| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4] Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * | 
| 41 | * | 
| 42 | *  Created by Xiuquan Sun on 05/09/06. | 
| 43 | *  @author  Xiuquan Sun | 
| 44 | *  @version $Id$ | 
| 45 | * | 
| 46 | */ | 
| 47 |  | 
| 48 | /* Calculates the undulation spectrum of the lipid membrance. */ | 
| 49 |  | 
| 50 | #include <algorithm> | 
| 51 | #include <fstream> | 
| 52 | #include "applications/staticProps/Hxy.hpp" | 
| 53 | #include "utils/simError.h" | 
| 54 | #include "io/DumpReader.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include<stdio.h> | 
| 57 | #include<string.h> | 
| 58 | #include<stdlib.h> | 
| 59 | #include<math.h> | 
| 60 |  | 
| 61 | namespace OpenMD { | 
| 62 |  | 
| 63 | Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins) | 
| 64 | : StaticAnalyser(info, filename), selectionScript_(sele),  evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){ | 
| 65 |  | 
| 66 | evaluator_.loadScriptString(sele); | 
| 67 | if (!evaluator_.isDynamic()) { | 
| 68 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 69 | } | 
| 70 |  | 
| 71 | gridsample_.resize(nBinsX_*nBinsY_); | 
| 72 | gridZ_.resize(nBinsX_*nBinsY_); | 
| 73 | mag.resize(nBinsX_*nBinsY_); | 
| 74 | newmag.resize(nBinsX_*nBinsY_); | 
| 75 |  | 
| 76 | sum_bin.resize(nbins_); | 
| 77 | avg_bin.resize(nbins_); | 
| 78 | errbin_sum.resize(nbins_); | 
| 79 | errbin.resize(nbins_); | 
| 80 | sum_bin_sq.resize(nbins_); | 
| 81 | avg_bin_sq.resize(nbins_); | 
| 82 | errbin_sum_sq.resize(nbins_); | 
| 83 | errbin_sq.resize(nbins_); | 
| 84 |  | 
| 85 | bin.resize(nbins_); | 
| 86 | samples.resize(nbins_); | 
| 87 |  | 
| 88 | setOutputName(getPrefix(filename) + ".Hxy"); | 
| 89 | } | 
| 90 |  | 
| 91 | Hxy::~Hxy(){ | 
| 92 | gridsample_.clear(); | 
| 93 | gridZ_.clear(); | 
| 94 | sum_bin.clear(); | 
| 95 | avg_bin.clear(); | 
| 96 | errbin_sum.clear(); | 
| 97 | errbin.clear(); | 
| 98 | sum_bin_sq.clear(); | 
| 99 | avg_bin_sq.clear(); | 
| 100 | errbin_sum_sq.clear(); | 
| 101 | errbin_sq.clear(); | 
| 102 |  | 
| 103 | for(unsigned int i=0; i < bin.size(); i++) | 
| 104 | bin[i].clear(); | 
| 105 | for(unsigned int i=0; i < samples.size(); i++) | 
| 106 | samples[i].clear(); | 
| 107 |  | 
| 108 | mag.clear(); | 
| 109 | newmag.clear(); | 
| 110 | } | 
| 111 |  | 
| 112 | void Hxy::process() { | 
| 113 | #if defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H) || defined(HAVE_FFTW3_H) | 
| 114 | DumpReader reader(info_, dumpFilename_); | 
| 115 | int nFrames = reader.getNFrames(); | 
| 116 | nProcessed_ = nFrames/step_; | 
| 117 |  | 
| 118 | for(unsigned int k=0; k < bin.size(); k++) | 
