| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
|
#include <algorithm> |
| 44 |
|
#include <fstream> |
| 45 |
|
#include "applications/staticProps/GofRAngle.hpp" |
| 46 |
+ |
#include "primitives/Atom.hpp" |
| 47 |
+ |
#include "types/MultipoleAdapter.hpp" |
| 48 |
|
#include "utils/simError.h" |
| 49 |
|
|
| 50 |
< |
namespace oopse { |
| 50 |
> |
namespace OpenMD { |
| 51 |
> |
|
| 52 |
> |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, |
| 53 |
> |
const std::string& sele1, |
| 54 |
> |
const std::string& sele2, |
| 55 |
> |
RealType len, int nrbins, int nangleBins) |
| 56 |
> |
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), |
| 57 |
> |
nRBins_(nrbins), nAngleBins_(nangleBins), evaluator3_(info), |
| 58 |
> |
seleMan3_(info), doSele3_(false) { |
| 59 |
> |
|
| 60 |
> |
deltaR_ = len_ /(double) nRBins_; |
| 61 |
> |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
| 62 |
> |
histogram_.resize(nRBins_); |
| 63 |
> |
avgGofr_.resize(nRBins_); |
| 64 |
> |
for (int i = 0 ; i < nRBins_; ++i) { |
| 65 |
> |
histogram_[i].resize(nAngleBins_); |
| 66 |
> |
avgGofr_[i].resize(nAngleBins_); |
| 67 |
> |
} |
| 68 |
> |
} |
| 69 |
> |
|
| 70 |
> |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, |
| 71 |
> |
const std::string& sele1, |
| 72 |
> |
const std::string& sele2, |
| 73 |
> |
const std::string& sele3, |
| 74 |
> |
RealType len, int nrbins, int nangleBins) |
| 75 |
> |
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), |
| 76 |
> |
nRBins_(nrbins), nAngleBins_(nangleBins), selectionScript3_(sele3), |
| 77 |
> |
evaluator3_(info), seleMan3_(info), doSele3_(true) { |
| 78 |
|
|
| 79 |
< |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2) |
| 80 |
< |
: RadialDistrFunc(info, filename, sele1, sele2){ |
| 79 |
> |
deltaR_ = len_ /(double) nRBins_; |
| 80 |
> |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
| 81 |
> |
histogram_.resize(nRBins_); |
| 82 |
> |
avgGofr_.resize(nRBins_); |
| 83 |
> |
for (int i = 0 ; i < nRBins_; ++i) { |
| 84 |
> |
histogram_[i].resize(nAngleBins_); |
| 85 |
> |
avgGofr_[i].resize(nAngleBins_); |
| 86 |
> |
} |
| 87 |
|
|
| 88 |
< |
} |
| 88 |
> |
evaluator3_.loadScriptString(sele3); |
| 89 |
> |
if (!evaluator3_.isDynamic()) { |
| 90 |
> |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
| 91 |
> |
} |
| 92 |
|
|
| 93 |
+ |
} |
| 94 |
+ |
|
| 95 |
+ |
void GofRAngle::processNonOverlapping( SelectionManager& sman1, |
| 96 |
+ |
SelectionManager& sman2) { |
| 97 |
+ |
StuntDouble* sd1; |
| 98 |
+ |
StuntDouble* sd2; |
| 99 |
+ |
StuntDouble* sd3; |
| 100 |
+ |
int i; |
| 101 |
+ |
int j; |
| 102 |
+ |
int k; |
| 103 |
+ |
|
| 104 |
+ |
// This is the same as a non-overlapping pairwise loop structure: |
| 105 |
+ |
// for (int i = 0; i < ni ; ++i ) { |
| 106 |
+ |
// for (int j = 0; j < nj; ++j) {} |
| 107 |
+ |
// } |
| 108 |
|
|
| 109 |
< |
void GofRAngle::preProcess() { |
| 109 |
