| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  | */ | 
| 41 |  |  | 
| 42 |  | #include <algorithm> | 
| 44 |  | #include "applications/staticProps/GofRAngle.hpp" | 
| 45 |  | #include "utils/simError.h" | 
| 46 |  |  | 
| 47 | < | namespace oopse { | 
| 47 | > | namespace OpenMD { | 
| 48 |  |  | 
| 49 |  | GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, | 
| 50 | < | const std::string& sele2, double len, int nrbins, int nangleBins) | 
| 50 | > | const std::string& sele2, RealType len, int nrbins, int nangleBins) | 
| 51 |  | : RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins), nAngleBins_(nangleBins){ | 
| 52 |  |  | 
| 53 | < | deltaR_ = len_ /nRBins_; | 
| 54 | < | deltaCosAngle_ = 2.0 / nAngleBins_; | 
| 55 | < |  | 
| 53 | > | deltaR_ = len_ /(double) nRBins_; | 
| 54 | > | deltaCosAngle_ = 2.0 / (double)nAngleBins_; | 
| 55 |  | histogram_.resize(nRBins_); | 
| 56 |  | avgGofr_.resize(nRBins_); | 
| 57 |  | for (int i = 0 ; i < nRBins_; ++i) { | 
| 62 |  |  | 
| 63 |  |  | 
| 64 |  | void GofRAngle::preProcess() { | 
| 66 | – |  | 
| 65 |  | for (int i = 0; i < avgGofr_.size(); ++i) { | 
| 66 |  | std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); | 
| 67 |  | } | 
| 69 |  |  | 
| 70 |  | void GofRAngle::initalizeHistogram() { | 
| 71 |  | npairs_ = 0; | 
| 72 | < | for (int i = 0; i < histogram_.size(); ++i) | 
| 72 | > | for (int i = 0; i < histogram_.size(); ++i){ | 
| 73 |  | std::fill(histogram_[i].begin(), histogram_[i].end(), 0); | 
| 74 | + | } | 
| 75 |  | } | 
| 76 |  |  | 
| 78 | – |  | 
| 77 |  | void GofRAngle::processHistogram() { | 
| 80 | – |  | 
| 78 |  | int nPairs = getNPairs(); | 
| 79 | < | double volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); | 
| 80 | < | double pairDensity = nPairs /volume; | 
| 81 | < | double pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; | 
| 79 | > | RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); | 
| 80 | > | RealType pairDensity = nPairs /volume; | 
| 81 | > | RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; | 
| 82 |  |  | 
| 83 |  | for(int i = 0 ; i < histogram_.size(); ++i){ | 
| 84 |  |  | 
| 85 | < | double rLower = i * deltaR_; | 
| 86 | < | double rUpper = rLower + deltaR_; | 
| 87 | < | double volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); | 
| 88 | < | double nIdeal = volSlice * pairConstant; | 
| 85 | > | RealType rLower = i * deltaR_; | 
| 86 | > | RealType rUpper = rLower + deltaR_; | 
| 87 | > | RealType volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); | 
| 88 | > | RealType nIdeal = volSlice * pairConstant; | 
| 89 |  |  | 
| 90 |  | for (int j = 0; j < histogram_[i].size(); ++j){ | 
| 91 |  | avgGofr_[i][j] += histogram_[i][j] / nIdeal; | 
| 99 |  | if (sd1 == sd2) { | 
| 100 |  | return; | 
| 101 |  | } | 
| 105 | – |  | 
| 102 |  | Vector3d pos1 = sd1->getPos(); | 
| 103 |  | Vector3d pos2 = sd2->getPos(); | 
| 104 |  | Vector3d r12 = pos2 - pos1; | 
| 105 | < | currentSnapshot_->wrapVector(r12); | 
| 105 | > | if (usePeriodicBoundaryConditions_) | 
| 106 | > | currentSnapshot_->wrapVector(r12); | 
| 107 |  |  | 
| 108 | < | double distance = r12.length(); | 
| 108 | > | RealType distance = r12.length(); | 
| 109 |  | int whichRBin = distance / deltaR_; | 
| 110 |  |  | 
| 111 |  | if (distance <= len_) { | 
| 112 | < | double cosAngle = evaluateAngle(sd1, sd2); | 
| 113 | < | double halfBin = (nAngleBins_ - 1) * 0.5; | 
| 112 | > |  | 
| 113 | > | RealType cosAngle = evaluateAngle(sd1, sd2); | 
| 114 | > | RealType halfBin = (nAngleBins_ - 1) * 0.5; | 
| 115 |  | int whichThetaBin = halfBin * (cosAngle + 1.0); | 
| 116 |  | ++histogram_[whichRBin][whichThetaBin]; | 
| 117 |  |  | 
| 128 |  | rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; | 
| 129 |  | rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; | 
| 130 |  | for (int i = 0; i < avgGofr_.size(); ++i) { | 
| 131 | < | double r = deltaR_ * (i + 0.5); | 
| 131 | > | RealType r = deltaR_ * (i + 0.5); | 
| 132 |  |  | 
| 133 |  | for(int j = 0; j < avgGofr_[i].size(); ++j) { | 
| 134 | < | double cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; | 
| 134 | > | RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; | 
| 135 |  | rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; | 
| 136 |  | } | 
| 137 |  |  | 
| 147 |  | rdfStream.close(); | 
| 148 |  | } | 
| 149 |  |  | 
| 150 | < | double GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 150 | > | RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 151 |  | Vector3d pos1 = sd1->getPos(); | 
| 152 |  | Vector3d pos2 = sd2->getPos(); | 
| 153 |  | Vector3d r12 = pos2 - pos1; | 
| 154 | < | currentSnapshot_->wrapVector(r12); | 
| 154 | > |  | 
| 155 | > | if (usePeriodicBoundaryConditions_) | 
| 156 | > | currentSnapshot_->wrapVector(r12); | 
| 157 | > |  | 
| 158 |  | r12.normalize(); | 
| 159 |  | Vector3d dipole = sd1->getElectroFrame().getColumn(2); | 
| 160 |  | dipole.normalize(); | 
| 161 |  | return dot(r12, dipole); | 
| 162 |  | } | 
| 163 |  |  | 
| 164 | < | double GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 164 | > | RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 165 |  | Vector3d v1 = sd1->getElectroFrame().getColumn(2); | 
| 166 |  | Vector3d v2 = sd2->getElectroFrame().getColumn(2); | 
| 167 |  | v1.normalize(); |