| 119 | bin[k].resize(nFrames); | 
| 120 | for(unsigned int k=0; k < samples.size(); k++) | 
| 121 | samples[k].resize(nFrames); | 
| 122 |  | 
| 123 | RealType lenX_, lenY_; | 
| 124 | RealType gridX_, gridY_; | 
| 125 | RealType halfBoxX_, halfBoxY_; | 
| 126 |  | 
| 127 | RealType interpsum, value; | 
| 128 | int ninterp, px, py, newp; | 
| 129 | int newindex, index; | 
| 130 | int new_i, new_j, new_index; | 
| 131 |  | 
| 132 | RealType freq_x, freq_y, zero_freq_x, zero_freq_y, freq; | 
| 133 | RealType maxfreqx, maxfreqy, maxfreq; | 
| 134 |  | 
| 135 | int whichbin; | 
| 136 |  | 
| 137 | std::fill(sum_bin.begin(), sum_bin.end(), 0.0); | 
| 138 | std::fill(avg_bin.begin(), avg_bin.end(), 0.0); | 
| 139 | std::fill(errbin_sum.begin(), errbin_sum.end(), 0.0); | 
| 140 | std::fill(errbin.begin(), errbin.end(), 0.0); | 
| 141 | std::fill(sum_bin_sq.begin(), sum_bin_sq.end(), 0.0); | 
| 142 | std::fill(avg_bin_sq.begin(), avg_bin_sq.end(), 0.0); | 
| 143 | std::fill(errbin_sum_sq.begin(), errbin_sum_sq.end(), 0.0); | 
| 144 | std::fill(errbin_sq.begin(), errbin_sq.end(), 0.0); | 
| 145 |  | 
| 146 | for(unsigned int i=0; i < bin.size(); i++) | 
| 147 | std::fill(bin[i].begin(), bin[i].end(), 0.0); | 
| 148 |  | 
| 149 | for(unsigned int i=0; i < samples.size(); i++) | 
| 150 | std::fill(samples[i].begin(), samples[i].end(), 0); | 
| 151 |  | 
| 152 | for (int istep = 0; istep < nFrames; istep += step_) { | 
| 153 |  | 
| 154 | reader.readFrame(istep); | 
| 155 | currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 156 |  | 
| 157 | Mat3x3d hmat = currentSnapshot_->getHmat(); | 
| 158 |  | 
| 159 | #ifdef HAVE_FFTW3_H | 
| 160 | fftw_plan p; | 
| 161 | #else | 
| 162 | fftwnd_plan p; | 
| 163 | #endif | 
| 164 | fftw_complex *in, *out; | 
| 165 |  | 
| 166 | in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_)); | 
| 167 | out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_)); | 
| 168 |  | 
| 169 | #ifdef HAVE_FFTW3_H | 
| 170 | p = fftw_plan_dft_2d(nBinsX_, nBinsY_, in, out, | 
| 171 | FFTW_FORWARD, FFTW_ESTIMATE); | 
| 172 | #else | 
| 173 | p = fftw2d_create_plan(nBinsX_, nBinsY_, FFTW_FORWARD, FFTW_ESTIMATE); | 
| 174 | #endif | 
| 175 |  | 
| 176 | std::fill(gridsample_.begin(), gridsample_.end(), 0); | 
| 177 | std::fill(gridZ_.begin(), gridZ_.end(), 0.0); | 
| 178 | std::fill(mag.begin(), mag.end(), 0.0); | 
| 179 | std::fill(newmag.begin(), newmag.end(), 0.0); | 
| 180 |  | 
| 181 | int i, j; | 
| 182 |  | 
| 183 | StuntDouble* sd; | 
| 184 |  | 
| 185 | lenX_ = hmat(0,0); | 
| 186 | lenY_ = hmat(1,1); | 
| 187 |  | 
| 188 | gridX_ = lenX_ /(nBinsX_); | 
| 189 | gridY_ = lenY_ /(nBinsY_); | 
| 190 |  | 
