| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
 | 
| 43 | 
  | 
#include <algorithm> | 
| 44 | 
  | 
#include <fstream> | 
| 45 | 
  | 
#include "applications/staticProps/GofRAngle.hpp" | 
| 46 | 
+ | 
#include "primitives/Atom.hpp" | 
| 47 | 
+ | 
#include "types/MultipoleAdapter.hpp" | 
| 48 | 
  | 
#include "utils/simError.h" | 
| 49 | 
  | 
 | 
| 50 | 
< | 
namespace oopse { | 
| 50 | 
> | 
namespace OpenMD { | 
| 51 | 
> | 
   | 
| 52 | 
> | 
  GofRAngle::GofRAngle(SimInfo* info, const std::string& filename,  | 
| 53 | 
> | 
                       const std::string& sele1,  | 
| 54 | 
> | 
                       const std::string& sele2,  | 
| 55 | 
> | 
                       RealType len, int nrbins, int nangleBins) | 
| 56 | 
> | 
    : RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins),  | 
| 57 | 
> | 
      len_(len), nRBins_(nrbins),  | 
| 58 | 
> | 
      doSele3_(false), seleMan3_(info), evaluator3_(info) { | 
| 59 | 
> | 
     | 
| 60 | 
> | 
    deltaR_ = len_ /(double) nRBins_; | 
| 61 | 
> | 
    deltaCosAngle_ = 2.0 / (double)nAngleBins_;     | 
| 62 | 
> | 
    histogram_.resize(nRBins_); | 
| 63 | 
> | 
    avgGofr_.resize(nRBins_); | 
| 64 | 
> | 
    for (int i = 0 ; i < nRBins_; ++i) { | 
| 65 | 
> | 
      histogram_[i].resize(nAngleBins_); | 
| 66 | 
> | 
      avgGofr_[i].resize(nAngleBins_); | 
| 67 | 
> | 
    } | 
| 68 | 
> | 
  } | 
| 69 | 
> | 
   | 
| 70 | 
> | 
  GofRAngle::GofRAngle(SimInfo* info, const std::string& filename,  | 
| 71 | 
> | 
                       const std::string& sele1,  | 
| 72 | 
> | 
                       const std::string& sele2,  | 
| 73 | 
> | 
                       const std::string& sele3, | 
| 74 | 
> | 
                       RealType len, int nrbins, int nangleBins) | 
| 75 | 
> | 
    : RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins), | 
| 76 | 
> | 
      len_(len), nRBins_(nrbins), doSele3_(true), selectionScript3_(sele3), | 
| 77 | 
> | 
      seleMan3_(info), evaluator3_(info) { | 
| 78 | 
  | 
 | 
| 79 | 
< | 
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1,  | 
| 80 | 
< | 
    const std::string& sele2, double len, int nrbins, int nangleBins) | 
| 51 | 
< | 
    : RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins), nAngleBins_(nangleBins){ | 
| 52 | 
< | 
 | 
| 53 | 
< | 
    deltaR_ = len_ /nRBins_;              | 
| 54 | 
< | 
    deltaCosAngle_ = 2.0 / nAngleBins_;     | 
| 55 | 
< | 
 | 
| 79 | 
> | 
    deltaR_ = len_ /(double) nRBins_; | 
| 80 | 
> | 
    deltaCosAngle_ = 2.0 / (double)nAngleBins_;     | 
| 81 | 
  | 
    histogram_.resize(nRBins_); | 
| 82 | 
  | 
    avgGofr_.resize(nRBins_); | 
| 83 | 
  | 
    for (int i = 0 ; i < nRBins_; ++i) { | 
| 84 | 
< | 
        histogram_[i].resize(nAngleBins_); | 
| 85 | 
< | 
        avgGofr_[i].resize(nAngleBins_); | 
| 84 | 
> | 
      histogram_[i].resize(nAngleBins_); | 
| 85 | 
> | 
      avgGofr_[i].resize(nAngleBins_); | 
| 86 | 
  | 
    } | 
| 62 | 
– | 
} | 
| 87 | 
  | 
 | 
| 88 | 
+ | 
    evaluator3_.loadScriptString(sele3);       | 
| 89 | 
+ | 
    if (!evaluator3_.isDynamic()) { | 
| 90 | 
+ | 
      seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 91 | 
+ | 
    } | 
| 92 | 
  | 
 | 
| 93 | 
< | 
void GofRAngle::preProcess() { | 
| 93 | 
> | 
  } | 
| 94 | 
> | 
   | 
| 95 | 
> | 
  void GofRAngle::processNonOverlapping( SelectionManager& sman1,  | 
| 96 | 
> | 
                                         SelectionManager& sman2) { | 
| 97 | 
> | 
    StuntDouble* sd1; | 
| 98 | 
> | 
    StuntDouble* sd2; | 
| 99 | 
> | 
    StuntDouble* sd3; | 
| 100 | 
> | 
    int i;     | 
| 101 | 
> | 
    int j; | 
| 102 | 
> | 
    int k; | 
| 103 | 
> | 
     | 
| 104 | 
> | 
    // This is the same as a non-overlapping pairwise loop structure: | 
| 105 | 
> | 
    // for (int i = 0;  i < ni ; ++i ) { | 
| 106 | 
> | 
    //   for (int j = 0; j < nj; ++j) {}  | 
| 107 | 
> | 
    // } | 
| 108 | 
  | 
 | 
| 109 | 
< | 
    for (int i = 0; i < avgGofr_.size(); ++i) { | 
| 110 | 
< | 
        std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); | 
| 109 | 
> | 
    if (doSele3_) { | 
| 110 | 
> | 
      if  (evaluator3_.isDynamic()) { | 
| 111 | 
> | 
        seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 112 | 
> | 
      } | 
| 113 | 
> | 
      if (sman1.getSelectionCount() != seleMan3_.getSelectionCount() ) { | 
| 114 | 
> | 
        RadialDistrFunc::processNonOverlapping( sman1, sman2 ); | 
| 115 | 
> | 
      } | 
| 116 | 
> | 
 | 
| 117 | 
> | 
      for (sd1 = sman1.beginSelected(i), sd3 = seleMan3_.beginSelected(k);  | 
| 118 | 
> | 
           sd1 != NULL && sd3 != NULL;  | 
| 119 | 
> | 
           sd1 = sman1.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { | 
| 120 | 
> | 
        for (sd2 = sman2.beginSelected(j); sd2 != NULL;  | 
| 121 | 
> | 
             sd2 = sman2.nextSelected(j)) { | 
| 122 | 
> | 
          collectHistogram(sd1, sd2, sd3); | 
| 123 | 
> | 
        } | 
| 124 | 
> | 
      } | 
| 125 | 
> | 
    } else { | 
| 126 | 
> | 
      RadialDistrFunc::processNonOverlapping( sman1, sman2 ); | 
| 127 | 
  | 
    } | 
| 128 | 
< | 
} | 
| 128 | 
> | 
  } | 
| 129 | 
  | 
 | 
| 130 | 
< | 
void GofRAngle::initalizeHistogram() { | 
| 131 | 
< | 
    npairs_ = 0; | 
| 132 | 
< | 
    for (int i = 0; i < histogram_.size(); ++i) | 
| 133 | 
< | 
        std::fill(histogram_[i].begin(), histogram_[i].end(), 0); | 
| 134 | 
< | 
} | 
| 130 | 
> | 
  void GofRAngle::processOverlapping( SelectionManager& sman) { | 
| 131 | 
> | 
    StuntDouble* sd1; | 
| 132 | 
> | 
    StuntDouble* sd2; | 
| 133 | 
> | 
    StuntDouble* sd3; | 
| 134 | 
> | 
    int i;     | 
| 135 | 
> | 
    int j; | 
| 136 | 
> | 
    int k; | 
| 137 | 
  | 
 | 
| 138 | 
+ | 
    // This is the same as a pairwise loop structure: | 
| 139 | 
+ | 
    // for (int i = 0;  i < n-1 ; ++i ) { | 
| 140 | 
+ | 
    //   for (int j = i + 1; j < n; ++j) {}  | 
| 141 | 
+ | 
    // } | 
| 142 | 
+ | 
     | 
| 143 | 
+ | 
    if (doSele3_) { | 
| 144 | 
+ | 
      if  (evaluator3_.isDynamic()) { | 
| 145 | 
+ | 
        seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 146 | 
+ | 
      } | 
| 147 | 
+ | 
      if (sman.getSelectionCount() != seleMan3_.getSelectionCount() ) { | 
| 148 | 
+ | 
        RadialDistrFunc::processOverlapping( sman); | 
