| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 40 | 
  | 
 */ | 
| 41 | 
  | 
 | 
| 42 | 
  | 
#include <algorithm> | 
| 44 | 
  | 
#include "applications/staticProps/GofXyz.hpp" | 
| 45 | 
  | 
#include "utils/simError.h" | 
| 46 | 
  | 
#include "primitives/Molecule.hpp" | 
| 47 | 
< | 
namespace oopse { | 
| 47 | 
> | 
namespace OpenMD { | 
| 48 | 
  | 
 | 
| 49 | 
< | 
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, double len, int nrbins) | 
| 50 | 
< | 
    : RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins) { | 
| 51 | 
< | 
    setOutputName(getPrefix(filename) + ".gxyz"); | 
| 49 | 
> | 
  GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, const std::string& sele3, RealType len, int nrbins) | 
| 50 | 
> | 
    : RadialDistrFunc(info, filename, sele1, sele2), evaluator3_(info), seleMan3_(info), len_(len), halfLen_(len/2), nRBins_(nrbins) { | 
| 51 | 
> | 
      setOutputName(getPrefix(filename) + ".gxyz"); | 
| 52 | 
  | 
 | 
| 53 | 
< | 
    deltaR_ = len_ / nRBins_; | 
| 53 | 
> | 
      evaluator3_.loadScriptString(sele3); | 
| 54 | 
> | 
      if (!evaluator3_.isDynamic()) { | 
| 55 | 
> | 
        seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 56 | 
> | 
      }     | 
| 57 | 
> | 
 | 
| 58 | 
> | 
      deltaR_ =  len_ / nRBins_; | 
| 59 | 
  | 
     | 
| 60 | 
< | 
    histogram_.resize(nRBins_); | 
| 61 | 
< | 
    for (int i = 0 ; i < nRBins_; ++i) { | 
| 60 | 
> | 
      histogram_.resize(nRBins_); | 
| 61 | 
> | 
      for (int i = 0 ; i < nRBins_; ++i) { | 
| 62 | 
  | 
        histogram_[i].resize(nRBins_); | 
| 63 | 
  | 
        for(int j = 0; j < nRBins_; ++j) { | 
| 64 | 
< | 
            histogram_[i][j].resize(nRBins_); | 
| 64 | 
> | 
          histogram_[i][j].resize(nRBins_); | 
| 65 | 
  | 
        } | 
| 66 | 
< | 
    }    | 
| 66 | 
> | 
      }    | 
| 67 | 
> | 
    | 
| 68 | 
> | 
    } | 
| 69 | 
  | 
 | 
| 63 | 
– | 
    //create atom2Mol mapping (should be other class' responsibility) | 
| 64 | 
– | 
    atom2Mol_.insert(atom2Mol_.begin(), info_->getNGlobalAtoms() + info_->getNGlobalRigidBodies(), static_cast<Molecule*>(NULL)); | 
| 65 | 
– | 
     | 
| 66 | 
– | 
    SimInfo::MoleculeIterator mi; | 
| 67 | 
– | 
    Molecule* mol; | 
| 68 | 
– | 
    Molecule::AtomIterator ai; | 
| 69 | 
– | 
    Atom* atom; | 
| 70 | 
– | 
    Molecule::RigidBodyIterator rbIter; | 
| 71 | 
– | 
    RigidBody* rb; | 
| 72 | 
– | 
     | 
| 73 | 
– | 
    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { | 
| 74 | 
– | 
         | 
| 75 | 
– | 
        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 76 | 
– | 
            atom2Mol_[atom->getGlobalIndex()] = mol; | 
| 77 | 
– | 
        } | 
| 70 | 
  | 
 | 
| 71 | 
< | 
        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 80 | 
< | 
            atom2Mol_[rb->getGlobalIndex()] = mol; | 
| 81 | 
< | 
