| 1 | 
gezelter | 
1865 | 
/* | 
| 2 | 
  | 
  | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
  | 
 * | 
| 4 | 
  | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
  | 
 * | 
| 9 | 
  | 
  | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
  | 
 * | 
| 12 | 
  | 
  | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
  | 
 *    distribution. | 
| 16 | 
  | 
  | 
 * | 
| 17 | 
  | 
  | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
  | 
  | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
  | 
  | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
  | 
  | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
  | 
  | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
  | 
  | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
  | 
  | 
 * using, modifying or distributing the software or its | 
| 24 | 
  | 
  | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
  | 
  | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
  | 
  | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
  | 
  | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
  | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
  | 
 * such damages. | 
| 31 | 
  | 
  | 
 * | 
| 32 | 
  | 
  | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
  | 
  | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
  | 
  | 
 * work.  Good starting points are: | 
| 35 | 
  | 
  | 
 *                                                                       | 
| 36 | 
  | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
  | 
  | 
 * [4] Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
  | 
  | 
 */ | 
| 41 | 
  | 
  | 
 | 
| 42 | 
  | 
  | 
 | 
| 43 | 
  | 
  | 
#include <algorithm> | 
| 44 | 
  | 
  | 
#include <fstream> | 
| 45 | 
  | 
  | 
#include "applications/staticProps/RNEMDStats.hpp" | 
| 46 | 
gezelter | 
1881 | 
#include "primitives/Molecule.hpp" | 
| 47 | 
gezelter | 
1865 | 
#include "utils/PhysicalConstants.hpp" | 
| 48 | 
  | 
  | 
 | 
| 49 | 
  | 
  | 
namespace OpenMD { | 
| 50 | 
  | 
  | 
   | 
| 51 | 
  | 
  | 
  RNEMDZ::RNEMDZ(SimInfo* info, const std::string& filename,  | 
| 52 | 
  | 
  | 
                 const std::string& sele, int nzbins) | 
| 53 | 
  | 
  | 
    : SlabStatistics(info, filename, sele, nzbins) { | 
| 54 | 
  | 
  | 
         | 
| 55 | 
  | 
  | 
    setOutputName(getPrefix(filename) + ".rnemdZ"); | 
| 56 | 
  | 
  | 
     | 
| 57 | 
  | 
  | 
    temperature = new OutputData; | 
| 58 | 
  | 
  | 
    temperature->units =  "K"; | 
| 59 | 
  | 
  | 
    temperature->title =  "Temperature"; | 
| 60 | 
  | 
  | 
    temperature->dataType = odtReal; | 
| 61 | 
  | 
  | 
    temperature->dataHandling = odhAverage; | 
| 62 | 
  | 
  | 
    temperature->accumulator.reserve(nBins_); | 
| 63 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++)  | 
| 64 | 
  | 
  | 
      temperature->accumulator.push_back( new Accumulator() ); | 
| 65 | 
  | 
  | 
    data_.push_back(temperature); | 
| 66 | 
  | 
  | 
     | 
| 67 | 
  | 
  | 
    velocity = new OutputData; | 
| 68 | 
  | 
  | 
    velocity->units = "angstroms/fs"; | 
| 69 | 
  | 
  | 
    velocity->title =  "Velocity";   | 
| 70 | 
  | 
  | 
    velocity->dataType = odtVector3; | 
| 71 | 
  | 
  | 
    velocity->dataHandling = odhAverage; | 
| 72 | 
  | 