| 149 | 
+ | 
      } | 
| 150 | 
+ | 
      for (sd1 = sman.beginSelected(i), sd3 = seleMan3_.beginSelected(k);  | 
| 151 | 
+ | 
           sd1 != NULL && sd3 != NULL;  | 
| 152 | 
+ | 
           sd1 = sman.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { | 
| 153 | 
+ | 
        for (j  = i, sd2 = sman.nextSelected(j); sd2 != NULL;  | 
| 154 | 
+ | 
             sd2 = sman.nextSelected(j)) { | 
| 155 | 
+ | 
          collectHistogram(sd1, sd2, sd3); | 
| 156 | 
+ | 
        }             | 
| 157 | 
+ | 
      } | 
| 158 | 
+ | 
    } else { | 
| 159 | 
+ | 
      RadialDistrFunc::processOverlapping( sman); | 
| 160 | 
+ | 
    }     | 
| 161 | 
+ | 
  } | 
| 162 | 
+ | 
   | 
| 163 | 
  | 
 | 
| 164 | 
< | 
void GofRAngle::processHistogram() { | 
| 164 | 
> | 
  void GofRAngle::preProcess() { | 
| 165 | 
> | 
    for (unsigned int i = 0; i < avgGofr_.size(); ++i) { | 
| 166 | 
> | 
      std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); | 
| 167 | 
> | 
    } | 
| 168 | 
> | 
  } | 
| 169 | 
  | 
 | 
| 170 | 
+ | 
  void GofRAngle::initializeHistogram() { | 
| 171 | 
+ | 
    npairs_ = 0; | 
| 172 | 
+ | 
    for (unsigned int i = 0; i < histogram_.size(); ++i){ | 
| 173 | 
+ | 
      std::fill(histogram_[i].begin(), histogram_[i].end(), 0); | 
| 174 | 
+ | 
    } | 
| 175 | 
+ | 
  } | 
| 176 | 
+ | 
 | 
| 177 | 
+ | 
  void GofRAngle::processHistogram() { | 
| 178 | 
  | 
    int nPairs = getNPairs(); | 
| 179 | 
< | 
    double volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); | 
| 180 | 
< | 
    double pairDensity = nPairs /volume; | 
| 181 | 
< | 
    double pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; | 
| 179 | 
> | 
    RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); | 
| 180 | 
> | 
    RealType pairDensity = nPairs /volume; | 
| 181 | 
> | 
    RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; | 
| 182 | 
  | 
 | 
| 183 | 
< | 
    for(int i = 0 ; i < histogram_.size(); ++i){ | 
| 183 | 
> | 
    for(unsigned int i = 0 ; i < histogram_.size(); ++i){ | 
| 184 | 
  | 
 | 
| 185 | 
< | 
        double rLower = i * deltaR_; | 
| 186 | 
< | 
        double rUpper = rLower + deltaR_; | 
| 187 | 
< | 
        double volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); | 
| 188 | 
< | 
        double nIdeal = volSlice * pairConstant; | 
| 185 | 
> | 
      RealType rLower = i * deltaR_; | 
| 186 | 
> | 
      RealType rUpper = rLower + deltaR_; | 
| 187 | 
> | 
      RealType volSlice = ( rUpper * rUpper * rUpper ) -  | 
| 188 | 
> | 
        ( rLower * rLower * rLower ); | 
| 189 | 
> | 
      RealType nIdeal = volSlice * pairConstant; | 
| 190 | 
  | 
 | 
| 191 | 
< | 
        for (int j = 0; j < histogram_[i].size(); ++j){ | 
| 192 | 
< | 
            avgGofr_[i][j] += histogram_[i][j] / nIdeal;     | 
| 193 | 
< | 
        } | 
| 191 | 
> | 
      for (unsigned int j = 0; j < histogram_[i].size(); ++j){ | 
| 192 | 
> | 
        avgGofr_[i][j] += histogram_[i][j] / nIdeal;     | 
| 193 | 
> | 
      } | 
| 194 | 
  | 
    } | 
| 195 | 
  | 
 | 
| 196 | 
< | 
} | 
| 196 | 
> | 
  } | 
| 197 | 
  | 
 | 
| 198 | 
< | 