> |
if (doSele3_) { |
| 110 |
> |
if (evaluator3_.isDynamic()) { |
| 111 |
> |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
| 112 |
> |
} |
| 113 |
> |
if (sman1.getSelectionCount() != seleMan3_.getSelectionCount() ) { |
| 114 |
> |
RadialDistrFunc::processNonOverlapping( sman1, sman2 ); |
| 115 |
> |
} |
| 116 |
|
|
| 117 |
< |
for (int i = 0; i < avgGofr_.size(); ++i) { |
| 118 |
< |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
| 117 |
> |
for (sd1 = sman1.beginSelected(i), sd3 = seleMan3_.beginSelected(k); |
| 118 |
> |
sd1 != NULL && sd3 != NULL; |
| 119 |
> |
sd1 = sman1.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { |
| 120 |
> |
for (sd2 = sman2.beginSelected(j); sd2 != NULL; |
| 121 |
> |
sd2 = sman2.nextSelected(j)) { |
| 122 |
> |
collectHistogram(sd1, sd2, sd3); |
| 123 |
> |
} |
| 124 |
> |
} |
| 125 |
> |
} else { |
| 126 |
> |
RadialDistrFunc::processNonOverlapping( sman1, sman2 ); |
| 127 |
|
} |
| 128 |
< |
} |
| 128 |
> |
} |
| 129 |
|
|
| 130 |
< |
void GofRAngle::initalizeHistogram() { |
| 131 |
< |
npairs_ = 0; |
| 132 |
< |
for (int i = 0; i < histogram_.size(); ++i) |
| 133 |
< |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
| 134 |
< |
} |
| 130 |
> |
void GofRAngle::processOverlapping( SelectionManager& sman) { |
| 131 |
> |
StuntDouble* sd1; |
| 132 |
> |
StuntDouble* sd2; |
| 133 |
> |
StuntDouble* sd3; |
| 134 |
> |
int i; |
| 135 |
> |
int j; |
| 136 |
> |
int k; |
| 137 |
|
|
| 138 |
+ |
// This is the same as a pairwise loop structure: |
| 139 |
+ |
// for (int i = 0; i < n-1 ; ++i ) { |
| 140 |
+ |
// for (int j = i + 1; j < n; ++j) {} |
| 141 |
+ |
// } |
| 142 |
+ |
|
| 143 |
+ |
if (doSele3_) { |
| 144 |
+ |
if (evaluator3_.isDynamic()) { |
| 145 |
+ |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
| 146 |
+ |
} |
| 147 |
+ |
if (sman.getSelectionCount() != seleMan3_.getSelectionCount() ) { |
| 148 |
+ |
RadialDistrFunc::processOverlapping( sman); |
| 149 |
+ |
} |
| 150 |
+ |
for (sd1 = sman.beginSelected(i), sd3 = seleMan3_.beginSelected(k); |
| 151 |
+ |
sd1 != NULL && sd3 != NULL; |
| 152 |
+ |
sd1 = sman.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { |
| 153 |
+ |
for (j = i, sd2 = sman.nextSelected(j); sd2 != NULL; |
| 154 |
+ |
sd2 = sman.nextSelected(j)) { |
| 155 |
+ |
collectHistogram(sd1, sd2, sd3); |
| 156 |
+ |
} |
| 157 |
+ |
} |
| 158 |
+ |
} else { |
| 159 |
+ |
RadialDistrFunc::processOverlapping( sman); |
| 160 |
+ |
} |
| 161 |
+ |
} |
| 162 |
+ |
|
| 163 |
|
|
| 164 |
< |
void GofRAngle::processHistogram() { |
| 164 |
> |
void GofRAngle::preProcess() { |
| 165 |
> |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
| 166 |
> |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
| 167 |
> |
} |
| 168 |
> |
} |
| 169 |
|
|
| 170 |
+ |
void GofRAngle::initializeHistogram() { |
| 171 |
+ |
npairs_ = 0; |
| 172 |
+ |
for (unsigned int i = 0; i < histogram_.size(); ++i){ |