  | 
    velocity->accumulator.reserve(nBins_); | 
| 73 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++)  | 
| 74 | 
  | 
  | 
      velocity->accumulator.push_back( new VectorAccumulator() ); | 
| 75 | 
  | 
  | 
    data_.push_back(velocity); | 
| 76 | 
  | 
  | 
     | 
| 77 | 
  | 
  | 
    density = new OutputData; | 
| 78 | 
  | 
  | 
    density->units =  "g cm^-3"; | 
| 79 | 
  | 
  | 
    density->title =  "Density"; | 
| 80 | 
  | 
  | 
    density->dataType = odtReal; | 
| 81 | 
  | 
  | 
    density->dataHandling = odhAverage; | 
| 82 | 
  | 
  | 
    density->accumulator.reserve(nBins_); | 
| 83 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++)  | 
| 84 | 
  | 
  | 
      density->accumulator.push_back( new Accumulator() ); | 
| 85 | 
  | 
  | 
    data_.push_back(density); | 
| 86 | 
  | 
  | 
  } | 
| 87 | 
  | 
  | 
 | 
| 88 | 
gezelter | 
1881 | 
  void RNEMDZ::processFrame(int istep) { | 
| 89 | 
gezelter | 
1884 | 
    RealType z; | 
| 90 | 
  | 
  | 
 | 
| 91 | 
  | 
  | 
    hmat_ = currentSnapshot_->getHmat(); | 
| 92 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++) { | 
| 93 | 
  | 
  | 
      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat_(2,2); | 
| 94 | 
  | 
  | 
      dynamic_cast<Accumulator*>(z_->accumulator[i])->add(z); | 
| 95 | 
  | 
  | 
    } | 
| 96 | 
  | 
  | 
    volume_ = currentSnapshot_->getVolume(); | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
 | 
| 99 | 
gezelter | 
1881 | 
    Molecule* mol; | 
| 100 | 
  | 
  | 
    RigidBody* rb; | 
| 101 | 
  | 
  | 
    StuntDouble* sd; | 
| 102 | 
  | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 103 | 
  | 
  | 
    Molecule::RigidBodyIterator rbIter; | 
| 104 | 
  | 
  | 
    int i; | 
| 105 | 
gezelter | 
1865 | 
 | 
| 106 | 
gezelter | 
1881 | 
    vector<RealType> binMass(nBins_, 0.0); | 
| 107 | 
gezelter | 
1944 | 
    vector<Vector3d> binP(nBins_, V3Zero); | 
| 108 | 
gezelter | 
1881 | 
    vector<RealType> binKE(nBins_, 0.0); | 
| 109 | 
gezelter | 
1883 | 
    vector<unsigned int> binDof(nBins_, 0); | 
| 110 | 
gezelter | 
1881 | 
     | 
| 111 | 
  | 
  | 
    for (mol = info_->beginMolecule(mi); mol != NULL;  | 
| 112 | 
  | 
  | 
         mol = info_->nextMolecule(mi)) { | 
| 113 | 
  | 
  | 
       | 
| 114 | 
  | 
  | 
      // change the positions of atoms which belong to the rigidbodies | 
| 115 | 
  | 
  | 
       | 
| 116 | 
  | 
  | 
      for (rb = mol->beginRigidBody(rbIter); rb != NULL;  | 
| 117 | 
  | 
  | 
           rb = mol->nextRigidBody(rbIter)) { | 
| 118 | 
gezelter | 
1892 | 
        rb->updateAtomVel(); | 
| 119 | 
gezelter | 
1865 | 
      } | 
| 120 | 
  | 
  | 
    } | 
| 121 | 
gezelter | 
1884 | 
    | 
| 122 | 
gezelter | 
1881 | 
    if (evaluator_.isDynamic()) { | 
| 123 | 
  | 
  | 
      seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 124 | 
  | 
  | 
    } | 
| 125 | 
gezelter | 
1865 | 
     | 
| 126 | 
gezelter | 
1881 | 
    // loop over the selected atoms: | 
| 127 | 
  | 
  | 
     | 
| 128 | 
  | 
  | 
    for (sd = seleMan_.beginSelected(i); sd != NULL;  | 
| 129 | 
  | 
  | 
         sd = seleMan_.nextSelected(i)) { | 
| 130 | 
  | 
  | 
       | 
| 131 | 
  | 
  | 
      // figure out where that object is: | 
| 132 | 
  | 
  | 
      Vector3d pos = sd->getPos();  | 
