| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
* |
| 41 |
* |
| 42 |
* Hxy.cpp |
| 43 |
* OOPSE-2.0 |
| 44 |
* |
| 45 |
* Created by Xiuquan Sun on 05/09/06. |
| 46 |
* @author Xiuquan Sun |
| 47 |
* @version $Id: Hxy.cpp,v 1.6 2006-05-23 21:12:45 xsun Exp $ |
| 48 |
* |
| 49 |
*/ |
| 50 |
|
| 51 |
/* Calculates the undulation spectrum of the lipid membrance. */ |
| 52 |
|
| 53 |
#include <algorithm> |
| 54 |
#include <fstream> |
| 55 |
#include "applications/staticProps/Hxy.hpp" |
| 56 |
#include "utils/simError.h" |
| 57 |
#include "io/DumpReader.hpp" |
| 58 |
#include "primitives/Molecule.hpp" |
| 59 |
#include<stdio.h> |
| 60 |
#include<string.h> |
| 61 |
#include<stdlib.h> |
| 62 |
#include<math.h> |
| 63 |
|
| 64 |
namespace oopse { |
| 65 |
|
| 66 |
Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins) |
| 67 |
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){ |
| 68 |
|
| 69 |
evaluator_.loadScriptString(sele); |
| 70 |
if (!evaluator_.isDynamic()) { |
| 71 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
| 72 |
} |
| 73 |
|
| 74 |
gridsample_.resize(nBinsX_*nBinsY_); |
| 75 |
gridZ_.resize(nBinsX_*nBinsY_); |
| 76 |
mag.resize(nBinsX_*nBinsY_); |
| 77 |
newmag.resize(nBinsX_*nBinsY_); |
| 78 |
|
| 79 |
sum_bin.resize(nbins_); |
| 80 |
avg_bin.resize(nbins_); |
| 81 |
errbin_sum.resize(nbins_); |
| 82 |
errbin.resize(nbins_); |
| 83 |
sum_bin_sq.resize(nbins_); |
| 84 |
avg_bin_sq.resize(nbins_); |
| 85 |
errbin_sum_sq.resize(nbins_); |
| 86 |
errbin_sq.resize(nbins_); |
| 87 |
|
| 88 |
bin.resize(nbins_); |
| 89 |
samples.resize(nbins_); |
| 90 |
|
| 91 |
setOutputName(getPrefix(filename) + ".Hxy"); |
| 92 |
} |
| 93 |
|
| 94 |
Hxy::~Hxy(){ |
| 95 |
gridsample_.clear(); |
| 96 |
gridZ_.clear(); |
| 97 |
sum_bin.clear(); |
| 98 |
avg_bin.clear(); |
| 99 |
errbin_sum.clear(); |
| 100 |
errbin.clear(); |
| 101 |
sum_bin_sq.clear(); |
| 102 |
avg_bin_sq.clear(); |
| 103 |
errbin_sum_sq.clear(); |
| 104 |
errbin_sq.clear(); |
| 105 |
|
| 106 |
for(int i=0; i < bin.size(); i++) |
| 107 |
bin[i].clear(); |
| 108 |
for(int i=0; i < samples.size(); i++) |
| 109 |
samples[i].clear(); |
| 110 |
|
| 111 |
mag.clear(); |
| 112 |
newmag.clear(); |
| 113 |
} |
| 114 |
|
| 115 |
void Hxy::process() { |
| 116 |
#if defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H) || defined(HAVE_FFTW3_H) |
| 117 |
DumpReader reader(info_, dumpFilename_); |
| 118 |
int nFrames = reader.getNFrames(); |
| 119 |
nProcessed_ = nFrames/step_; |
| 120 |
|
| 121 |
for(int k=0; k < bin.size(); k++) |
| 122 |
bin[k].resize(nFrames); |
| 123 |