| 173 |
+ |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
| 174 |
+ |
} |
| 175 |
+ |
} |
| 176 |
+ |
|
| 177 |
+ |
void GofRAngle::processHistogram() { |
| 178 |
|
int nPairs = getNPairs(); |
| 179 |
< |
double volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
| 180 |
< |
double pairDensity = nPairs /volume; |
| 181 |
< |
double pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
| 179 |
> |
RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
| 180 |
> |
RealType pairDensity = nPairs /volume; |
| 181 |
> |
RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
| 182 |
|
|
| 183 |
< |
for(int i = 0 ; i < histogram_.size(); ++i){ |
| 183 |
> |
for(unsigned int i = 0 ; i < histogram_.size(); ++i){ |
| 184 |
|
|
| 185 |
< |
double rLower = i * deltaR_; |
| 186 |
< |
double rUpper = rLower + deltaR_; |
| 187 |
< |
double volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
| 188 |
< |
double nIdeal = volSlice * pairConstant; |
| 185 |
> |
RealType rLower = i * deltaR_; |
| 186 |
> |
RealType rUpper = rLower + deltaR_; |
| 187 |
> |
RealType volSlice = ( rUpper * rUpper * rUpper ) - |
| 188 |
> |
( rLower * rLower * rLower ); |
| 189 |
> |
RealType nIdeal = volSlice * pairConstant; |
| 190 |
|
|
| 191 |
< |
for (int j = 0; j < histogram_[i].size(); ++j){ |
| 192 |
< |
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
| 193 |
< |
} |
| 191 |
> |
for (unsigned int j = 0; j < histogram_[i].size(); ++j){ |
| 192 |
> |
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
| 193 |
> |
} |
| 194 |
|
} |
| 195 |
|
|
| 196 |
< |
} |
| 196 |
> |
} |
| 197 |
|
|
| 198 |
< |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
| 198 |
> |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
| 199 |
|
|
| 200 |
|
if (sd1 == sd2) { |
| 201 |
< |
return; |
| 201 |
> |
return; |
| 202 |
|
} |
| 95 |
– |
|
| 203 |
|
Vector3d pos1 = sd1->getPos(); |
| 204 |
|
Vector3d pos2 = sd2->getPos(); |
| 205 |
< |
Vector3d r12 = pos1 - pos2; |
| 206 |
< |
currentSnapshot_->wrapVector(r12); |
| 205 |
> |
Vector3d r12 = pos2 - pos1; |
| 206 |
> |
if (usePeriodicBoundaryConditions_) |
| 207 |
> |
currentSnapshot_->wrapVector(r12); |
| 208 |
|
|
| 209 |
< |
double distance = r12.length(); |
| 210 |
< |
int whichRBin = distance / deltaR_; |
| 209 |
> |
RealType distance = r12.length(); |
| 210 |
> |
int whichRBin = int(distance / deltaR_); |
| 211 |
|
|
| 212 |
|
if (distance <= len_) { |
| 213 |
< |
double cosAngle = evaluateAngle(sd1, sd2); |
| 214 |
< |
double halfBin = (nAngleBins_ - 1) * 0.5; |
| 215 |
< |
int whichThetaBin = halfBin * (cosAngle + 1.0); |
| 216 |
< |
++histogram_[whichRBin][whichThetaBin]; |
| 213 |
> |
|
| 214 |
> |
RealType cosAngle = evaluateAngle(sd1, sd2); |
| 215 |
> |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
| 216 |
> |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
| 217 |
> |
++histogram_[whichRBin][whichThetaBin]; |