| 133 | 
gezelter | 
1883 | 
      Vector3d vel = sd->getVel(); | 
| 134 | 
  | 
  | 
      RealType m = sd->getMass(); | 
| 135 | 
  | 
  | 
 | 
| 136 | 
gezelter | 
1881 | 
      int bin = getBin(pos); | 
| 137 | 
gezelter | 
1884 | 
 | 
| 138 | 
gezelter | 
1881 | 
      binMass[bin] += m; | 
| 139 | 
gezelter | 
1944 | 
      binP[bin] += m * vel; | 
| 140 | 
gezelter | 
1881 | 
      binKE[bin] += 0.5 * (m * vel.lengthSquare()); | 
| 141 | 
  | 
  | 
      binDof[bin] += 3; | 
| 142 | 
  | 
  | 
       | 
| 143 | 
  | 
  | 
      if (sd->isDirectional()) { | 
| 144 | 
  | 
  | 
        Vector3d angMom = sd->getJ(); | 
| 145 | 
  | 
  | 
        Mat3x3d I = sd->getI(); | 
| 146 | 
  | 
  | 
        if (sd->isLinear()) { | 
| 147 | 
  | 
  | 
          int i = sd->linearAxis(); | 
| 148 | 
  | 
  | 
          int j = (i + 1) % 3; | 
| 149 | 
  | 
  | 
          int k = (i + 2) % 3; | 
| 150 | 
  | 
  | 
          binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +  | 
| 151 | 
  | 
  | 
                               angMom[k] * angMom[k] / I(k, k)); | 
| 152 | 
  | 
  | 
          binDof[bin] += 2; | 
| 153 | 
  | 
  | 
        } else { | 
| 154 | 
  | 
  | 
          binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + | 
| 155 | 
  | 
  | 
                               angMom[1] * angMom[1] / I(1, 1) + | 
| 156 | 
  | 
  | 
                               angMom[2] * angMom[2] / I(2, 2)); | 
| 157 | 
  | 
  | 
          binDof[bin] += 3; | 
| 158 | 
  | 
  | 
        } | 
| 159 | 
  | 
  | 
      } | 
| 160 | 
  | 
  | 
    } | 
| 161 | 
  | 
  | 
     | 
| 162 | 
gezelter | 
1953 | 
    for (int i = 0; i < nBins_; i++) { | 
| 163 | 
gezelter | 
1885 | 
 | 
| 164 | 
gezelter | 
1882 | 
      if (binDof[i] > 0) { | 
| 165 | 
  | 
  | 
        RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * | 
| 166 | 
  | 
  | 
                                          PhysicalConstants::energyConvert); | 
| 167 | 
  | 
  | 
        RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert  | 
| 168 | 
  | 
  | 
          / volume_; | 
| 169 | 
gezelter | 
1944 | 
        Vector3d vel = binP[i] / binMass[i]; | 
| 170 | 
gezelter | 
1892 | 
 | 
| 171 | 
gezelter | 
1882 | 
        dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); | 
| 172 | 
  | 
  | 
        dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); | 
| 173 | 
  | 
  | 
        dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); | 
| 174 | 
  | 
  | 
        dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); | 
| 175 | 
  | 
  | 
      } | 
| 176 | 
gezelter | 
1881 | 
    } | 
| 177 | 
gezelter | 
1865 | 
  } | 
| 178 | 
gezelter | 
1881 | 
   | 
| 179 | 
  | 
  | 
  void RNEMDZ::processStuntDouble(StuntDouble* sd, int bin) { | 
| 180 | 
  | 
  | 
  } | 
| 181 | 
gezelter | 
1865 | 
 | 
| 182 | 
  | 
  | 
  RNEMDR::RNEMDR(SimInfo* info, const std::string& filename,  | 
| 183 | 
  | 
  | 
                 const std::string& sele, int nrbins) | 
| 184 | 
  | 
  | 
    : ShellStatistics(info, filename, sele, nrbins) { | 
| 185 | 
  | 
  | 
         | 
| 186 | 
  | 
  | 
 | 
| 187 | 
  | 
  | 
    setOutputName(getPrefix(filename) + ".rnemdR"); | 
| 188 | 
  | 
  | 
     | 
| 189 | 
  | 
  | 
    temperature = new OutputData; | 
| 190 | 