        } | 
| 82 | 
< | 
         | 
| 83 | 
< | 
    }        | 
| 84 | 
< | 
} | 
| 85 | 
< | 
 | 
| 86 | 
< | 
 | 
| 87 | 
< | 
void GofXyz::preProcess() { | 
| 71 | 
> | 
  void GofXyz::preProcess() { | 
| 72 | 
  | 
    for (int i = 0 ; i < nRBins_; ++i) { | 
| 73 | 
< | 
        histogram_[i].resize(nRBins_); | 
| 74 | 
< | 
        for(int j = 0; j < nRBins_; ++j) { | 
| 75 | 
< | 
            std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); | 
| 76 | 
< | 
        } | 
| 73 | 
> | 
      histogram_[i].resize(nRBins_); | 
| 74 | 
> | 
      for(int j = 0; j < nRBins_; ++j) { | 
| 75 | 
> | 
        std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); | 
| 76 | 
> | 
      } | 
| 77 | 
  | 
    }    | 
| 78 | 
< | 
} | 
| 78 | 
> | 
  } | 
| 79 | 
  | 
 | 
| 80 | 
  | 
 | 
| 81 | 
< | 
void GofXyz::initalizeHistogram() { | 
| 81 | 
> | 
  void GofXyz::initalizeHistogram() { | 
| 82 | 
  | 
    //calculate the center of mass of the molecule of selected stuntdouble in selection1 | 
| 83 | 
  | 
 | 
| 84 | 
< | 
    //determine the new coordinate set of selection1 | 
| 85 | 
< | 
    //v1 = Rs1 -Rcom,  | 
| 86 | 
< | 
    //z = Rs1.dipole | 
| 84 | 
> | 
    if (!evaluator3_.isDynamic()) { | 
| 85 | 
> | 
      seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 86 | 
> | 
    }     | 
| 87 | 
> | 
 | 
| 88 | 
> | 
    assert(seleMan1_.getSelectionCount() == seleMan3_.getSelectionCount()); | 
| 89 | 
> | 
     | 
| 90 | 
> | 
    //dipole direction of selection3 and position of selection3 will be used to determine the y-z plane | 
| 91 | 
> | 
    //v1 = s3 -s1,  | 
| 92 | 
> | 
    //z = origin.dipole | 
| 93 | 
  | 
    //x = v1 X z | 
| 94 | 
  | 
    //y = z X x  | 
| 95 | 
< | 
    coorSets_.clear(); | 
| 95 | 
> | 
    rotMats_.clear(); | 
| 96 | 
  | 
 | 
| 97 | 
  | 
    int i; | 
| 98 | 
< | 
    StuntDouble* sd; | 
| 99 | 
< | 
    for (sd = seleMan1_.beginSelected(i); sd != NULL; sd = seleMan1_.nextSelected(i)) { | 
| 100 | 
< | 
        Vector3d rcom = getMolCom(sd); | 
| 101 | 
< | 
        Vector3d rs1 = sd->getPos(); | 
| 102 | 
< | 
        Vector3d v1 =  rcom - rs1; | 
| 103 | 
< | 
        CoorSet currCoorSet; | 
| 104 | 
< | 
        currCoorSet.zaxis = sd->getElectroFrame().getColumn(2); | 
| 105 | 
< | 
        v1.normalize(); | 
| 106 | 
< | 
        currCoorSet.zaxis.normalize(); | 
| 107 | 
< | 
        currCoorSet.xaxis = cross(v1, currCoorSet.zaxis); | 
| 108 | 
< | 
        currCoorSet.yaxis = cross(currCoorSet.zaxis, currCoorSet.xaxis); | 
| 109 | 
< | 
        coorSets_.insert(std::map<int, CoorSet>::value_type(sd->getGlobalIndex(), currCoorSet)); | 
| 98 | 
> | 
    int j; | 
| 99 | 
> | 
    StuntDouble* sd1; | 
| 100 | 
> | 
    StuntDouble* sd3; | 
| 101 | 
> | 
     | 
| 102 | 
> | 
    for (sd1 = seleMan1_.beginSelected(i), sd3 = seleMan3_.beginSelected(j);  | 
| 103 | 