for(int k=0; k < samples.size(); k++) |
| 124 |
samples[k].resize(nFrames); |
| 125 |
|
| 126 |
RealType lenX_, lenY_; |
| 127 |
RealType gridX_, gridY_; |
| 128 |
RealType halfBoxX_, halfBoxY_; |
| 129 |
|
| 130 |
int binNoX, binNoY; |
| 131 |
RealType interpsum, value; |
| 132 |
int ninterp, px, py, newp; |
| 133 |
int newx, newy, newindex, index; |
| 134 |
int new_i, new_j, new_index; |
| 135 |
|
| 136 |
RealType freq_x, freq_y, zero_freq_x, zero_freq_y, freq; |
| 137 |
RealType maxfreqx, maxfreqy, maxfreq; |
| 138 |
|
| 139 |
int whichbin; |
| 140 |
int nMolecules; |
| 141 |
|
| 142 |
std::fill(sum_bin.begin(), sum_bin.end(), 0.0); |
| 143 |
std::fill(avg_bin.begin(), avg_bin.end(), 0.0); |
| 144 |
std::fill(errbin_sum.begin(), errbin_sum.end(), 0.0); |
| 145 |
std::fill(errbin.begin(), errbin.end(), 0.0); |
| 146 |
std::fill(sum_bin_sq.begin(), sum_bin_sq.end(), 0.0); |
| 147 |
std::fill(avg_bin_sq.begin(), avg_bin_sq.end(), 0.0); |
| 148 |
std::fill(errbin_sum_sq.begin(), errbin_sum_sq.end(), 0.0); |
| 149 |
std::fill(errbin_sq.begin(), errbin_sq.end(), 0.0); |
| 150 |
|
| 151 |
for(int i=0; i < bin.size(); i++) |
| 152 |
std::fill(bin[i].begin(), bin[i].end(), 0.0); |
| 153 |
|
| 154 |
for(int i=0; i < samples.size(); i++) |
| 155 |
std::fill(samples[i].begin(), samples[i].end(), 0); |
| 156 |
|
| 157 |
for (int istep = 0; istep < nFrames; istep += step_) { |
| 158 |
|
| 159 |
reader.readFrame(istep); |
| 160 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 161 |
nMolecules = info_->getNGlobalMolecules(); |
| 162 |
|
| 163 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 164 |
|
| 165 |
#ifdef HAVE_FFTW3_H |
| 166 |
fftw_plan p; |
| 167 |
#else |
| 168 |
fftwnd_plan p; |
| 169 |
#endif |
| 170 |
fftw_complex *in, *out; |
| 171 |
|
| 172 |
in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_)); |
| 173 |
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_)); |
| 174 |
|
| 175 |
#ifdef HAVE_FFTW3_H |
| 176 |
p = fftw_plan_dft_2d(nBinsX_, nBinsY_, in, out, |
| 177 |
FFTW_FORWARD, FFTW_ESTIMATE); |
| 178 |
#else |
| 179 |
p = fftw2d_create_plan(nBinsX_, nBinsY_, FFTW_FORWARD, FFTW_ESTIMATE); |
| 180 |
#endif |
| 181 |
|
| 182 |
std::fill(gridsample_.begin(), gridsample_.end(), 0); |
| 183 |
std::fill(gridZ_.begin(), gridZ_.end(), 0.0); |
| 184 |
std::fill(mag.begin(), mag.end(), 0.0); |
| 185 |
std::fill(newmag.begin(), newmag.end(), 0.0); |
| 186 |
|
| 187 |
int i, j; |
| 188 |
|
| 189 |
StuntDouble* sd; |
| 190 |
|
| 191 |
lenX_ = hmat(0,0); |
| 192 |
lenY_ = hmat(1,1); |
| 193 |
|
| 194 |
gridX_ = lenX_ /(nBinsX_); |