  | 
  | 
    temperature->units =  "K"; | 
| 191 | 
  | 
  | 
    temperature->title =  "Temperature"; | 
| 192 | 
  | 
  | 
    temperature->dataType = odtReal; | 
| 193 | 
  | 
  | 
    temperature->dataHandling = odhAverage; | 
| 194 | 
  | 
  | 
    temperature->accumulator.reserve(nBins_); | 
| 195 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++)  | 
| 196 | 
  | 
  | 
      temperature->accumulator.push_back( new Accumulator() ); | 
| 197 | 
  | 
  | 
    data_.push_back(temperature); | 
| 198 | 
  | 
  | 
     | 
| 199 | 
  | 
  | 
    angularVelocity = new OutputData; | 
| 200 | 
  | 
  | 
    angularVelocity->units = "angstroms^2/fs"; | 
| 201 | 
gezelter | 
1953 | 
    angularVelocity->title =  "Angular Velocity";   | 
| 202 | 
gezelter | 
1865 | 
    angularVelocity->dataType = odtVector3; | 
| 203 | 
  | 
  | 
    angularVelocity->dataHandling = odhAverage; | 
| 204 | 
  | 
  | 
    angularVelocity->accumulator.reserve(nBins_); | 
| 205 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++)  | 
| 206 | 
  | 
  | 
      angularVelocity->accumulator.push_back( new VectorAccumulator() ); | 
| 207 | 
  | 
  | 
    data_.push_back(angularVelocity); | 
| 208 | 
  | 
  | 
     | 
| 209 | 
  | 
  | 
    density = new OutputData; | 
| 210 | 
  | 
  | 
    density->units =  "g cm^-3"; | 
| 211 | 
  | 
  | 
    density->title =  "Density"; | 
| 212 | 
  | 
  | 
    density->dataType = odtReal; | 
| 213 | 
  | 
  | 
    density->dataHandling = odhAverage; | 
| 214 | 
  | 
  | 
    density->accumulator.reserve(nBins_); | 
| 215 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++)  | 
| 216 | 
  | 
  | 
      density->accumulator.push_back( new Accumulator() ); | 
| 217 | 
  | 
  | 
    data_.push_back(density); | 
| 218 | 
  | 
  | 
  } | 
| 219 | 
  | 
  | 
 | 
| 220 | 
  | 
  | 
 | 
| 221 | 
gezelter | 
1887 | 
  void RNEMDR::processFrame(int istep) { | 
| 222 | 
gezelter | 
1865 | 
 | 
| 223 | 
gezelter | 
1887 | 
    Molecule* mol; | 
| 224 | 
  | 
  | 
    RigidBody* rb; | 
| 225 | 
  | 
  | 
    StuntDouble* sd; | 
| 226 | 
  | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 227 | 
  | 
  | 
    Molecule::RigidBodyIterator rbIter; | 
| 228 | 
  | 
  | 
    int i; | 
| 229 | 
  | 
  | 
 | 
| 230 | 
  | 
  | 
    vector<RealType> binMass(nBins_, 0.0); | 
| 231 | 
gezelter | 
1944 | 
    vector<Mat3x3d>  binI(nBins_); | 
| 232 | 
  | 
  | 
    vector<Vector3d> binL(nBins_, V3Zero); | 
| 233 | 
gezelter | 
1887 | 
    vector<RealType> binKE(nBins_, 0.0); | 
| 234 | 
gezelter | 
1944 | 
    vector<int> binDof(nBins_, 0); | 
| 235 | 
gezelter | 
1887 | 
     | 
| 236 | 
  | 
  | 
    for (mol = info_->beginMolecule(mi); mol != NULL;  | 
| 237 | 
  | 
  | 
         mol = info_->nextMolecule(mi)) { | 
| 238 | 
  | 
  | 
       | 
| 239 | 
  | 
  | 
      // change the positions of atoms which belong to the rigidbodies | 
| 240 | 
  | 
  | 
       | 
| 241 | 
  | 
  | 
      for (rb = mol->beginRigidBody(rbIter); rb != NULL;  | 
| 242 | 
  | 
  | 
           rb = mol->nextRigidBody(rbIter)) { | 
| 243 | 
gezelter | 
1892 | 
        rb->updateAtomVel(); | 
| 244 | 
gezelter | 
1865 | 
      } | 
| 245 | 
  | 
  | 
    } | 
| 246 | 
gezelter | 
1887 | 
    | 
| 247 | 
  | 
  | 
    if (evaluator_.isDynamic()) { | 
| 248 | 
  | 
