6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <algorithm> |
45 |
|
#include "applications/staticProps/GofXyz.hpp" |
46 |
|
#include "utils/simError.h" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
namespace oopse { |
48 |
> |
namespace OpenMD { |
49 |
|
|
50 |
< |
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, double len, int nrbins) |
51 |
< |
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), halfLen_(len/2), nRBins_(nrbins) { |
52 |
< |
setOutputName(getPrefix(filename) + ".gxyz"); |
50 |
> |
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, const std::string& sele3, RealType len, int nrbins) |
51 |
> |
: RadialDistrFunc(info, filename, sele1, sele2), evaluator3_(info), seleMan3_(info), len_(len), halfLen_(len/2), nRBins_(nrbins) { |
52 |
> |
setOutputName(getPrefix(filename) + ".gxyz"); |
53 |
|
|
54 |
< |
deltaR_ = len_ / nRBins_; |
54 |
> |
evaluator3_.loadScriptString(sele3); |
55 |
> |
if (!evaluator3_.isDynamic()) { |
56 |
> |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
57 |
> |
} |
58 |
> |
|
59 |
> |
deltaR_ = len_ / nRBins_; |
60 |
|
|
61 |
< |
histogram_.resize(nRBins_); |
62 |
< |
for (int i = 0 ; i < nRBins_; ++i) { |
61 |
> |
histogram_.resize(nRBins_); |
62 |
> |
for (int i = 0 ; i < nRBins_; ++i) { |
63 |
|
histogram_[i].resize(nRBins_); |
64 |
|
for(int j = 0; j < nRBins_; ++j) { |
65 |
< |
histogram_[i][j].resize(nRBins_); |
65 |
> |
histogram_[i][j].resize(nRBins_); |
66 |
|
} |
67 |
< |
} |
67 |
> |
} |
68 |
> |
|
69 |
> |
} |
70 |
|
|
63 |
– |
//create atom2Mol mapping (should be other class' responsibility) |
64 |
– |
atom2Mol_.insert(atom2Mol_.begin(), info_->getNGlobalAtoms() + info_->getNGlobalRigidBodies(), static_cast<Molecule*>(NULL)); |
65 |
– |
|
66 |
– |
SimInfo::MoleculeIterator mi; |
67 |
– |
Molecule* mol; |
68 |
– |
Molecule::AtomIterator ai; |
69 |
– |
Atom* atom; |
70 |
– |
Molecule::RigidBodyIterator rbIter; |
71 |
– |
RigidBody* rb; |
72 |
– |
|
73 |
– |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
74 |
– |
|
75 |
– |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
76 |
– |
atom2Mol_[atom->getGlobalIndex()] = mol; |
77 |
– |
} |
71 |
|
|
72 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
80 |
< |
atom2Mol_[rb->getGlobalIndex()] = mol; |
81 |
< |
} |
82 |
< |
|
83 |
< |
} |
84 |
< |
} |
85 |
< |
|
86 |
< |
|
87 |
< |
void GofXyz::preProcess() { |
72 |
> |
void GofXyz::preProcess() { |
73 |
|
for (int i = 0 ; i < nRBins_; ++i) { |
74 |
< |
histogram_[i].resize(nRBins_); |
75 |
< |
for(int j = 0; j < nRBins_; ++j) { |
76 |
< |
std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); |
77 |
< |
} |
74 |
> |
histogram_[i].resize(nRBins_); |
75 |
> |
for(int j = 0; j < nRBins_; ++j) { |
76 |
> |
std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); |
77 |
> |
} |
78 |
|
} |
79 |
< |
} |
79 |
> |
} |
80 |
|
|
81 |
|
|
82 |
< |
void GofXyz::initalizeHistogram() { |
82 |
> |
void GofXyz::initializeHistogram() { |
83 |
|
//calculate the center of mass of the molecule of selected stuntdouble in selection1 |
