThetaBin = int(halfBin * (cosAngle + 1.0)); | 
| 217 | gezelter | 507 | ++histogram_[whichRBin][whichThetaBin]; | 
| 218 | tim | 328 |  | 
| 219 | gezelter | 507 | ++npairs_; | 
| 220 | tim | 328 | } | 
| 221 | gezelter | 507 | } | 
| 222 | tim | 309 |  | 
| 223 | gezelter | 2023 | void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2, | 
| 224 |  |  | StuntDouble* sd3) { | 
| 225 |  |  |  | 
| 226 |  |  | if (sd1 == sd2) { | 
| 227 |  |  | return; | 
| 228 |  |  | } | 
| 229 |  |  |  | 
| 230 |  |  | Vector3d p1 = sd1->getPos(); | 
| 231 |  |  | Vector3d p3 = sd3->getPos(); | 
| 232 |  |  |  | 
| 233 |  |  | Vector3d c = 0.5 * (p1 + p3); | 
| 234 |  |  | Vector3d r13 = p3 - p1; | 
| 235 |  |  |  | 
| 236 |  |  | Vector3d r12 = sd2->getPos() - c; | 
| 237 |  |  |  | 
| 238 |  |  | if (usePeriodicBoundaryConditions_) { | 
| 239 |  |  | currentSnapshot_->wrapVector(r12); | 
| 240 |  |  | currentSnapshot_->wrapVector(r13); | 
| 241 |  |  | } | 
| 242 |  |  |  | 
| 243 |  |  | RealType distance = r12.length(); | 
| 244 |  |  | int whichRBin = int(distance / deltaR_); | 
| 245 |  |  |  | 
| 246 |  |  | if (distance <= len_) { | 
| 247 |  |  |  | 
| 248 |  |  | RealType cosAngle = evaluateAngle(sd1, sd2, sd3); | 
| 249 |  |  | RealType halfBin = (nAngleBins_ - 1) * 0.5; | 
| 250 |  |  | int whichThetaBin = int(halfBin * (cosAngle + 1.0)); | 
| 251 |  |  | ++histogram_[whichRBin][whichThetaBin]; | 
| 252 |  |  |  | 
| 253 |  |  | ++npairs_; | 
| 254 |  |  | } | 
| 255 |  |  | } | 
| 256 |  |  |  | 
| 257 | gezelter | 507 | void GofRAngle::writeRdf() { | 
| 258 | tim | 309 | std::ofstream rdfStream(outputFilename_.c_str()); | 
| 259 |  |  | if (rdfStream.is_open()) { | 
| 260 | gezelter | 507 | rdfStream << "#radial distribution function\n"; | 
| 261 |  |  | rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 262 | gezelter | 2023 | rdfStream <<  "selection2: (" << selectionScript2_ << ")"; | 
| 263 |  |  | if (doSele3_) { | 
| 264 |  |  | rdfStream << "\tselection3: (" << selectionScript3_ << ")\n"; | 
| 265 |  |  | } else { | 
| 266 |  |  | rdfStream << "\n"; | 
| 267 |  |  | } | 
| 268 |  |  | rdfStream << "#nRBins = " << nRBins_ << "\tmaxLen = " | 
| 269 |  |  | << len_ << "\tdeltaR = " << deltaR_ <<"\n"; | 
| 270 |  |  | rdfStream << "#nAngleBins =" << nAngleBins_ << "\tdeltaCosAngle = " | 
| 271 |  |  | << deltaCosAngle_ << "\n"; | 
| 272 | gezelter | 1782 | for (unsigned int i = 0; i < avgGofr_.size(); ++i) { | 
| 273 | gezelter | 1796 | // RealType r = deltaR_ * (i + 0.5); | 
| 274 | tim | 309 |  | 
| 275 | gezelter | 1782 | for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { | 
| 276 | gezelter | 1796 | // RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; | 
| 277 | gezelter | 507 | rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; | 
| 278 |  |  | } | 
| 279 | tim | 360 |  | 
| 280 | gezelter | 507 | rdfStream << "\n"; | 
| 281 |  |  | } | 
| 282 | tim | 309 |  | 
| 283 |  |  | } else { | 