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 198 | 
> | 
  void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 199 | 
  | 
 | 
| 200 | 
  | 
    if (sd1 == sd2) { | 
| 201 | 
< | 
        return; | 
| 201 | 
> | 
      return; | 
| 202 | 
  | 
    } | 
| 105 | 
– | 
     | 
| 203 | 
  | 
    Vector3d pos1 = sd1->getPos(); | 
| 204 | 
  | 
    Vector3d pos2 = sd2->getPos(); | 
| 205 | 
  | 
    Vector3d r12 = pos2 - pos1; | 
| 206 | 
< | 
    currentSnapshot_->wrapVector(r12); | 
| 206 | 
> | 
    if (usePeriodicBoundaryConditions_) | 
| 207 | 
> | 
      currentSnapshot_->wrapVector(r12); | 
| 208 | 
  | 
 | 
| 209 | 
< | 
    double distance = r12.length(); | 
| 210 | 
< | 
    int whichRBin = distance / deltaR_; | 
| 209 | 
> | 
    RealType distance = r12.length(); | 
| 210 | 
> | 
    int whichRBin = int(distance / deltaR_); | 
| 211 | 
  | 
 | 
| 212 | 
  | 
    if (distance <= len_) { | 
| 213 | 
< | 
        double cosAngle = evaluateAngle(sd1, sd2); | 
| 214 | 
< | 
        double halfBin = (nAngleBins_ - 1) * 0.5; | 
| 215 | 
< | 
        int whichThetaBin = halfBin * (cosAngle + 1.0); | 
| 216 | 
< | 
        ++histogram_[whichRBin][whichThetaBin]; | 
| 213 | 
> | 
 | 
| 214 | 
> | 
      RealType cosAngle = evaluateAngle(sd1, sd2); | 
| 215 | 
> | 
      RealType halfBin = (nAngleBins_ - 1) * 0.5; | 
| 216 | 
> | 
      int whichThetaBin = int(halfBin * (cosAngle + 1.0)); | 
| 217 | 
> | 
      ++histogram_[whichRBin][whichThetaBin]; | 
| 218 | 
  | 
         | 
| 219 | 
< | 
        ++npairs_; | 
| 219 | 
> | 
      ++npairs_; | 
| 220 | 
  | 
    } | 
| 221 | 
< | 
} | 
| 221 | 
> | 
  } | 
| 222 | 
  | 
 | 
| 223 | 
< | 
void GofRAngle::writeRdf() { | 
| 223 | 
> | 
  void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2,  | 
| 224 | 
> | 
                                   StuntDouble* sd3) { | 
| 225 | 
> | 
 | 
| 226 | 
> | 
    if (sd1 == sd2) { | 
| 227 | 
> | 
      return; | 
| 228 | 
> | 
    } | 
| 229 | 
> | 
 | 
| 230 | 
> | 
    Vector3d p1 = sd1->getPos(); | 
| 231 | 
> | 
    Vector3d p3 = sd3->getPos(); | 
| 232 | 
> | 
 | 
| 233 | 
> | 
    Vector3d c = 0.5 * (p1 + p3); | 
| 234 | 
> | 
    Vector3d r13 = p3 - p1; | 
| 235 | 
> | 
 | 
| 236 | 
> | 
    Vector3d r12 = sd2->getPos() - c; | 
| 237 | 
> | 
   | 
| 238 | 
> | 
    if (usePeriodicBoundaryConditions_) { | 
| 239 | 
> | 
      currentSnapshot_->wrapVector(r12); | 
| 240 | 
> | 
      currentSnapshot_->wrapVector(r13); | 
| 241 | 
> | 
    } | 
| 242 | 
> | 
     | 
| 243 | 
> | 
    RealType distance = r12.length(); | 
| 244 | 
> | 
    int whichRBin = int(distance / deltaR_); | 
| 245 | 
> | 
 | 
| 246 | 
> | 
    if (distance <= len_) { | 
| 247 | 
> | 
 | 
| 248 | 
> | 
      RealType cosAngle = evaluateAngle(sd1, sd2, sd3); | 
| 249 | 
> | 
      RealType halfBin = (nAngleBins_ - 1) * 0.5; | 
| 250 | 
> | 
      int whichThetaBin = int(halfBin * (cosAngle + 1.0)); | 
| 251 | 
> | 
      ++histogram_[whichRBin][whichThetaBin]; | 
| 252 | 
> | 
         | 
| 253 | 
> | 
      ++npairs_; | 
| 254 | 
> | 
    } | 
| 255 | 
> | 
  } | 
| 256 | 
> | 
 | 
| 257 | 
> | 
  void GofRAngle::writeRdf() { | 