84 |
|
|
85 |
< |
//determine the new coordinate set of selection1 |
86 |
< |
//v1 = Rs1 -Rcom, |
87 |
< |
//z = Rs1.dipole |
85 |
> |
if (!evaluator3_.isDynamic()) { |
86 |
> |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
87 |
> |
} |
88 |
> |
|
89 |
> |
assert(seleMan1_.getSelectionCount() == seleMan3_.getSelectionCount()); |
90 |
> |
|
91 |
> |
//dipole direction of selection3 and position of selection3 will be used to determine the y-z plane |
92 |
> |
//v1 = s3 -s1, |
93 |
> |
//z = origin.dipole |
94 |
|
//x = v1 X z |
95 |
|
//y = z X x |
96 |
< |
coorSets_.clear(); |
96 |
> |
rotMats_.clear(); |
97 |
|
|
98 |
|
int i; |
99 |
< |
StuntDouble* sd; |
100 |
< |
for (sd = seleMan1_.beginSelected(i); sd != NULL; sd = seleMan1_.nextSelected(i)) { |
101 |
< |
Vector3d rcom = getMolCom(sd); |
102 |
< |
Vector3d rs1 = sd->getPos(); |
103 |
< |
Vector3d v1 = rcom - rs1; |
104 |
< |
CoorSet currCoorSet; |
105 |
< |
currCoorSet.zaxis = sd->getElectroFrame().getColumn(2); |
106 |
< |
v1.normalize(); |
107 |
< |
currCoorSet.zaxis.normalize(); |
108 |
< |
currCoorSet.xaxis = cross(v1, currCoorSet.zaxis); |
109 |
< |
currCoorSet.yaxis = cross(currCoorSet.zaxis, currCoorSet.xaxis); |
110 |
< |
coorSets_.insert(std::map<int, CoorSet>::value_type(sd->getGlobalIndex(), currCoorSet)); |
99 |
> |
int j; |
100 |
> |
StuntDouble* sd1; |
101 |
> |
StuntDouble* sd3; |
102 |
> |
|
103 |
> |
for (sd1 = seleMan1_.beginSelected(i), sd3 = seleMan3_.beginSelected(j); |
104 |
> |
sd1 != NULL || sd3 != NULL; |
105 |
> |
sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { |
106 |
> |
|
107 |
> |
Vector3d r3 =sd3->getPos(); |
108 |
> |
Vector3d r1 = sd1->getPos(); |
109 |
> |
Vector3d v1 = r3 - r1; |
110 |
> |
if (usePeriodicBoundaryConditions_) |
111 |
> |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); |
112 |
> |
Vector3d zaxis = sd1->getElectroFrame().getColumn(2); |
113 |
> |
Vector3d xaxis = cross(v1, zaxis); |
114 |
> |
Vector3d yaxis = cross(zaxis, xaxis); |
115 |
> |
|
116 |
> |
xaxis.normalize(); |
117 |
> |
yaxis.normalize(); |
118 |
> |
zaxis.normalize(); |
119 |
> |
|
120 |
> |
RotMat3x3d rotMat; |
121 |
> |
rotMat.setRow(0, xaxis); |
122 |
> |
rotMat.setRow(1, yaxis); |
123 |
> |
rotMat.setRow(2, zaxis); |
124 |
> |
|
125 |
> |
rotMats_.insert(std::map<int, RotMat3x3d>::value_type(sd1->getGlobalIndex(), rotMat)); |
126 |
|
} |
127 |
|
|
128 |
< |
} |
128 |
> |
} |
129 |
|
|
130 |
< |
void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
130 |
> |
void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
131 |
|
|
132 |
|
Vector3d pos1 = sd1->getPos(); |
133 |
|
Vector3d pos2 = sd2->getPos(); |
134 |
|
Vector3d r12 = pos2 - pos1; |
135 |
< |
currentSnapshot_->wrapVector(r12); |
135 |
> |
if (usePeriodicBoundaryConditions_) |
136 |
> |
currentSnapshot_->wrapVector(r12); |
137 |
|
|
138 |
< |
std::map<int, CoorSet>::iterator i = coorSets_.find(sd1->getGlobalIndex()); |
139 |
< |
assert(i != coorSets_.end()); |
138 |
> |
