| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include <algorithm> | 
| 44 | #include <fstream> | 
| 45 | #include "applications/staticProps/GofXyz.hpp" | 
| 46 | #include "utils/simError.h" | 
| 47 | #include "primitives/Molecule.hpp" | 
| 48 | #include "types/MultipoleAdapter.hpp" | 
| 49 |  | 
| 50 | namespace OpenMD { | 
| 51 |  | 
| 52 | GofXyz::GofXyz(SimInfo* info, const std::string& filename, | 
| 53 | const std::string& sele1, const std::string& sele2, | 
| 54 | const std::string& sele3, RealType len, int nrbins) | 
| 55 | : RadialDistrFunc(info, filename, sele1, sele2), len_(len), | 
| 56 | halfLen_(len/2), nRBins_(nrbins), evaluator3_(info), seleMan3_(info) { | 
| 57 |  | 
| 58 | setOutputName(getPrefix(filename) + ".gxyz"); | 
| 59 |  | 
| 60 | evaluator3_.loadScriptString(sele3); | 
| 61 | if (!evaluator3_.isDynamic()) { | 
| 62 | seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 63 | } | 
| 64 |  | 
| 65 | deltaR_ =  len_ / nRBins_; | 
| 66 |  | 
| 67 | histogram_.resize(nRBins_); | 
| 68 | for (int i = 0 ; i < nRBins_; ++i) { | 
| 69 | histogram_[i].resize(nRBins_); | 
| 70 | for(int j = 0; j < nRBins_; ++j) { | 
| 71 | histogram_[i][j].resize(nRBins_); | 
| 72 | } | 
| 73 | } | 
| 74 | } | 
| 75 |  | 
| 76 | void GofXyz::preProcess() { | 
| 77 | for (int i = 0 ; i < nRBins_; ++i) { | 
| 78 | histogram_[i].resize(nRBins_); | 
| 79 | for(int j = 0; j < nRBins_; ++j) { | 
| 80 | std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); | 
| 81 | } | 
| 82 | } | 
| 83 | } | 
| 84 |  | 
| 85 |  | 
| 86 | void GofXyz::initializeHistogram() { | 
| 87 | // Calculate the center of mass of the molecule of selected | 
| 88 | // StuntDouble in selection1 | 
| 89 |  | 
| 90 | if (!evaluator3_.isDynamic()) { | 
| 91 | seleMan3_.setSelectionSet(evaluator3_.evaluate()); | 
| 92 | } | 
| 93 |  | 
| 94 | assert(seleMan1_.getSelectionCount() == seleMan3_.getSelectionCount()); | 
| 95 |  | 
| 96 | // The Dipole direction of selection3 and position of selection3 will | 
| 97 | // be used to determine the y-z plane | 
| 98 | // v1 = s3 -s1, | 
| 99 | // z = origin.dipole | 
| 100 | // x = v1 X z | 
| 101 | // y = z X x | 
| 102 | rotMats_.clear(); | 
| 103 |  | 
| 104 | int i; | 
| 105 | int j; | 
| 106 | StuntDouble* sd1; | 
| 107 | StuntDouble* sd3; | 
| 108 |  | 
| 109 | for (sd1 = seleMan1_.beginSelected(i), sd3 = seleMan3_.beginSelected(j); | 
| 110 | sd1 != NULL || sd3 != NULL; | 
| 111 | sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { | 
| 112 |  | 
| 113 | Vector3d r3 = sd3->getPos(); | 
| 114 | Vector3d r1 = sd1->getPos(); | 
| 115 | Vector3d v1 =  r3 - r1; | 
| 116 | if (usePeriodicBoundaryConditions_) | 
| 117 | info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); | 
| 118 |  | 
| 119 | AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); | 