  | 
      seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 249 | 
  | 
  | 
    } | 
| 250 | 
gezelter | 
1865 | 
     | 
| 251 | 
gezelter | 
1887 | 
    // loop over the selected atoms: | 
| 252 | 
  | 
  | 
     | 
| 253 | 
  | 
  | 
    for (sd = seleMan_.beginSelected(i); sd != NULL;  | 
| 254 | 
  | 
  | 
         sd = seleMan_.nextSelected(i)) { | 
| 255 | 
gezelter | 
1944 | 
 | 
| 256 | 
gezelter | 
1887 | 
      // figure out where that object is: | 
| 257 | 
gezelter | 
1945 | 
      int bin = getBin( sd->getPos() );    | 
| 258 | 
gezelter | 
1865 | 
 | 
| 259 | 
gezelter | 
1944 | 
      if (bin >= 0 && bin < nBins_)  { | 
| 260 | 
gezelter | 
1887 | 
 | 
| 261 | 
gezelter | 
1944 | 
        Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 262 | 
  | 
  | 
        Vector3d vel = sd->getVel();       | 
| 263 | 
  | 
  | 
        RealType m = sd->getMass(); | 
| 264 | 
  | 
  | 
        Vector3d L = m * cross(rPos, vel); | 
| 265 | 
  | 
  | 
        Mat3x3d I(0.0); | 
| 266 | 
  | 
  | 
        I = outProduct(rPos, rPos) * m; | 
| 267 | 
  | 
  | 
        RealType r2 = rPos.lengthSquare(); | 
| 268 | 
  | 
  | 
        I(0, 0) += m * r2; | 
| 269 | 
  | 
  | 
        I(1, 1) += m * r2; | 
| 270 | 
  | 
  | 
        I(2, 2) += m * r2;        | 
| 271 | 
gezelter | 
1887 | 
 | 
| 272 | 
gezelter | 
1944 | 
        binMass[bin] += m; | 
| 273 | 
  | 
  | 
        binI[bin] += I; | 
| 274 | 
  | 
  | 
        binL[bin] += L; | 
| 275 | 
  | 
  | 
        binKE[bin] += 0.5 * (m * vel.lengthSquare()); | 
| 276 | 
  | 
  | 
        binDof[bin] += 3; | 
| 277 | 
  | 
  | 
         | 
| 278 | 
  | 
  | 
        if (sd->isDirectional()) { | 
| 279 | 
  | 
  | 
          Vector3d angMom = sd->getJ(); | 
| 280 | 
  | 
  | 
          Mat3x3d Ia = sd->getI(); | 
| 281 | 
  | 
  | 
          if (sd->isLinear()) { | 
| 282 | 
  | 
  | 
            int i = sd->linearAxis(); | 
| 283 | 
  | 
  | 
            int j = (i + 1) % 3; | 
| 284 | 
  | 
  | 
            int k = (i + 2) % 3; | 
| 285 | 
  | 
  | 
            binKE[bin] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) +  | 
| 286 | 
  | 
  | 
                                 angMom[k] * angMom[k] / Ia(k, k)); | 
| 287 | 
  | 
  | 
            binDof[bin] += 2; | 
| 288 | 
  | 
  | 
          } else { | 
| 289 | 
  | 
  | 
            binKE[bin] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) + | 
| 290 | 
  | 
  | 
                                 angMom[1] * angMom[1] / Ia(1, 1) + | 
| 291 | 
  | 
  | 
                                 angMom[2] * angMom[2] / Ia(2, 2)); | 
| 292 | 
  | 
  | 
            binDof[bin] += 3; | 
| 293 | 
  | 
  | 
          } | 
| 294 | 
gezelter | 
1887 | 
        } | 
| 295 | 
  | 
  | 
      } | 
| 296 | 
  | 
  | 
    } | 
| 297 | 
gezelter | 
1865 | 
     | 
| 298 | 
gezelter | 
1953 | 
    for (int i = 0; i < nBins_; i++) { | 
| 299 | 
gezelter | 
1887 | 
      RealType rinner = (RealType)i * binWidth_; | 
| 300 | 
  | 
  | 
      RealType router = (RealType)(i+1) * binWidth_; | 
| 301 | 
  | 
  | 
      if (binDof[i] > 0) { | 
| 302 | 
  | 
  | 
        RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * | 
| 303 | 
  | 
  | 
                                          PhysicalConstants::energyConvert); | 
| 304 | 
  | 
  | 