std::map<int, RotMat3x3d>::iterator i = rotMats_.find(sd1->getGlobalIndex()); |
139 |
> |
assert(i != rotMats_.end()); |
140 |
|
|
141 |
< |
double x = dot(r12, i->second.xaxis); |
135 |
< |
double y = dot(r12, i->second.yaxis); |
136 |
< |
double z = dot(r12, i->second.zaxis); |
137 |
< |
|
141 |
> |
Vector3d newR12 = i->second * r12; |
142 |
|
// x, y and z's possible values range -halfLen_ to halfLen_ |
143 |
< |
int xbin = (x+ halfLen_) / deltaR_; |
144 |
< |
int ybin = (y + halfLen_) / deltaR_; |
145 |
< |
int zbin = (z + halfLen_) / deltaR_; |
143 |
> |
int xbin = (newR12.x() + halfLen_) / deltaR_; |
144 |
> |
int ybin = (newR12.y() + halfLen_) / deltaR_; |
145 |
> |
int zbin = (newR12.z() + halfLen_) / deltaR_; |
146 |
|
|
147 |
|
if (xbin < nRBins_ && xbin >=0 && |
148 |
|
ybin < nRBins_ && ybin >= 0 && |
149 |
|
zbin < nRBins_ && zbin >=0 ) { |
150 |
< |
++histogram_[xbin][ybin][zbin]; |
150 |
> |
++histogram_[xbin][ybin][zbin]; |
151 |
|
} |
152 |
|
|
153 |
< |
} |
153 |
> |
} |
154 |
|
|
155 |
< |
void GofXyz::writeRdf() { |
155 |
> |
void GofXyz::writeRdf() { |
156 |
|
std::ofstream rdfStream(outputFilename_.c_str(), std::ios::binary); |
157 |
|
if (rdfStream.is_open()) { |
158 |
< |
//rdfStream << "#g(x, y, z)\n"; |
159 |
< |
//rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
160 |
< |
//rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
161 |
< |
//rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
162 |
< |
for (int i = 0; i < histogram_.size(); ++i) { |
163 |
< |
|
164 |
< |
for(int j = 0; j < histogram_[i].size(); ++j) { |
165 |
< |
|
166 |
< |
for(int k = 0;k < histogram_[i].size(); ++k) { |
167 |
< |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), sizeof(histogram_[i][j][k] )); |
168 |
< |
} |
169 |
< |
} |
166 |
< |
} |
158 |
> |
//rdfStream << "#g(x, y, z)\n"; |
159 |
> |
//rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
160 |
> |
//rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
161 |
> |
//rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
162 |
> |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
163 |
> |
for(unsigned int j = 0; j < histogram_[i].size(); ++j) { |
164 |
> |
for(unsigned int k = 0;k < histogram_[i][j].size(); ++k) { |
165 |
> |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), |
166 |
> |
sizeof(histogram_[i][j][k] )); |
167 |
> |
} |
168 |
> |
} |
169 |
> |
} |
170 |
|
|
171 |
|
} else { |
172 |
|
|
173 |
< |
sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", outputFilename_.c_str()); |
174 |
< |
painCave.isFatal = 1; |
175 |
< |
simError(); |
173 |
> |
sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", outputFilename_.c_str()); |
174 |
> |
painCave.isFatal = 1; |
175 |
> |
simError(); |
176 |
|
} |
177 |
|
|
178 |
|
rdfStream.close(); |
179 |
< |
} |
179 |
> |
} |
180 |
|
|
178 |
– |
Vector3d GofXyz::getMolCom(StuntDouble* sd){ |
179 |
– |
Molecule* mol = atom2Mol_[sd->getGlobalIndex()]; |
180 |
– |
assert(mol); |
181 |
– |
return mol->getCom(); |
181 |
|
} |
183 |
– |
|
184 |
– |
} |