| 218 |
|
|
| 219 |
< |
++npairs_; |
| 219 |
> |
++npairs_; |
| 220 |
|
} |
| 221 |
< |
} |
| 221 |
> |
} |
| 222 |
|
|
| 223 |
< |
void GofRAngle::writeRdf() { |
| 223 |
> |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2, |
| 224 |
> |
StuntDouble* sd3) { |
| 225 |
> |
|
| 226 |
> |
if (sd1 == sd2) { |
| 227 |
> |
return; |
| 228 |
> |
} |
| 229 |
> |
|
| 230 |
> |
Vector3d p1 = sd1->getPos(); |
| 231 |
> |
Vector3d p3 = sd3->getPos(); |
| 232 |
> |
|
| 233 |
> |
Vector3d c = 0.5 * (p1 + p3); |
| 234 |
> |
Vector3d r13 = p3 - p1; |
| 235 |
> |
|
| 236 |
> |
Vector3d r12 = sd2->getPos() - c; |
| 237 |
> |
|
| 238 |
> |
if (usePeriodicBoundaryConditions_) { |
| 239 |
> |
currentSnapshot_->wrapVector(r12); |
| 240 |
> |
currentSnapshot_->wrapVector(r13); |
| 241 |
> |
} |
| 242 |
> |
|
| 243 |
> |
RealType distance = r12.length(); |
| 244 |
> |
int whichRBin = int(distance / deltaR_); |
| 245 |
> |
|
| 246 |
> |
if (distance <= len_) { |
| 247 |
> |
|
| 248 |
> |
RealType cosAngle = evaluateAngle(sd1, sd2, sd3); |
| 249 |
> |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
| 250 |
> |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
| 251 |
> |
++histogram_[whichRBin][whichThetaBin]; |
| 252 |
> |
|
| 253 |
> |
++npairs_; |
| 254 |
> |
} |
| 255 |
> |
} |
| 256 |
> |
|
| 257 |
> |
void GofRAngle::writeRdf() { |
| 258 |
|
std::ofstream rdfStream(outputFilename_.c_str()); |
| 259 |
|
if (rdfStream.is_open()) { |
| 260 |
< |
rdfStream << "#radial distribution function\n"; |
| 261 |
< |
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
| 262 |
< |
rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
| 263 |
< |
rdfStream << "#r\tcorrValue\n"; |
| 264 |
< |
for (int i = 0; i < avgGofr_.size(); ++i) { |
| 265 |
< |
double r = deltaR_ * (i + 0.5); |
| 260 |
> |
rdfStream << "#radial distribution function\n"; |
| 261 |
> |
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
| 262 |
> |
rdfStream << "selection2: (" << selectionScript2_ << ")"; |
| 263 |
> |
if (doSele3_) { |
| 264 |
> |
rdfStream << "\tselection3: (" << selectionScript3_ << ")\n"; |
| 265 |
> |
} else { |
| 266 |
> |
rdfStream << "\n"; |
| 267 |
> |
} |
| 268 |
> |
rdfStream << "#nRBins = " << nRBins_ << "\tmaxLen = " |
| 269 |
> |
<< len_ << "\tdeltaR = " << deltaR_ <<"\n"; |
| 270 |
> |
rdfStream << "#nAngleBins =" << nAngleBins_ << "\tdeltaCosAngle = " |
| 271 |
> |
<< deltaCosAngle_ << "\n"; |
| 272 |
> |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
| 273 |
> |
// RealType r = deltaR_ * (i + 0.5); |
| 274 |
|
|
| 275 |
< |
for(int j = 0; j < avgGofr_[i].size(); ++j) { |
| 276 |
< |
double cosAngle = -1.0 + (i + 0.5)*deltaCosAngle_; |
| 277 |
< |
rdfStream << r << "\t" << cosAngle << "\t" << avgGofr_[i][j]/nProcessed_ << "\n"; |
| 278 |
< |
} |
| 279 |
< |
} |
| 275 |
> |
for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { |
| 276 |
> |
// RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
| 277 |
> |
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
| 278 |
> |
} |
| 279 |
> |
|
| 280 |
> |
rdfStream << "\n"; |
| 281 |
> |
} |
| 282 |
|
|
| 283 |
|
} else { |
| 284 |
< |
|
| 285 |
< |
|
| 284 |
> |
sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n", |
| 285 |
> |
outputFilename_.c_str()); |
| 286 |
> |
painCave.isFatal = 1; |
| 287 |
> |
simError(); |
| 288 |
|
} |
| 289 |
|
|
| 290 |
|
rdfStream.close(); |
| 291 |
< |
} |
| 291 |
> |
} |
| 292 |
|
|
| 293 |
< |
double GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
| 293 |
> |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
| 294 |
|
Vector3d pos1 = sd1->getPos(); |
| 295 |
|
Vector3d pos2 = sd2->getPos(); |
| 296 |
< |
Vector3d r12 = pos1 - pos2; |
| 297 |
< |
currentSnapshot_->wrapVector(r12); |
| 296 |
> |
Vector3d r12 = pos2 - pos1; |
| 297 |
> |
|
| 298 |
> |
if (usePeriodicBoundaryConditions_) |
| 299 |
> |
currentSnapshot_->wrapVector(r12); |
| 300 |
> |
|
| 301 |
|
r12.normalize(); |
| 144 |
– |
Vector3d dipole = sd1->getElectroFrame().getColumn(2); |
| 145 |
– |
dipole.normalize(); |
| 146 |
– |
return dot(r12, dipole); |
| 147 |
– |
} |
| 302 |
|
|
| 303 |
< |
double GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
| 304 |
< |
Vector3d v1 = sd1->getElectroFrame().getColumn(2); |
| 305 |
< |
Vector3d v2 = sd1->getElectroFrame().getColumn(2); |
| 303 |
> |
Vector3d vec; |
| 304 |
> |
|
| 305 |
> |
if (!sd1->isDirectional()) { |
| 306 |
> |
sprintf(painCave.errMsg, |
| 307 |
> |
"GofRTheta: attempted to use a non-directional object: %s\n", |
| 308 |
> |
sd1->getType().c_str()); |
| 309 |
> |
painCave.isFatal = 1; |
| 310 |
> |
simError(); |
| 311 |
> |
} |
| 312 |
> |
|
| 313 |
> |
if (sd1->isAtom()) { |
| 314 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
| 315 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
| 316 |
> |
|
| 317 |
> |
if (ma1.isDipole() ) |
| 318 |
> |
vec = sd1->getDipole(); |
| 319 |
> |
else |
| 320 |
> |
vec = sd1->getA().transpose() * V3Z; |
| 321 |
> |
} else { |
| 322 |
> |
vec = sd1->getA().transpose() * V3Z; |
| 323 |
> |
} |
| 324 |
> |
|
| 325 |
> |
vec.normalize(); |
| 326 |
> |
|
| 327 |
> |
return dot(r12, vec); |
| 328 |
> |
} |
| 329 |
> |
|
| 330 |
> |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2, |
| 331 |
> |
StuntDouble* sd3) { |
| 332 |
> |
Vector3d p1 = sd1->getPos(); |
| 333 |
> |
Vector3d p3 = sd3->getPos(); |
| 334 |
> |
|
| 335 |
> |
Vector3d c = 0.5 * (p1 + p3); |
| 336 |
> |
Vector3d r13 = p3 - p1; |
| 337 |
> |
|
| 338 |
> |
Vector3d r12 = sd2->getPos() - c; |
| 339 |
> |
|
| 340 |
> |
if (usePeriodicBoundaryConditions_) { |
| 341 |
> |
currentSnapshot_->wrapVector(r12); |
| 342 |
> |
currentSnapshot_->wrapVector(r13); |
| 343 |
> |
} |
| 344 |
> |
|
| 345 |
> |
r12.normalize(); |
| 346 |
> |
r13.normalize(); |
| 347 |
> |
|
| 348 |