        RealType den = binMass[i] * 3.0 * PhysicalConstants::densityConvert | 
| 305 | 
gezelter | 
1944 | 
          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));  | 
| 306 | 
  | 
  | 
 | 
| 307 | 
  | 
  | 
        Vector3d omega = binI[i].inverse() * binL[i]; | 
| 308 | 
  | 
  | 
  | 
| 309 | 
gezelter | 
1887 | 
        dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); | 
| 310 | 
gezelter | 
1944 | 
        dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(omega); | 
| 311 | 
gezelter | 
1887 | 
        dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); | 
| 312 | 
  | 
  | 
        dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); | 
| 313 | 
  | 
  | 
      } | 
| 314 | 
  | 
  | 
    } | 
| 315 | 
  | 
  | 
  } | 
| 316 | 
gezelter | 
1865 | 
 | 
| 317 | 
gezelter | 
1887 | 
 | 
| 318 | 
  | 
  | 
  void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { | 
| 319 | 
gezelter | 
1865 | 
  } | 
| 320 | 
gezelter | 
1953 | 
   | 
| 321 | 
  | 
  | 
  RNEMDRTheta::RNEMDRTheta(SimInfo* info, const std::string& filename,  | 
| 322 | 
  | 
  | 
                           const std::string& sele, int nrbins, int nangleBins) | 
| 323 | 
  | 
  | 
    : ShellStatistics(info, filename, sele, nrbins), nAngleBins_(nangleBins) { | 
| 324 | 
  | 
  | 
     | 
| 325 | 
  | 
  | 
    Globals* simParams = info->getSimParams(); | 
| 326 | 
  | 
  | 
    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); | 
| 327 | 
  | 
  | 
    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); | 
| 328 | 
  | 
  | 
     | 
| 329 | 
  | 
  | 
    if (hasAngularMomentumFluxVector) { | 
| 330 | 
  | 
  | 
      fluxVector_ = rnemdParams->getAngularMomentumFluxVector(); | 
| 331 | 
  | 
  | 
    } else { | 
| 332 | 
  | 
  | 
       | 
| 333 | 
  | 
  | 
      std::string fluxStr = rnemdParams->getFluxType(); | 
| 334 | 
  | 
  | 
      if (fluxStr.find("Lx") != std::string::npos) { | 
| 335 | 
  | 
  | 
        fluxVector_ = V3X; | 
| 336 | 
  | 
  | 
      } else if (fluxStr.find("Ly") != std::string::npos) { | 
| 337 | 
  | 
  | 
        fluxVector_ = V3Y; | 
| 338 | 
  | 
  | 
      } else { | 
| 339 | 
  | 
  | 
        fluxVector_ = V3Z; | 
| 340 | 
  | 
  | 
      } | 
| 341 | 
  | 
  | 
    } | 
| 342 | 
  | 
  | 
     | 
| 343 | 
  | 
  | 
    fluxVector_.normalize(); | 
| 344 | 
  | 
  | 
 | 
| 345 | 
  | 
  | 
    setOutputName(getPrefix(filename) + ".rnemdRTheta"); | 
| 346 | 
  | 
  | 
 | 
| 347 | 
  | 
  | 
    angularVelocity = new OutputData; | 
| 348 | 
  | 
  | 
    angularVelocity->units = "angstroms^2/fs"; | 
| 349 | 
  | 
  | 
    angularVelocity->title =  "Angular Velocity";   | 
| 350 | 
  | 
  | 
    angularVelocity->dataType = odtArray2d; | 
| 351 | 
  | 
  | 
    angularVelocity->dataHandling = odhAverage; | 
| 352 | 
  | 
  | 
    angularVelocity->accumulatorArray2d.reserve(nBins_); | 
| 353 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++) { | 
| 354 | 
  | 
  | 
      angularVelocity->accumulatorArray2d[i].reserve(nAngleBins_); | 
| 355 | 
  | 
  | 
      for (int j = 0 ; j < nAngleBins_; j++) {        | 
| 356 | 
  | 
  | 
        angularVelocity->accumulatorArray2d[i][j] = new Accumulator(); | 
| 357 | 
  | 
  | 
      } | 
| 358 | 
  | 
  | 
    } | 
| 359 | 
  | 
  | 