| 284 | gezelter | 2023 | sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n", | 
| 285 |  |  | outputFilename_.c_str()); | 
| 286 | gezelter | 507 | painCave.isFatal = 1; | 
| 287 |  |  | simError(); | 
| 288 | tim | 309 | } | 
| 289 |  |  |  | 
| 290 |  |  | rdfStream.close(); | 
| 291 | gezelter | 507 | } | 
| 292 | tim | 309 |  | 
| 293 | tim | 963 | RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 294 | tim | 309 | Vector3d pos1 = sd1->getPos(); | 
| 295 |  |  | Vector3d pos2 = sd2->getPos(); | 
| 296 | tim | 361 | Vector3d r12 = pos2 - pos1; | 
| 297 | xsun | 1213 |  | 
| 298 | gezelter | 1078 | if (usePeriodicBoundaryConditions_) | 
| 299 |  |  | currentSnapshot_->wrapVector(r12); | 
| 300 |  |  |  | 
| 301 | tim | 309 | r12.normalize(); | 
| 302 | gezelter | 1879 |  | 
| 303 | gezelter | 1968 | Vector3d vec; | 
| 304 |  |  |  | 
| 305 | gezelter | 2023 | if (!sd1->isDirectional()) { | 
| 306 |  |  | sprintf(painCave.errMsg, | 
| 307 |  |  | "GofRTheta: attempted to use a non-directional object: %s\n", | 
| 308 |  |  | sd1->getType().c_str()); | 
| 309 |  |  | painCave.isFatal = 1; | 
| 310 |  |  | simError(); | 
| 311 |  |  | } | 
| 312 |  |  |  | 
| 313 | gezelter | 1968 | if (sd1->isAtom()) { | 
| 314 |  |  | AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); | 
| 315 |  |  | MultipoleAdapter ma1 = MultipoleAdapter(atype1); | 
| 316 |  |  |  | 
| 317 |  |  | if (ma1.isDipole() ) | 
| 318 |  |  | vec = sd1->getDipole(); | 
| 319 |  |  | else | 
| 320 |  |  | vec = sd1->getA().transpose() * V3Z; | 
| 321 |  |  | } else { | 
| 322 | gezelter | 1879 | vec = sd1->getA().transpose() * V3Z; | 
| 323 | gezelter | 1968 | } | 
| 324 |  |  |  | 
| 325 | gezelter | 1879 | vec.normalize(); | 
| 326 | gezelter | 1968 |  | 
| 327 | gezelter | 1879 | return dot(r12, vec); | 
| 328 | gezelter | 507 | } | 
| 329 | tim | 309 |  | 
| 330 | gezelter | 2023 | RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2, | 
| 331 |  |  | StuntDouble* sd3) { | 
| 332 |  |  | Vector3d p1 = sd1->getPos(); | 
| 333 |  |  | Vector3d p3 = sd3->getPos(); | 
| 334 |  |  |  | 
| 335 |  |  | Vector3d c = 0.5 * (p1 + p3); | 
| 336 |  |  | Vector3d r13 = p3 - p1; | 
| 337 |  |  |  | 
| 338 |  |  | Vector3d r12 = sd2->getPos() - c; | 
| 339 |  |  |  | 
| 340 |  |  | if (usePeriodicBoundaryConditions_) { | 
| 341 |  |  | currentSnapshot_->wrapVector(r12); | 
| 342 |  |  | currentSnapshot_->wrapVector(r13); | 
| 343 |  |  | } | 
| 344 |  |  |  | 
| 345 |  |  | r12.normalize(); | 
| 346 |  |  | r13.normalize(); | 
| 347 |  |  |  | 
| 348 |  |  | return dot(r12, r13); | 
| 349 |  |  | } | 
| 350 |  |  |  | 
| 351 | tim | 963 | RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 352 | gezelter | 1879 | Vector3d v1, v2; | 
| 353 |  |  |  | 
| 354 | gezelter | 2023 | if (!sd1->isDirectional()) { | 
| 355 |  |  | sprintf(painCave.errMsg, | 
| 356 |  |  | "GofROmega: attempted to use a non-directional object: %s\n", | 