| 120 | MultipoleAdapter ma1 = MultipoleAdapter(atype1); | 
| 121 |  | 
| 122 | Vector3d zaxis; | 
| 123 | if (ma1.isDipole()) | 
| 124 | zaxis = sd1->getDipole(); | 
| 125 | else | 
| 126 | zaxis = sd1->getA().transpose() * V3Z; | 
| 127 |  | 
| 128 | Vector3d xaxis = cross(v1, zaxis); | 
| 129 | Vector3d yaxis = cross(zaxis, xaxis); | 
| 130 |  | 
| 131 | xaxis.normalize(); | 
| 132 | yaxis.normalize(); | 
| 133 | zaxis.normalize(); | 
| 134 |  | 
| 135 | RotMat3x3d rotMat; | 
| 136 | rotMat.setRow(0, xaxis); | 
| 137 | rotMat.setRow(1, yaxis); | 
| 138 | rotMat.setRow(2, zaxis); | 
| 139 |  | 
| 140 | rotMats_.insert(std::map<int, RotMat3x3d>::value_type(sd1->getGlobalIndex(), rotMat)); | 
| 141 | } | 
| 142 |  | 
| 143 | } | 
| 144 |  | 
| 145 | void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { | 
| 146 |  | 
| 147 | Vector3d pos1 = sd1->getPos(); | 
| 148 | Vector3d pos2 = sd2->getPos(); | 
| 149 | Vector3d r12 = pos2 - pos1; | 
| 150 | if (usePeriodicBoundaryConditions_) | 
| 151 | currentSnapshot_->wrapVector(r12); | 
| 152 |  | 
| 153 | std::map<int, RotMat3x3d>::iterator i = rotMats_.find(sd1->getGlobalIndex()); | 
| 154 | assert(i != rotMats_.end()); | 
| 155 |  | 
| 156 | Vector3d newR12 = i->second * r12; | 
| 157 | // x, y and z's possible values range -halfLen_ to halfLen_ | 
| 158 | int xbin = int( (newR12.x() + halfLen_) / deltaR_); | 
| 159 | int ybin = int( (newR12.y() + halfLen_) / deltaR_); | 
| 160 | int zbin = int( (newR12.z() + halfLen_) / deltaR_); | 
| 161 |  | 
| 162 | if (xbin < nRBins_ && xbin >=0 && | 
| 163 | ybin < nRBins_ && ybin >= 0 && | 
| 164 | zbin < nRBins_ && zbin >=0 ) { | 
| 165 | ++histogram_[xbin][ybin][zbin]; | 
| 166 | } | 
| 167 |  | 
| 168 | } | 
| 169 |  | 
| 170 | void GofXyz::writeRdf() { | 
| 171 | std::ofstream rdfStream(outputFilename_.c_str(), std::ios::binary); | 
| 172 | if (rdfStream.is_open()) { | 
| 173 | //rdfStream << "#g(x, y, z)\n"; | 
| 174 | //rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; | 
| 175 | //rdfStream << "selection2: (" << selectionScript2_ << ")\n"; | 
| 176 | //rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " | 
| 177 | //          << len_ << "deltaR = " << deltaR_ <<"\n"; | 
| 178 | for (unsigned int i = 0; i < histogram_.size(); ++i) { | 
| 179 | for(unsigned int j = 0; j < histogram_[i].size(); ++j) { | 
| 180 | for(unsigned int k = 0;k < histogram_[i][j].size(); ++k) { | 
| 181 | rdfStream.write(reinterpret_cast<char *>( &histogram_[i][j][k] ), | 
| 182 | sizeof( histogram_[i][j][k] )); | 
| 183 | } | 
| 184 | } | 
| 185 | } | 
| 186 |  | 
| 187 | } else { | 
| 188 |  | 
| 189 | sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", | 
| 190 | outputFilename_.c_str()); | 
| 191 | painCave.isFatal = 1; | 
| 192 | simError(); | 
| 193 | } | 
| 194 |  | 
| 195 | rdfStream.close(); | 
| 196 | } | 
| 197 |  | 
| 198 | } |