6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <algorithm> |
45 |
|
#include "applications/staticProps/GofXyz.hpp" |
46 |
|
#include "utils/simError.h" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
namespace oopse { |
48 |
> |
namespace OpenMD { |
49 |
|
|
50 |
|
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, const std::string& sele3, RealType len, int nrbins) |
51 |
|
: RadialDistrFunc(info, filename, sele1, sele2), evaluator3_(info), seleMan3_(info), len_(len), halfLen_(len/2), nRBins_(nrbins) { |
79 |
|
} |
80 |
|
|
81 |
|
|
82 |
< |
void GofXyz::initalizeHistogram() { |
82 |
> |
void GofXyz::initializeHistogram() { |
83 |
|
//calculate the center of mass of the molecule of selected stuntdouble in selection1 |
84 |
|
|
85 |
|
if (!evaluator3_.isDynamic()) { |
101 |
|
StuntDouble* sd3; |
102 |
|
|
103 |
|
for (sd1 = seleMan1_.beginSelected(i), sd3 = seleMan3_.beginSelected(j); |
104 |
< |
sd1 != NULL, sd3 != NULL; |
104 |
> |
sd1 != NULL || sd3 != NULL; |
105 |
|
sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { |
106 |
|
|
107 |
|
Vector3d r3 =sd3->getPos(); |
108 |
|
Vector3d r1 = sd1->getPos(); |
109 |
|
Vector3d v1 = r3 - r1; |
110 |
< |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); |
110 |
> |
if (usePeriodicBoundaryConditions_) |
111 |
> |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); |
112 |
|
Vector3d zaxis = sd1->getElectroFrame().getColumn(2); |
113 |
|
Vector3d xaxis = cross(v1, zaxis); |
114 |
|
Vector3d yaxis = cross(zaxis, xaxis); |
132 |
|
Vector3d pos1 = sd1->getPos(); |
133 |
|
Vector3d pos2 = sd2->getPos(); |
134 |
|
Vector3d r12 = pos2 - pos1; |
135 |
< |
currentSnapshot_->wrapVector(r12); |
135 |
> |
if (usePeriodicBoundaryConditions_) |
136 |
> |
currentSnapshot_->wrapVector(r12); |
137 |
|
|
138 |
|
std::map<int, RotMat3x3d>::iterator i = rotMats_.find(sd1->getGlobalIndex()); |
139 |
|
assert(i != rotMats_.end()); |
140 |
|
|
141 |
|
Vector3d newR12 = i->second * r12; |
142 |
|
// x, y and z's possible values range -halfLen_ to halfLen_ |
143 |
< |
int xbin = (newR12.x()+ halfLen_) / deltaR_; |
144 |
< |
int ybin = (newR12.y() + halfLen_) / deltaR_; |
145 |
< |
int zbin = (newR12.z() + halfLen_) / deltaR_; |
143 |
> |
int xbin = int((newR12.x() + halfLen_) / deltaR_); |
144 |
> |
int ybin = int((newR12.y() + halfLen_) / deltaR_); |
145 |
> |
int zbin = int((newR12.z() + halfLen_) / deltaR_); |
146 |
|
|
147 |
|
if (xbin < nRBins_ && xbin >=0 && |
148 |
|
ybin < nRBins_ && ybin >= 0 && |
159 |
|
//rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
160 |
|
//rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
161 |
|
//rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
162 |
< |
for (int i = 0; i < histogram_.size(); ++i) { |
163 |
< |
|
164 |
< |
for(int j = 0; j < histogram_[i].size(); ++j) { |
165 |
< |
|
166 |
< |
for(int k = 0;k < histogram_[i][j].size(); ++k) { |
164 |
< |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), sizeof(histogram_[i][j][k] )); |
162 |
> |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
163 |
> |
for(unsigned int j = 0; j < histogram_[i].size(); ++j) { |
164 |
> |
for(unsigned int k = 0;k < histogram_[i][j].size(); ++k) { |
165 |
> |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), |
166 |
> |
sizeof(histogram_[i][j][k] )); |
167 |
|
} |
168 |
|
} |
169 |
|
} |