| 195 |
gridY_ = lenY_ /(nBinsY_); |
| 196 |
|
| 197 |
halfBoxX_ = lenX_ / 2.0; |
| 198 |
halfBoxY_ = lenY_ / 2.0; |
| 199 |
|
| 200 |
if (evaluator_.isDynamic()) { |
| 201 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
| 202 |
} |
| 203 |
|
| 204 |
//wrap the stuntdoubles into a cell |
| 205 |
for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
| 206 |
Vector3d pos = sd->getPos(); |
| 207 |
currentSnapshot_->wrapVector(pos); |
| 208 |
sd->setPos(pos); |
| 209 |
} |
| 210 |
|
| 211 |
//determine which atom belongs to which grid |
| 212 |
for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
| 213 |
Vector3d pos = sd->getPos(); |
| 214 |
//int binNo = (pos.z() /deltaR_) - 1; |
| 215 |
int binNoX = (int) ((pos.x() + halfBoxX_) / gridX_); |
| 216 |
int binNoY = (int) ((pos.y() + halfBoxY_) / gridY_); |
| 217 |
//std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = " << deltaR_ << " binNo = " << binNo << "\n"; |
| 218 |
gridZ_[binNoX*nBinsY_+binNoY] += pos.z(); |
| 219 |
gridsample_[binNoX*nBinsY_+binNoY]++; |
| 220 |
} |
| 221 |
|
| 222 |
// FFT stuff depends on nx and ny, so delay allocation until we have |
| 223 |
// that information |
| 224 |
|
| 225 |
for(i = 0; i < nBinsX_; i++){ |
| 226 |
for(j = 0; j < nBinsY_; j++){ |
| 227 |
newindex = i * nBinsY_ + j; |
| 228 |
if(gridsample_[newindex] > 0){ |
| 229 |
gridZ_[newindex] = gridZ_[newindex] / (RealType)gridsample_[newindex]; |
| 230 |
} |
| 231 |
} |
| 232 |
} |
| 233 |
|
| 234 |
for (i=0; i< nBinsX_; i++) { |
| 235 |
for(j=0; j< nBinsY_; j++) { |
| 236 |
newindex = i*nBinsY_ + j; |
| 237 |
if (gridsample_[newindex] == 0) { |
| 238 |
// interpolate from surrounding points: |
| 239 |
|
| 240 |
interpsum = 0.0; |
| 241 |
ninterp = 0; |
| 242 |
|
| 243 |
//point1 = bottom; |
| 244 |
|
| 245 |
px = i; |
| 246 |
py = j - 1; |
| 247 |
newp = px*nBinsY_ + py; |
| 248 |
if ((py >= 0) && (gridsample_[newp] > 0)) { |
| 249 |
interpsum += gridZ_[newp]; |
| 250 |
ninterp++; |
| 251 |
} |
| 252 |
|
| 253 |
//point2 = top; |
| 254 |
|
| 255 |
px = i; |
| 256 |
py = j + 1; |
| 257 |
newp = px*nBinsY_ + py; |
| 258 |
if ((py < nBinsY_) && (gridsample_[newp] > 0)) { |
| 259 |
interpsum += gridZ_[newp]; |
| 260 |
ninterp++; |
| 261 |
} |
| 262 |
|
| 263 |
//point3 = left; |
| 264 |
|
| 265 |
px = i - 1; |
| 266 |
py = j; |
| 267 |
newp = px*nBinsY_ + py; |
| 268 |
if ((px >= 0) && (gridsample_[newp] > 0)) { |
| 269 |
interpsum += gridZ_[newp]; |
| 270 |
ninterp++; |
| 271 |
} |
| 272 |
|
| 273 |
//point4 = right; |
| 274 |
|
| 275 |
px = i + 1; |
| 276 |
py = j; |
| 277 |