> | 
         sd1 != NULL, sd3 != NULL; | 
| 104 | 
> | 
         sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { | 
| 105 | 
> | 
 | 
| 106 | 
> | 
      Vector3d r3 =sd3->getPos(); | 
| 107 | 
> | 
      Vector3d r1 = sd1->getPos(); | 
| 108 | 
> | 
      Vector3d v1 =  r3 - r1; | 
| 109 | 
> | 
      if (usePeriodicBoundaryConditions_) | 
| 110 | 
> | 
        info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); | 
| 111 | 
> | 
      Vector3d zaxis = sd1->getElectroFrame().getColumn(2); | 
| 112 | 
> | 
      Vector3d xaxis = cross(v1, zaxis); | 
| 113 | 
> | 
      Vector3d yaxis = cross(zaxis, xaxis); | 
| 114 | 
> | 
 | 
| 115 | 
> | 
      xaxis.normalize(); | 
| 116 | 
> | 
      yaxis.normalize(); | 
| 117 | 
> | 
      zaxis.normalize(); | 
| 118 | 
> | 
 | 
| 119 | 
> | 
      RotMat3x3d rotMat; | 
| 120 | 
> | 
      rotMat.setRow(0, xaxis); | 
| 121 | 
> | 
      rotMat.setRow(1, yaxis); | 
| 122 | 
> | 
      rotMat.setRow(2, zaxis); | 
| 123 | 
> | 
         | 
| 124 | 
> | 
      rotMats_.insert(std::map<int, RotMat3x3d>::value_type(sd1->getGlobalIndex(), rotMat)); | 
| 125 | 
  | 
    } | 
| 126 | 
  | 
 | 
| 127 | 
< | 
} | 
| 127 | 
> | 
  } | 
| 128 | 
  | 
 | 
| 129 | 
< | 
void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 129 | 
> | 
  void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 130 | 
  | 
 | 
| 131 | 
  | 
    Vector3d pos1 = sd1->getPos(); | 
| 132 | 
  | 
    Vector3d pos2 = sd2->getPos(); | 
| 133 | 
  | 
    Vector3d r12 = pos2 - pos1; | 
| 134 | 
< | 
    currentSnapshot_->wrapVector(r12); | 
| 134 | 
> | 
    if (usePeriodicBoundaryConditions_) | 
| 135 | 
> | 
      currentSnapshot_->wrapVector(r12); | 
| 136 | 
  | 
 | 
| 137 | 
< | 
    std::map<int, CoorSet>::iterator i = coorSets_.find(sd1->getGlobalIndex()); | 
| 138 | 
< | 
    assert(i != coorSets_.end()); | 
| 137 | 
> | 
    std::map<int, RotMat3x3d>::iterator i = rotMats_.find(sd1->getGlobalIndex()); | 
| 138 | 
> | 
    assert(i != rotMats_.end()); | 
| 139 | 
  | 
     | 
| 140 | 
< | 
    double x = dot(r12, i->second.xaxis); | 
| 141 | 
< | 
    double y = dot(r12, i->second.yaxis); | 
| 142 | 
< | 
    double z = dot(r12, i->second.zaxis); | 
| 140 | 
> | 
    Vector3d newR12 = i->second * r12; | 
| 141 | 
> | 
    // x, y and z's possible values range -halfLen_ to halfLen_ | 
| 142 | 
> | 
    int xbin = (newR12.x()+ halfLen_) / deltaR_; | 
| 143 | 
> | 
    int ybin = (newR12.y() + halfLen_) / deltaR_; | 
| 144 | 
> | 
    int zbin = (newR12.z() + halfLen_) / deltaR_; | 
| 145 | 
  | 
 | 
| 146 | 
< | 
    int xbin = x / deltaR_; | 
| 147 | 
< | 
    int ybin = y / deltaR_; | 
| 148 | 
< | 
    int zbin = z / deltaR_; | 
| 149 | 
< | 
 | 
| 142 | 
< | 
    if (xbin < nRBins_ && ybin < nRBins_ && zbin < nRBins_) { | 
| 143 | 
< | 
        ++histogram_[x][y][z]; | 
| 146 | 
> | 