| 258 | 
  | 
    std::ofstream rdfStream(outputFilename_.c_str()); | 
| 259 | 
  | 
    if (rdfStream.is_open()) { | 
| 260 | 
< | 
        rdfStream << "#radial distribution function\n"; | 
| 261 | 
< | 
        rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 262 | 
< | 
        rdfStream << "selection2: (" << selectionScript2_ << ")\n"; | 
| 263 | 
< | 
        rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; | 
| 264 | 
< | 
        rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; | 
| 265 | 
< | 
        for (int i = 0; i < avgGofr_.size(); ++i) { | 
| 266 | 
< | 
            double r = deltaR_ * (i + 0.5); | 
| 260 | 
> | 
      rdfStream << "#radial distribution function\n"; | 
| 261 | 
> | 
      rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 262 | 
> | 
      rdfStream <<  "selection2: (" << selectionScript2_ << ")"; | 
| 263 | 
> | 
      if (doSele3_) { | 
| 264 | 
> | 
        rdfStream << "\tselection3: (" << selectionScript3_ << ")\n"; | 
| 265 | 
> | 
      } else { | 
| 266 | 
> | 
        rdfStream << "\n"; | 
| 267 | 
> | 
      } | 
| 268 | 
> | 
      rdfStream << "#nRBins = " << nRBins_ << "\tmaxLen = "  | 
| 269 | 
> | 
                << len_ << "\tdeltaR = " << deltaR_ <<"\n"; | 
| 270 | 
> | 
      rdfStream << "#nAngleBins =" << nAngleBins_ << "\tdeltaCosAngle = "  | 
| 271 | 
> | 
                << deltaCosAngle_ << "\n"; | 
| 272 | 
> | 
      for (unsigned int i = 0; i < avgGofr_.size(); ++i) { | 
| 273 | 
> | 
        // RealType r = deltaR_ * (i + 0.5); | 
| 274 | 
  | 
 | 
| 275 | 
< | 
            for(int j = 0; j < avgGofr_[i].size(); ++j) { | 
| 276 | 
< | 
                double cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; | 
| 277 | 
< | 
                rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; | 
| 278 | 
< | 
            } | 
| 275 | 
> | 
        for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { | 
| 276 | 
> | 
          // RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; | 
| 277 | 
> | 
          rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; | 
| 278 | 
> | 
        } | 
| 279 | 
  | 
 | 
| 280 | 
< | 
            rdfStream << "\n"; | 
| 281 | 
< | 
        } | 
| 280 | 
> | 
        rdfStream << "\n"; | 
| 281 | 
> | 
      } | 
| 282 | 
  | 
         | 
| 283 | 
  | 
    } else { | 
| 284 | 
< | 
        sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n", outputFilename_.c_str()); | 
| 285 | 
< | 
        painCave.isFatal = 1; | 
| 286 | 
< | 
        simError();   | 
| 284 | 
> | 
      sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n",  | 
| 285 | 
> | 
              outputFilename_.c_str()); | 
| 286 | 
> | 
      painCave.isFatal = 1; | 
| 287 | 
> | 
      simError();   | 
| 288 | 
  | 
    } | 
| 289 | 
  | 
 | 
| 290 | 
  | 
    rdfStream.close(); | 
| 291 | 
< | 
} | 
| 291 | 
> | 
  } | 
| 292 | 
  | 
 | 
| 293 | 
< | 
double GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 293 | 
> | 
  RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 294 | 
  | 
    Vector3d pos1 = sd1->getPos(); | 
| 295 | 
  | 
    Vector3d pos2 = sd2->getPos(); | 
| 296 | 
  | 