newp = px*nBinsY_ + py; |
| 278 |
if ( (px < nBinsX_ ) && ( gridsample_[newp] > 0 )) { |
| 279 |
interpsum += gridZ_[newp]; |
| 280 |
ninterp++; |
| 281 |
} |
| 282 |
|
| 283 |
value = interpsum / (RealType)ninterp; |
| 284 |
|
| 285 |
gridZ_[newindex] = value; |
| 286 |
} |
| 287 |
} |
| 288 |
} |
| 289 |
|
| 290 |
for (i=0; i < nBinsX_; i++) { |
| 291 |
for (j=0; j < nBinsY_; j++) { |
| 292 |
newindex = i*nBinsY_ + j; |
| 293 |
|
| 294 |
c_re(in[newindex]) = gridZ_[newindex]; |
| 295 |
c_im(in[newindex]) = 0.0; |
| 296 |
} |
| 297 |
} |
| 298 |
|
| 299 |
#ifdef HAVE_FFTW3_H |
| 300 |
fftw_execute(p); |
| 301 |
#else |
| 302 |
fftwnd_one(p, in, out); |
| 303 |
#endif |
| 304 |
|
| 305 |
for (i=0; i< nBinsX_; i++) { |
| 306 |
for(j=0; j< nBinsY_; j++) { |
| 307 |
newindex = i*nBinsY_ + j; |
| 308 |
mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2); |
| 309 |
} |
| 310 |
} |
| 311 |
|
| 312 |
#ifdef HAVE_FFTW3_H |
| 313 |
fftw_destroy_plan(p); |
| 314 |
#else |
| 315 |
fftwnd_destroy_plan(p); |
| 316 |
#endif |
| 317 |
fftw_free(out); |
| 318 |
fftw_free(in); |
| 319 |
|
| 320 |
for (i=0; i< (nBinsX_/2); i++) { |
| 321 |
for(j=0; j< (nBinsY_/2); j++) { |
| 322 |
index = i*nBinsY_ + j; |
| 323 |
new_i = i + (nBinsX_/2); |
| 324 |
new_j = j + (nBinsY_/2); |
| 325 |
new_index = new_i*nBinsY_ + new_j; |
| 326 |
newmag[new_index] = mag[index]; |
| 327 |
} |
| 328 |
} |
| 329 |
|
| 330 |
for (i=(nBinsX_/2); i< nBinsX_; i++) { |
| 331 |
for(j=0; j< (nBinsY_/2); j++) { |
| 332 |
index = i*nBinsY_ + j; |
| 333 |
new_i = i - (nBinsX_/2); |
| 334 |
new_j = j + (nBinsY_/2); |
| 335 |
new_index = new_i*nBinsY_ + new_j; |
| 336 |
newmag[new_index] = mag[index]; |
| 337 |
} |
| 338 |
} |
| 339 |
|
| 340 |
for (i=0; i< (nBinsX_/2); i++) { |
| 341 |
for(j=(nBinsY_/2); j< nBinsY_; j++) { |
| 342 |
index = i*nBinsY_ + j; |
| 343 |
new_i = i + (nBinsX_/2); |
| 344 |
new_j = j - (nBinsY_/2); |
| 345 |
new_index = new_i*nBinsY_ + new_j; |
| 346 |
newmag[new_index] = mag[index]; |
| 347 |
} |
| 348 |
} |
| 349 |
|
| 350 |
for (i=(nBinsX_/2); i< nBinsX_; i++) { |
| 351 |
for(j=(nBinsY_/2); j< nBinsY_; j++) { |
| 352 |
index = i*nBinsY_ + j; |
| 353 |
new_i = i - (nBinsX_/2); |
| 354 |
new_j = j - (nBinsY_/2); |
| 355 |
new_index = new_i*nBinsY_ + new_j; |
| 356 |
newmag[new_index] = mag[index]; |
| 357 |
} |
| 358 |
} |
| 359 |
|
| 360 |
maxfreqx = 1.0 / gridX_; |
| 361 |
maxfreqy = 1.0 / gridY_; |
| 362 |
|
| 363 |
// printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy); |
| 364 |
|
| 365 |
maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy); |
| 366 |