    if (xbin < nRBins_ && xbin >=0 && | 
| 147 | 
> | 
        ybin < nRBins_ && ybin >= 0 && | 
| 148 | 
> | 
        zbin < nRBins_ && zbin >=0 ) { | 
| 149 | 
> | 
      ++histogram_[xbin][ybin][zbin]; | 
| 150 | 
  | 
    } | 
| 151 | 
  | 
     | 
| 152 | 
< | 
} | 
| 152 | 
> | 
  } | 
| 153 | 
  | 
 | 
| 154 | 
< | 
void GofXyz::writeRdf() { | 
| 154 | 
> | 
  void GofXyz::writeRdf() { | 
| 155 | 
  | 
    std::ofstream rdfStream(outputFilename_.c_str(), std::ios::binary); | 
| 156 | 
  | 
    if (rdfStream.is_open()) { | 
| 157 | 
< | 
        //rdfStream << "#g(x, y, z)\n"; | 
| 158 | 
< | 
        //rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 159 | 
< | 
        //rdfStream << "selection2: (" << selectionScript2_ << ")\n"; | 
| 160 | 
< | 
        //rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; | 
| 161 | 
< | 
        for (int i = 0; i < histogram_.size(); ++i) { | 
| 157 | 
> | 
      //rdfStream << "#g(x, y, z)\n"; | 
| 158 | 
> | 
      //rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 159 | 
> | 
      //rdfStream << "selection2: (" << selectionScript2_ << ")\n"; | 
| 160 | 
> | 
      //rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; | 
| 161 | 
> | 
      for (int i = 0; i < histogram_.size(); ++i) { | 
| 162 | 
  | 
  | 
| 163 | 
< | 
            for(int j = 0; j < histogram_[i].size(); ++j) { | 
| 163 | 
> | 
        for(int j = 0; j < histogram_[i].size(); ++j) { | 
| 164 | 
  | 
  | 
| 165 | 
< | 
                for(int k = 0;k < histogram_[i].size(); ++k) { | 
| 166 | 
< | 
                    rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), sizeof(histogram_[i][j][k] )); | 
| 167 | 
< | 
                } | 
| 168 | 
< | 
            } | 
| 169 | 
< | 
        } | 
| 165 | 
> | 
          for(int k = 0;k < histogram_[i][j].size(); ++k) { | 
| 166 | 
> | 
            rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), sizeof(histogram_[i][j][k] )); | 
| 167 | 
> | 
          } | 
| 168 | 
> | 
        } | 
| 169 | 
> | 
      } | 
| 170 | 
  | 
         | 
| 171 | 
  | 
    } else { | 
| 172 | 
  | 
 | 
| 173 | 
< | 
        sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", outputFilename_.c_str()); | 
| 174 | 
< | 
        painCave.isFatal = 1; | 
| 175 | 
< | 
        simError();   | 
| 173 | 
> | 
      sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", outputFilename_.c_str()); | 
| 174 | 
> | 
      painCave.isFatal = 1; | 
| 175 | 
> | 
      simError();   | 
| 176 | 
  | 
    } | 
| 177 | 
  | 
 | 
| 178 | 
  | 
    rdfStream.close(); | 
| 179 | 
< | 
} | 
| 179 | 
> | 
  } | 
| 180 | 
  | 
 | 
| 175 | 
– | 
Vector3d GofXyz::getMolCom(StuntDouble* sd){ | 
| 176 | 
– | 
    Molecule* mol = atom2Mol_[sd->getGlobalIndex()]; | 
| 177 | 
– | 
    assert(mol); | 
| 178 | 
– | 
    return mol->getCom(); | 
| 181 | 
  | 
} | 
| 180 | 
– | 
 | 
| 181 | 
– | 
} |