> |
return dot(r12, r13); |
| 349 |
> |
} |
| 350 |
> |
|
| 351 |
> |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
| 352 |
> |
Vector3d v1, v2; |
| 353 |
> |
|
| 354 |
> |
if (!sd1->isDirectional()) { |
| 355 |
> |
sprintf(painCave.errMsg, |
| 356 |
> |
"GofROmega: attempted to use a non-directional object: %s\n", |
| 357 |
> |
sd1->getType().c_str()); |
| 358 |
> |
painCave.isFatal = 1; |
| 359 |
> |
simError(); |
| 360 |
> |
} |
| 361 |
> |
|
| 362 |
> |
if (sd1->isAtom()){ |
| 363 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
| 364 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
| 365 |
> |
if (ma1.isDipole() ) |
| 366 |
> |
v1 = sd1->getDipole(); |
| 367 |
> |
else |
| 368 |
> |
v1 = sd1->getA().transpose() * V3Z; |
| 369 |
> |
} else { |
| 370 |
> |
v1 = sd1->getA().transpose() * V3Z; |
| 371 |
> |
} |
| 372 |
> |
|
| 373 |
> |
if (!sd2->isDirectional()) { |
| 374 |
> |
sprintf(painCave.errMsg, |
| 375 |
> |
"GofROmega attempted to use a non-directional object: %s\n", |
| 376 |
> |
sd2->getType().c_str()); |
| 377 |
> |
painCave.isFatal = 1; |
| 378 |
> |
simError(); |
| 379 |
> |
} |
| 380 |
> |
|
| 381 |
> |
if (sd2->isAtom()) { |
| 382 |
> |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
| 383 |
> |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
| 384 |
> |
|
| 385 |
> |
if (ma2.isDipole() ) |
| 386 |
> |
v2 = sd2->getDipole(); |
| 387 |
> |
else |
| 388 |
> |
v2 = sd2->getA().transpose() * V3Z; |
| 389 |
> |
} else { |
| 390 |
> |
v2 = sd2->getA().transpose() * V3Z; |
| 391 |
> |
} |
| 392 |
> |
|
| 393 |
|
v1.normalize(); |
| 394 |
|
v2.normalize(); |
| 395 |
|
return dot(v1, v2); |
| 396 |
< |
} |
| 396 |
> |
} |
| 397 |
|
|
| 398 |
+ |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2, |
| 399 |
+ |
StuntDouble* sd3) { |
| 400 |
|
|
| 401 |
+ |
Vector3d v1; |
| 402 |
+ |
Vector3d v2; |
| 403 |
+ |
|
| 404 |
+ |
v1 = sd3->getPos() - sd1->getPos(); |
| 405 |
+ |
if (usePeriodicBoundaryConditions_) |
| 406 |
+ |
currentSnapshot_->wrapVector(v1); |
| 407 |
+ |
|
| 408 |
+ |
if (!sd2->isDirectional()) { |
| 409 |
+ |
sprintf(painCave.errMsg, |
| 410 |
+ |
"GofROmega: attempted to use a non-directional object: %s\n", |
| 411 |
+ |
sd2->getType().c_str()); |
| 412 |
+ |
painCave.isFatal = 1; |
| 413 |
+ |
simError(); |
| 414 |
+ |
} |
| 415 |
+ |
|
| 416 |
+ |
if (sd2->isAtom()) { |
| 417 |
+ |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
| 418 |
+ |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
| 419 |
+ |
|
| 420 |
+ |
if (ma2.isDipole() ) |
| 421 |
+ |
v2 = sd2->getDipole(); |
| 422 |
+ |
else |
| 423 |
+ |
v2 = sd2->getA().transpose() * V3Z; |
| 424 |
+ |
} else { |
| 425 |
+ |
v2 = sd2->getA().transpose() * V3Z; |
| 426 |
+ |
} |
| 427 |
+ |
|
| 428 |
+ |
v1.normalize(); |
| 429 |
+ |
v2.normalize(); |
| 430 |
+ |
return dot(v1, v2); |
| 431 |
+ |
} |
| 432 |
|
} |
| 433 |
|
|
| 434 |
|
|