| 191 | halfBoxX_ = lenX_ / 2.0; | 
| 192 | halfBoxY_ = lenY_ / 2.0; | 
| 193 |  | 
| 194 | if (evaluator_.isDynamic()) { | 
| 195 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 196 | } | 
| 197 |  | 
| 198 | //wrap the stuntdoubles into a cell | 
| 199 | for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { | 
| 200 | Vector3d pos = sd->getPos(); | 
| 201 | if (usePeriodicBoundaryConditions_) | 
| 202 | currentSnapshot_->wrapVector(pos); | 
| 203 | sd->setPos(pos); | 
| 204 | } | 
| 205 |  | 
| 206 | //determine which atom belongs to which grid | 
| 207 | for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { | 
| 208 | Vector3d pos = sd->getPos(); | 
| 209 | //int binNo = (pos.z() /deltaR_) - 1; | 
| 210 | int binNoX = (int) ((pos.x() + halfBoxX_) / gridX_); | 
| 211 | int binNoY = (int) ((pos.y() + halfBoxY_) / gridY_); | 
| 212 | //std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = "  << deltaR_ << " binNo = " << binNo << "\n"; | 
| 213 | gridZ_[binNoX*nBinsY_+binNoY] += pos.z(); | 
| 214 | gridsample_[binNoX*nBinsY_+binNoY]++; | 
| 215 | } | 
| 216 |  | 
| 217 | // FFT stuff depends on nx and ny, so delay allocation until we have | 
| 218 | // that information | 
| 219 |  | 
| 220 | for(i = 0; i < nBinsX_; i++){ | 
| 221 | for(j = 0; j < nBinsY_; j++){ | 
| 222 | newindex = i * nBinsY_ + j; | 
| 223 | if(gridsample_[newindex] > 0){ | 
| 224 | gridZ_[newindex] = gridZ_[newindex] / (RealType)gridsample_[newindex]; | 
| 225 | } | 
| 226 | } | 
| 227 | } | 
| 228 |  | 
| 229 | for (i=0; i< nBinsX_; i++) { | 
| 230 | for(j=0; j< nBinsY_; j++) { | 
| 231 | newindex = i*nBinsY_ + j; | 
| 232 | if (gridsample_[newindex] == 0) { | 
| 233 | // interpolate from surrounding points: | 
| 234 |  | 
| 235 | interpsum = 0.0; | 
| 236 | ninterp = 0; | 
| 237 |  | 
| 238 | //point1 = bottom; | 
| 239 |  | 
| 240 | px = i; | 
| 241 | py = j - 1; | 
| 242 | newp = px*nBinsY_ + py; | 
| 243 | if ((py >= 0) && (gridsample_[newp] > 0)) { | 
| 244 | interpsum += gridZ_[newp]; | 
| 245 | ninterp++; | 
| 246 | } | 
| 247 |  | 
| 248 | //point2 = top; | 
| 249 |  | 
| 250 | px = i; | 
| 251 | py = j + 1; | 
| 252 | newp = px*nBinsY_ + py; | 
| 253 | if ((py < nBinsY_) && (gridsample_[newp] > 0)) { | 
| 254 | interpsum += gridZ_[newp]; | 
| 255 | ninterp++; | 
| 256 | } | 
| 257 |  | 
| 258 | //point3 = left; | 
| 259 |  | 
| 260 | px = i - 1; | 
| 261 | py = j; | 
| 262 | newp = px*nBinsY_ + py; | 
| 263 | if ((px >= 0) && (gridsample_[newp] > 0)) { | 
| 264 | interpsum += gridZ_[newp]; | 
| 265 | ninterp++; | 
| 266 | } | 
| 267 |  | 
| 268 | //point4 = right; | 
| 269 |  | 
| 270 | px = i + 1; | 
| 271 | py = j; | 
| 272 | newp = px*nBinsY_ + py; | 