| 357 |  |  | sd1->getType().c_str()); | 
| 358 |  |  | painCave.isFatal = 1; | 
| 359 |  |  | simError(); | 
| 360 |  |  | } | 
| 361 |  |  |  | 
| 362 | gezelter | 1968 | if (sd1->isAtom()){ | 
| 363 |  |  | AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); | 
| 364 |  |  | MultipoleAdapter ma1 = MultipoleAdapter(atype1); | 
| 365 |  |  | if (ma1.isDipole() ) | 
| 366 |  |  | v1 = sd1->getDipole(); | 
| 367 |  |  | else | 
| 368 |  |  | v1 = sd1->getA().transpose() * V3Z; | 
| 369 |  |  | } else { | 
| 370 | gezelter | 1879 | v1 = sd1->getA().transpose() * V3Z; | 
| 371 | gezelter | 1968 | } | 
| 372 |  |  |  | 
| 373 | gezelter | 2023 | if (!sd2->isDirectional()) { | 
| 374 |  |  | sprintf(painCave.errMsg, | 
| 375 |  |  | "GofROmega attempted to use a non-directional object: %s\n", | 
| 376 |  |  | sd2->getType().c_str()); | 
| 377 |  |  | painCave.isFatal = 1; | 
| 378 |  |  | simError(); | 
| 379 |  |  | } | 
| 380 |  |  |  | 
| 381 | gezelter | 1968 | if (sd2->isAtom()) { | 
| 382 |  |  | AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); | 
| 383 |  |  | MultipoleAdapter ma2 = MultipoleAdapter(atype2); | 
| 384 |  |  |  | 
| 385 |  |  | if (ma2.isDipole() ) | 
| 386 |  |  | v2 = sd2->getDipole(); | 
| 387 |  |  | else | 
| 388 |  |  | v2 = sd2->getA().transpose() * V3Z; | 
| 389 |  |  | } else { | 
| 390 | gezelter | 1879 | v2 = sd2->getA().transpose() * V3Z; | 
| 391 | gezelter | 1968 | } | 
| 392 |  |  |  | 
| 393 | tim | 311 | v1.normalize(); | 
| 394 |  |  | v2.normalize(); | 
| 395 |  |  | return dot(v1, v2); | 
| 396 | gezelter | 507 | } | 
| 397 | tim | 309 |  | 
| 398 | gezelter | 2023 | RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2, | 
| 399 |  |  | StuntDouble* sd3) { | 
| 400 | tim | 309 |  | 
| 401 | gezelter | 2023 | Vector3d v1; | 
| 402 |  |  | Vector3d v2; | 
| 403 |  |  |  | 
| 404 |  |  | v1 = sd3->getPos() - sd1->getPos(); | 
| 405 |  |  | if (usePeriodicBoundaryConditions_) | 
| 406 |  |  | currentSnapshot_->wrapVector(v1); | 
| 407 |  |  |  | 
| 408 |  |  | if (!sd2->isDirectional()) { | 
| 409 |  |  | sprintf(painCave.errMsg, | 
| 410 |  |  | "GofROmega: attempted to use a non-directional object: %s\n", | 
| 411 |  |  | sd2->getType().c_str()); | 
| 412 |  |  | painCave.isFatal = 1; | 
| 413 |  |  | simError(); | 
| 414 |  |  | } | 
| 415 |  |  |  | 
| 416 |  |  | if (sd2->isAtom()) { | 
| 417 |  |  | AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); | 
| 418 |  |  | MultipoleAdapter ma2 = MultipoleAdapter(atype2); | 
| 419 |  |  |  | 
| 420 |  |  | if (ma2.isDipole() ) | 
| 421 |  |  | v2 = sd2->getDipole(); | 
| 422 |  |  | else | 
| 423 |  |  | v2 = sd2->getA().transpose() * V3Z; | 
| 424 |  |  | } else { | 
| 425 |  |  | v2 = sd2->getA().transpose() * V3Z; | 
| 426 |  |  | } | 
| 427 |  |  |  | 
| 428 |  |  | v1.normalize(); | 
| 429 |  |  | v2.normalize(); | 
| 430 |  |  | return dot(v1, v2); | 
| 431 |  |  | } | 
| 432 | tim | 309 | } | 
| 433 |  |  |  | 
| 434 |  |  |  |