    Vector3d r12 = pos2 - pos1; | 
| 297 | 
< | 
    currentSnapshot_->wrapVector(r12); | 
| 297 | 
> | 
   | 
| 298 | 
> | 
    if (usePeriodicBoundaryConditions_) | 
| 299 | 
> | 
      currentSnapshot_->wrapVector(r12); | 
| 300 | 
> | 
 | 
| 301 | 
  | 
    r12.normalize(); | 
| 158 | 
– | 
    Vector3d dipole = sd1->getElectroFrame().getColumn(2); | 
| 159 | 
– | 
    dipole.normalize();     | 
| 160 | 
– | 
    return dot(r12, dipole); | 
| 161 | 
– | 
} | 
| 302 | 
  | 
 | 
| 303 | 
< | 
double GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 304 | 
< | 
    Vector3d v1 = sd1->getElectroFrame().getColumn(2); | 
| 305 | 
< | 
    Vector3d v2 = sd1->getElectroFrame().getColumn(2);     | 
| 303 | 
> | 
    Vector3d vec;     | 
| 304 | 
> | 
     | 
| 305 | 
> | 
    if (!sd1->isDirectional()) { | 
| 306 | 
> | 
      sprintf(painCave.errMsg,  | 
| 307 | 
> | 
              "GofRTheta: attempted to use a non-directional object: %s\n",  | 
| 308 | 
> | 
              sd1->getType().c_str()); | 
| 309 | 
> | 
      painCave.isFatal = 1; | 
| 310 | 
> | 
      simError();   | 
| 311 | 
> | 
    } | 
| 312 | 
> | 
 | 
| 313 | 
> | 
    if (sd1->isAtom()) { | 
| 314 | 
> | 
      AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); | 
| 315 | 
> | 
      MultipoleAdapter ma1 = MultipoleAdapter(atype1); | 
| 316 | 
> | 
       | 
| 317 | 
> | 
      if (ma1.isDipole() ) | 
| 318 | 
> | 
        vec = sd1->getDipole(); | 
| 319 | 
> | 
      else  | 
| 320 | 
> | 
        vec = sd1->getA().transpose() * V3Z; | 
| 321 | 
> | 
    } else { | 
| 322 | 
> | 
      vec = sd1->getA().transpose() * V3Z; | 
| 323 | 
> | 
    } | 
| 324 | 
> | 
 | 
| 325 | 
> | 
    vec.normalize();     | 
| 326 | 
> | 
       | 
| 327 | 
> | 
    return dot(r12, vec); | 
| 328 | 
> | 
  } | 
| 329 | 
> | 
 | 
| 330 | 
> | 
  RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2,  | 
| 331 | 
> | 
                                    StuntDouble* sd3) { | 
| 332 | 
> | 
    Vector3d p1 = sd1->getPos(); | 
| 333 | 
> | 
    Vector3d p3 = sd3->getPos(); | 
| 334 | 
> | 
 | 
| 335 | 
> | 
    Vector3d c = 0.5 * (p1 + p3); | 
| 336 | 
> | 
    Vector3d r13 = p3 - p1; | 
| 337 | 
> | 
 | 
| 338 | 
> | 
    Vector3d r12 = sd2->getPos() - c; | 
| 339 | 
> | 
   | 
| 340 | 
> | 
    if (usePeriodicBoundaryConditions_) { | 
| 341 | 
> | 
      currentSnapshot_->wrapVector(r12); | 
| 342 | 
> | 
      currentSnapshot_->wrapVector(r13); | 
| 343 | 
> | 
    } | 
| 344 | 
> | 
 | 
| 345 | 
> | 
    r12.normalize(); | 
| 346 | 
> | 
    r13.normalize(); | 
| 347 | 
> | 
           | 
| 348 | 
> | 
    return dot(r12, r13); | 
| 349 | 
> | 
  } | 
| 350 | 
> | 
 | 
| 351 | 
> | 
  RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { | 
| 352 | 
> | 
    Vector3d v1, v2; | 
| 353 | 
> | 
 | 
| 354 | 
> | 
    if (!sd1->isDirectional()) { | 
| 355 | 
> | 
      sprintf(painCave.errMsg,  | 
| 356 | 
> | 
              "GofROmega: attempted to use a non-directional object: %s\n",  | 
| 357 | 
> | 
              sd1->getType().c_str()); | 
| 358 | 
> | 
      painCave.isFatal = 1; | 
| 359 | 
> | 
      simError();   | 
| 360 | 
> | 
    } | 