| 273 | if ( (px < nBinsX_ ) && ( gridsample_[newp] > 0 )) { | 
| 274 | interpsum += gridZ_[newp]; | 
| 275 | ninterp++; | 
| 276 | } | 
| 277 |  | 
| 278 | value = interpsum / (RealType)ninterp; | 
| 279 |  | 
| 280 | gridZ_[newindex] = value; | 
| 281 | } | 
| 282 | } | 
| 283 | } | 
| 284 |  | 
| 285 | for (i=0; i < nBinsX_; i++) { | 
| 286 | for (j=0; j < nBinsY_; j++) { | 
| 287 | newindex = i*nBinsY_ + j; | 
| 288 |  | 
| 289 | c_re(in[newindex]) = gridZ_[newindex]; | 
| 290 | c_im(in[newindex]) = 0.0; | 
| 291 | } | 
| 292 | } | 
| 293 |  | 
| 294 | #ifdef HAVE_FFTW3_H | 
| 295 | fftw_execute(p); | 
| 296 | #else | 
| 297 | fftwnd_one(p, in, out); | 
| 298 | #endif | 
| 299 |  | 
| 300 | for (i=0; i< nBinsX_; i++) { | 
| 301 | for(j=0; j< nBinsY_; j++) { | 
| 302 | newindex = i*nBinsY_ + j; | 
| 303 | mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2); | 
| 304 | } | 
| 305 | } | 
| 306 |  | 
| 307 | #ifdef HAVE_FFTW3_H | 
| 308 | fftw_destroy_plan(p); | 
| 309 | #else | 
| 310 | fftwnd_destroy_plan(p); | 
| 311 | #endif | 
| 312 | fftw_free(out); | 
| 313 | fftw_free(in); | 
| 314 |  | 
| 315 | for (i=0; i< (nBinsX_/2); i++) { | 
| 316 | for(j=0; j< (nBinsY_/2); j++) { | 
| 317 | index = i*nBinsY_ + j; | 
| 318 | new_i = i + (nBinsX_/2); | 
| 319 | new_j = j + (nBinsY_/2); | 
| 320 | new_index = new_i*nBinsY_ + new_j; | 
| 321 | newmag[new_index] = mag[index]; | 
| 322 | } | 
| 323 | } | 
| 324 |  | 
| 325 | for (i=(nBinsX_/2); i< nBinsX_; i++) { | 
| 326 | for(j=0; j< (nBinsY_/2); j++) { | 
| 327 | index = i*nBinsY_ + j; | 
| 328 | new_i = i - (nBinsX_/2); | 
| 329 | new_j = j + (nBinsY_/2); | 
| 330 | new_index = new_i*nBinsY_ + new_j; | 
| 331 | newmag[new_index] = mag[index]; | 
| 332 | } | 
| 333 | } | 
| 334 |  | 
| 335 | for (i=0; i< (nBinsX_/2); i++) { | 
| 336 | for(j=(nBinsY_/2); j< nBinsY_; j++) { | 
| 337 | index = i*nBinsY_ + j; | 
| 338 | new_i = i + (nBinsX_/2); | 
| 339 | new_j = j - (nBinsY_/2); | 
| 340 | new_index = new_i*nBinsY_ + new_j; | 
| 341 | newmag[new_index] = mag[index]; | 
| 342 | } | 
| 343 | } | 
| 344 |  | 
| 345 | for (i=(nBinsX_/2); i< nBinsX_; i++) { | 
| 346 | for(j=(nBinsY_/2); j< nBinsY_; j++) { | 
| 347 | index = i*nBinsY_ + j; | 
| 348 | new_i = i - (nBinsX_/2); | 
| 349 | new_j = j - (nBinsY_/2); | 
| 350 | new_index = new_i*nBinsY_ + new_j; | 
| 351 | newmag[new_index] = mag[index]; | 
| 352 | } | 
| 353 | } | 
| 354 |  | 
| 355 | maxfreqx = 1.0 / gridX_; | 
| 356 | maxfreqy = 1.0 / gridY_; | 
| 357 |  | 
| 358 | //  printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy); | 
| 359 |  | 
| 360 | maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy); | 