    data_.push_back(angularVelocity); | 
| 360 | 
  | 
  | 
 | 
| 361 | 
  | 
  | 
  } | 
| 362 | 
  | 
  | 
 | 
| 363 | 
  | 
  | 
 | 
| 364 | 
  | 
  | 
  std::pair<int,int> RNEMDRTheta::getBins(Vector3d pos) {  | 
| 365 | 
  | 
  | 
    std::pair<int,int> result; | 
| 366 | 
  | 
  | 
 | 
| 367 | 
  | 
  | 
    Vector3d rPos = pos - coordinateOrigin_; | 
| 368 | 
  | 
  | 
    RealType cosAngle= dot(rPos, fluxVector_) / rPos.length(); | 
| 369 | 
  | 
  | 
 | 
| 370 | 
  | 
  | 
    result.first = int(rPos.length() / binWidth_); | 
| 371 | 
  | 
  | 
    result.second = int( (nAngleBins_ - 1) * 0.5 * (cosAngle + 1.0) ); | 
| 372 | 
  | 
  | 
    return result; | 
| 373 | 
  | 
  | 
  } | 
| 374 | 
  | 
  | 
 | 
| 375 | 
  | 
  | 
  void RNEMDRTheta::processStuntDouble(StuntDouble* sd, int bin) { | 
| 376 | 
  | 
  | 
  } | 
| 377 | 
  | 
  | 
 | 
| 378 | 
  | 
  | 
  void RNEMDRTheta::processFrame(int istep) { | 
| 379 | 
  | 
  | 
 | 
| 380 | 
  | 
  | 
    Molecule* mol; | 
| 381 | 
  | 
  | 
    RigidBody* rb; | 
| 382 | 
  | 
  | 
    StuntDouble* sd; | 
| 383 | 
  | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 384 | 
  | 
  | 
    Molecule::RigidBodyIterator rbIter; | 
| 385 | 
  | 
  | 
    int i; | 
| 386 | 
  | 
  | 
 | 
| 387 | 
  | 
  | 
    vector<vector<Mat3x3d> >  binI; | 
| 388 | 
  | 
  | 
    vector<vector<Vector3d> > binL; | 
| 389 | 
  | 
  | 
    vector<vector<int> > binCount; | 
| 390 | 
  | 
  | 
     | 
| 391 | 
  | 
  | 
    for (mol = info_->beginMolecule(mi); mol != NULL;  | 
| 392 | 
  | 
  | 
         mol = info_->nextMolecule(mi)) { | 
| 393 | 
  | 
  | 
       | 
| 394 | 
  | 
  | 
      // change the positions of atoms which belong to the rigidbodies | 
| 395 | 
  | 
  | 
       | 
| 396 | 
  | 
  | 
      for (rb = mol->beginRigidBody(rbIter); rb != NULL;  | 
| 397 | 
  | 
  | 
           rb = mol->nextRigidBody(rbIter)) { | 
| 398 | 
  | 
  | 
        rb->updateAtomVel(); | 
| 399 | 
  | 
  | 
      } | 
| 400 | 
  | 
  | 
    } | 
| 401 | 
  | 
  | 
    | 
| 402 | 
  | 
  | 
    if (evaluator_.isDynamic()) { | 
| 403 | 
  | 
  | 
      seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 404 | 
  | 
  | 
    } | 
| 405 | 
  | 
  | 
     | 
| 406 | 
  | 
  | 
    // loop over the selected atoms: | 
| 407 | 
  | 
  | 
     | 
| 408 | 
  | 
  | 
    for (sd = seleMan_.beginSelected(i); sd != NULL;  | 
| 409 | 
  | 
  | 
         sd = seleMan_.nextSelected(i)) { | 
| 410 | 
  | 
  | 
 | 
| 411 | 
  | 
  | 
      // figure out where that object is: | 
| 412 | 
  | 
  | 
      std::pair<int,int> bins = getBins( sd->getPos() );    | 
| 413 | 
  | 
  | 
 | 
| 414 | 
  | 
  | 
      if (bins.first >= 0 && bins.first < nBins_)  { | 
| 415 | 
  | 
  | 
        if (bins.second >= 0 && bins.second < nAngleBins_) { | 
| 416 | 
  | 
  | 
 | 
| 417 | 
  | 
  | 
          Vector3d rPos = sd->getPos() - coordinateOrigin_; | 
| 418 | 
  | 
  | 
          Vector3d vel = sd->getVel();       | 
| 419 | 
  | 
  | 
          RealType m = sd->getMass(); | 
| 420 | 
  | 
  | 
          Vector3d L = m * cross(rPos, vel); | 
| 421 | 
  | 
  | 
          Mat3x3d I(0.0); | 
| 422 | 
  | 
  | 
          I = outProduct(rPos, rPos) * m; | 
| 423 | 
  | 
  | 
          RealType r2 = rPos.lengthSquare(); | 
| 424 | 
  | 
  | 
          I(0, 0) += m * r2; | 