dfreq = maxfreq/(RealType)(nbins_-1); |
| 367 |
|
| 368 |
//printf("%lf\n", dfreq); |
| 369 |
|
| 370 |
zero_freq_x = nBinsX_/2; |
| 371 |
zero_freq_y = nBinsY_/2; |
| 372 |
|
| 373 |
for (i=0; i< nBinsX_; i++) { |
| 374 |
for(j=0; j< nBinsY_; j++) { |
| 375 |
|
| 376 |
freq_x = (RealType)(i - zero_freq_x)*maxfreqx*2 / nBinsX_; |
| 377 |
freq_y = (RealType)(j - zero_freq_y)*maxfreqy*2 / nBinsY_; |
| 378 |
|
| 379 |
freq = sqrt(freq_x*freq_x + freq_y*freq_y); |
| 380 |
|
| 381 |
whichbin = (int) (freq / dfreq); |
| 382 |
newindex = i*nBinsY_ + j; |
| 383 |
// printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq); |
| 384 |
bin[whichbin][istep] += newmag[newindex]; |
| 385 |
samples[whichbin][istep]++; |
| 386 |
} |
| 387 |
} |
| 388 |
|
| 389 |
for ( i = 0; i < nbins_; i++) { |
| 390 |
if ( samples[i][istep] > 0) { |
| 391 |
bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (RealType)samples[i][istep]) / (RealType)nBinsX_ / (RealType)nBinsY_; |
| 392 |
} |
| 393 |
} |
| 394 |
} |
| 395 |
|
| 396 |
for (int i = 0; i < nbins_; i++) { |
| 397 |
for (int j = 0; j < nFrames; j++) { |
| 398 |
sum_bin[i] += bin[i][j]; |
| 399 |
sum_bin_sq[i] += bin[i][j] * bin[i][j]; |
| 400 |
} |
| 401 |
avg_bin[i] = sum_bin[i] / (RealType)nFrames; |
| 402 |
avg_bin_sq[i] = sum_bin_sq[i] / (RealType)nFrames; |
| 403 |
for (int j = 0; j < nFrames; j++) { |
| 404 |
errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2); |
| 405 |
errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2); |
| 406 |
} |
| 407 |
errbin[i] = sqrt( errbin_sum[i] / (RealType)nFrames ); |
| 408 |
errbin_sq[i] = sqrt( errbin_sum_sq[i] / (RealType)nFrames ); |
| 409 |
} |
| 410 |
|
| 411 |
printSpectrum(); |
| 412 |
|
| 413 |
#else |
| 414 |
sprintf(painCave.errMsg, "Hxy: FFTW support was not compiled in!\n"); |
| 415 |
painCave.isFatal = 1; |
| 416 |
simError(); |
| 417 |
|
| 418 |
#endif |
| 419 |
} |
| 420 |
|
| 421 |
void Hxy::printSpectrum() { |
| 422 |
std::ofstream rdfStream(outputFilename_.c_str()); |
| 423 |
if (rdfStream.is_open()) { |
| 424 |
|
| 425 |
for (int i = 0; i < nbins_; ++i) { |
| 426 |
if ( avg_bin[i] > 0 ){ |
| 427 |
rdfStream << (RealType)i * dfreq << "\t" |
| 428 |
<<pow(avg_bin[i], 2)<<"\t" |
| 429 |
<<errbin_sq[i]<<"\t" |
| 430 |
<<avg_bin[i]<<"\t" |
| 431 |
<<errbin[i]<<"\n"; |
| 432 |
} |
| 433 |
} |
| 434 |
} else { |
| 435 |
|
| 436 |
sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str()); |
| 437 |
painCave.isFatal = 1; |
| 438 |
simError(); |
| 439 |
} |
| 440 |
|
| 441 |
rdfStream.close(); |
| 442 |
|
| 443 |
} |
| 444 |
|
| 445 |
} |