| 361 | dfreq = maxfreq/(RealType)(nbins_-1); | 
| 362 |  | 
| 363 | //printf("%lf\n", dfreq); | 
| 364 |  | 
| 365 | zero_freq_x = nBinsX_/2; | 
| 366 | zero_freq_y = nBinsY_/2; | 
| 367 |  | 
| 368 | for (i=0; i< nBinsX_; i++) { | 
| 369 | for(j=0; j< nBinsY_; j++) { | 
| 370 |  | 
| 371 | freq_x = (RealType)(i - zero_freq_x)*maxfreqx*2 / nBinsX_; | 
| 372 | freq_y = (RealType)(j - zero_freq_y)*maxfreqy*2 / nBinsY_; | 
| 373 |  | 
| 374 | freq = sqrt(freq_x*freq_x + freq_y*freq_y); | 
| 375 |  | 
| 376 | whichbin = (int) (freq / dfreq); | 
| 377 | newindex = i*nBinsY_ + j; | 
| 378 | //    printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq); | 
| 379 | bin[whichbin][istep] += newmag[newindex]; | 
| 380 | samples[whichbin][istep]++; | 
| 381 | } | 
| 382 | } | 
| 383 |  | 
| 384 | for ( i = 0; i < nbins_; i++) { | 
| 385 | if ( samples[i][istep] > 0) { | 
| 386 | bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (RealType)samples[i][istep]) / (RealType)nBinsX_ / (RealType)nBinsY_; | 
| 387 | } | 
| 388 | } | 
| 389 | } | 
| 390 |  | 
| 391 | for (int i = 0; i < nbins_; i++) { | 
| 392 | for (int j = 0; j < nFrames; j++) { | 
| 393 | sum_bin[i] += bin[i][j]; | 
| 394 | sum_bin_sq[i] += bin[i][j] * bin[i][j]; | 
| 395 | } | 
| 396 | avg_bin[i] = sum_bin[i] / (RealType)nFrames; | 
| 397 | avg_bin_sq[i] = sum_bin_sq[i] / (RealType)nFrames; | 
| 398 | for (int j = 0; j < nFrames; j++) { | 
| 399 | errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2); | 
| 400 | errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2); | 
| 401 | } | 
| 402 | errbin[i] = sqrt( errbin_sum[i] / (RealType)nFrames ); | 
| 403 | errbin_sq[i] = sqrt( errbin_sum_sq[i] / (RealType)nFrames ); | 
| 404 | } | 
| 405 |  | 
| 406 | printSpectrum(); | 
| 407 |  | 
| 408 | #else | 
| 409 | sprintf(painCave.errMsg, "Hxy: FFTW support was not compiled in!\n"); | 
| 410 | painCave.isFatal = 1; | 
| 411 | simError(); | 
| 412 |  | 
| 413 | #endif | 
| 414 | } | 
| 415 |  | 
| 416 | void Hxy::printSpectrum() { | 
| 417 | std::ofstream rdfStream(outputFilename_.c_str()); | 
| 418 | if (rdfStream.is_open()) { | 
| 419 |  | 
| 420 | for (int i = 0; i < nbins_; ++i) { | 
| 421 | if ( avg_bin[i] > 0 ){ | 
| 422 | rdfStream << (RealType)i * dfreq << "\t" | 
| 423 | <<pow(avg_bin[i], 2)<<"\t" | 
| 424 | <<errbin_sq[i]<<"\t" | 
| 425 | <<avg_bin[i]<<"\t" | 
| 426 | <<errbin[i]<<"\n"; | 
| 427 | } | 
| 428 | } | 
| 429 | } else { | 
| 430 |  | 
| 431 | sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str()); | 
| 432 | painCave.isFatal = 1; | 
| 433 | simError(); | 
| 434 | } | 
| 435 |  | 
| 436 | rdfStream.close(); | 
| 437 |  | 
| 438 | } | 
| 439 |  | 
| 440 | } |