| 425 | 
  | 
  | 
          I(1, 1) += m * r2; | 
| 426 | 
  | 
  | 
          I(2, 2) += m * r2;        | 
| 427 | 
  | 
  | 
 | 
| 428 | 
  | 
  | 
          binI[bins.first][bins.second] += I; | 
| 429 | 
  | 
  | 
          binL[bins.first][bins.second] += L; | 
| 430 | 
  | 
  | 
          binCount[bins.first][bins.second]++; | 
| 431 | 
  | 
  | 
        } | 
| 432 | 
  | 
  | 
      } | 
| 433 | 
  | 
  | 
    } | 
| 434 | 
  | 
  | 
   | 
| 435 | 
  | 
  | 
     | 
| 436 | 
  | 
  | 
    for (int i = 0; i < nBins_; i++) { | 
| 437 | 
  | 
  | 
      for (int j = 0; j < nAngleBins_; j++) { | 
| 438 | 
  | 
  | 
 | 
| 439 | 
  | 
  | 
        if (binCount[i][j] > 0) { | 
| 440 | 
  | 
  | 
          Vector3d omega = binI[i][j].inverse() * binL[i][j]; | 
| 441 | 
  | 
  | 
          RealType omegaProj = dot(omega, fluxVector_); | 
| 442 | 
  | 
  | 
  | 
| 443 | 
  | 
  | 
          dynamic_cast<Accumulator *>(angularVelocity->accumulatorArray2d[i][j])->add(omegaProj); | 
| 444 | 
  | 
  | 
        } | 
| 445 | 
  | 
  | 
      } | 
| 446 | 
  | 
  | 
    } | 
| 447 | 
  | 
  | 
  } | 
| 448 | 
  | 
  | 
 | 
| 449 | 
  | 
  | 
  void RNEMDRTheta::writeOutput() { | 
| 450 | 
  | 
  | 
     | 
| 451 | 
  | 
  | 
    vector<OutputData*>::iterator i; | 
| 452 | 
  | 
  | 
    OutputData* outputData; | 
| 453 | 
  | 
  | 
     | 
| 454 | 
  | 
  | 
    ofstream outStream(outputFilename_.c_str()); | 
| 455 | 
  | 
  | 
    if (outStream.is_open()) { | 
| 456 | 
  | 
  | 
       | 
| 457 | 
  | 
  | 
      //write title | 
| 458 | 
  | 
  | 
      outStream << "# SPATIAL STATISTICS\n"; | 
| 459 | 
  | 
  | 
      outStream << "#"; | 
| 460 | 
  | 
  | 
       | 
| 461 | 
  | 
  | 
      for(outputData = beginOutputData(i); outputData;  | 
| 462 | 
  | 
  | 
          outputData = nextOutputData(i)) { | 
| 463 | 
  | 
  | 
        outStream << "\t" << outputData->title <<  | 
| 464 | 
  | 
  | 
          "(" << outputData->units << ")"; | 
| 465 | 
  | 
  | 
        // add some extra tabs for column alignment | 
| 466 | 
  | 
  | 
        if (outputData->dataType == odtVector3) outStream << "\t\t"; | 
| 467 | 
  | 
  | 
      } | 
| 468 | 
  | 
  | 
       | 
| 469 | 
  | 
  | 
      outStream << std::endl; | 
| 470 | 
  | 
  | 
       | 
| 471 | 
  | 
  | 
      outStream.precision(8); | 
| 472 | 
  | 
  | 
       | 
| 473 | 
  | 
  | 
      for (int j = 0; j < nBins_; j++) {         | 
| 474 | 
  | 
  | 
         | 
| 475 | 
  | 
  | 
        int counts = counts_->accumulator[j]->count(); | 
| 476 | 
  | 
  | 
 | 
| 477 | 
  | 
  | 
        if (counts > 0) { | 
| 478 | 
  | 
  | 
          for(outputData = beginOutputData(i); outputData;  | 
| 479 | 
  | 
  | 
              outputData = nextOutputData(i)) { | 
| 480 | 
  | 
  | 
             | 
| 481 | 
  | 
  | 
            int n = outputData->accumulator[j]->count(); | 
| 482 | 
  | 
  | 
            if (n != 0) { | 
| 483 | 
  | 
  | 
              writeData( outStream, outputData, j ); | 
| 484 | 
  | 
  | 
            } | 
| 485 | 
  | 
  | 
          } | 
| 486 | 
  | 
  | 
          outStream << std::endl; | 
| 487 | 
  | 
  | 
        } | 
| 488 | 
  | 
  | 
      } | 
| 489 | 
  | 
  | 
    } | 
| 490 | 
  | 
  | 
  } | 
| 491 | 
gezelter | 
1865 | 
} | 
| 492 | 
  | 
  | 
 |