| 361 | 
> | 
 | 
| 362 | 
> | 
    if (sd1->isAtom()){ | 
| 363 | 
> | 
      AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); | 
| 364 | 
> | 
      MultipoleAdapter ma1 = MultipoleAdapter(atype1); | 
| 365 | 
> | 
      if (ma1.isDipole() ) | 
| 366 | 
> | 
        v1 = sd1->getDipole(); | 
| 367 | 
> | 
      else  | 
| 368 | 
> | 
        v1 = sd1->getA().transpose() * V3Z; | 
| 369 | 
> | 
    } else { | 
| 370 | 
> | 
      v1 = sd1->getA().transpose() * V3Z; | 
| 371 | 
> | 
    } | 
| 372 | 
> | 
     | 
| 373 | 
> | 
    if (!sd2->isDirectional()) { | 
| 374 | 
> | 
      sprintf(painCave.errMsg,  | 
| 375 | 
> | 
              "GofROmega attempted to use a non-directional object: %s\n",  | 
| 376 | 
> | 
              sd2->getType().c_str()); | 
| 377 | 
> | 
      painCave.isFatal = 1; | 
| 378 | 
> | 
      simError();   | 
| 379 | 
> | 
    } | 
| 380 | 
> | 
 | 
| 381 | 
> | 
    if (sd2->isAtom()) { | 
| 382 | 
> | 
      AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); | 
| 383 | 
> | 
      MultipoleAdapter ma2 = MultipoleAdapter(atype2); | 
| 384 | 
> | 
            | 
| 385 | 
> | 
      if (ma2.isDipole() ) | 
| 386 | 
> | 
        v2 = sd2->getDipole(); | 
| 387 | 
> | 
      else  | 
| 388 | 
> | 
        v2 = sd2->getA().transpose() * V3Z; | 
| 389 | 
> | 
    } else { | 
| 390 | 
> | 
      v2 = sd2->getA().transpose() * V3Z; | 
| 391 | 
> | 
    } | 
| 392 | 
> | 
       | 
| 393 | 
  | 
    v1.normalize(); | 
| 394 | 
  | 
    v2.normalize(); | 
| 395 | 
  | 
    return dot(v1, v2); | 
| 396 | 
< | 
} | 
| 396 | 
> | 
  } | 
| 397 | 
  | 
 | 
| 398 | 
+ | 
  RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2,  | 
| 399 | 
+ | 
                                    StuntDouble* sd3) { | 
| 400 | 
  | 
 | 
| 401 | 
+ | 
    Vector3d v1; | 
| 402 | 
+ | 
    Vector3d v2; | 
| 403 | 
+ | 
     | 
| 404 | 
+ | 
    v1 = sd3->getPos() - sd1->getPos(); | 
| 405 | 
+ | 
    if (usePeriodicBoundaryConditions_)  | 
| 406 | 
+ | 
      currentSnapshot_->wrapVector(v1); | 
| 407 | 
+ | 
     | 
| 408 | 
+ | 
    if (!sd2->isDirectional()) { | 
| 409 | 
+ | 
      sprintf(painCave.errMsg,  | 
| 410 | 
+ | 
              "GofROmega: attempted to use a non-directional object: %s\n",  | 
| 411 | 
+ | 
              sd2->getType().c_str()); | 
| 412 | 
+ | 
      painCave.isFatal = 1; | 
| 413 | 
+ | 
      simError();   | 
| 414 | 
+ | 
    } | 
| 415 | 
+ | 
 | 
| 416 | 
+ | 
    if (sd2->isAtom()) { | 
| 417 | 
+ | 
      AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); | 
| 418 | 
+ | 
      MultipoleAdapter ma2 = MultipoleAdapter(atype2); | 
| 419 | 
+ | 
            | 
| 420 | 
+ | 
      if (ma2.isDipole() ) | 
| 421 | 
+ | 
        v2 = sd2->getDipole(); | 
| 422 | 
+ | 
      else  | 
| 423 | 
+ | 
        v2 = sd2->getA().transpose() * V3Z; | 
| 424 | 
+ | 
    } else { | 
| 425 | 
+ | 
      v2 = sd2->getA().transpose() * V3Z; | 
| 426 | 
+ | 
    } | 
| 427 | 
+ | 
       | 
| 428 | 
+ | 
    v1.normalize(); | 
| 429 | 
+ | 
    v2.normalize(); | 
| 430 | 
+ | 
    return dot(v1, v2); | 
| 431 | 
+ | 
  } | 
| 432 | 
  | 
} | 
| 433 | 
  | 
 | 
| 434 | 
  | 
 |