86 |
|
} |
87 |
|
|
88 |
|
void RNEMDZ::processFrame(int istep) { |
89 |
+ |
RealType z; |
90 |
+ |
|
91 |
+ |
hmat_ = currentSnapshot_->getHmat(); |
92 |
+ |
for (int i = 0; i < nBins_; i++) { |
93 |
+ |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat_(2,2); |
94 |
+ |
dynamic_cast<Accumulator*>(z_->accumulator[i])->add(z); |
95 |
+ |
} |
96 |
+ |
volume_ = currentSnapshot_->getVolume(); |
97 |
+ |
|
98 |
+ |
|
99 |
|
Molecule* mol; |
100 |
|
RigidBody* rb; |
101 |
|
StuntDouble* sd; |
104 |
|
int i; |
105 |
|
|
106 |
|
vector<RealType> binMass(nBins_, 0.0); |
107 |
< |
vector<Vector3d> binVel(nBins_, V3Zero); |
107 |
> |
vector<RealType> binPx(nBins_, 0.0); |
108 |
> |
vector<RealType> binPy(nBins_, 0.0); |
109 |
> |
vector<RealType> binPz(nBins_, 0.0); |
110 |
|
vector<RealType> binKE(nBins_, 0.0); |
111 |
|
vector<unsigned int> binDof(nBins_, 0); |
112 |
|
vector<unsigned int> binCount(nBins_, 0); |
119 |
|
|
120 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
121 |
|
rb = mol->nextRigidBody(rbIter)) { |
122 |
< |
rb->updateAtoms(); |
122 |
> |
rb->updateAtomVel(); |
123 |
|
} |
124 |
|
} |
125 |
< |
|
125 |
> |
|
126 |
|
if (evaluator_.isDynamic()) { |
127 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
128 |
|
} |
137 |
|
Vector3d vel = sd->getVel(); |
138 |
|
RealType m = sd->getMass(); |
139 |
|
|
128 |
– |
currentSnapshot_->wrapVector(pos); |
140 |
|
int bin = getBin(pos); |
141 |
+ |
|
142 |
|
binCount[bin] += 1; |
143 |
|
|
144 |
|
binMass[bin] += m; |
145 |
< |
binVel[bin] += vel; |
145 |
> |
binPx[bin] += m * vel.x(); |
146 |
> |
binPy[bin] += m * vel.y(); |
147 |
> |
binPz[bin] += m * vel.z(); |
148 |
|
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
149 |
|
binDof[bin] += 3; |
150 |
|
|
168 |
|
} |
169 |
|
|
170 |
|
for (unsigned int i = 0; i < nBins_; i++) { |
171 |
+ |
|
172 |
|
if (binDof[i] > 0) { |
173 |
|
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
174 |
|
PhysicalConstants::energyConvert); |
175 |
|
RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
176 |
|
/ volume_; |
177 |
< |
Vector3d vel = binVel[i] / RealType(binCount[i]); |
177 |
> |
Vector3d vel; |
178 |
> |
vel.x() = binPx[i] / binMass[i]; |
179 |
> |
vel.y() = binPy[i] / binMass[i]; |
180 |
> |
vel.z() = binPz[i] / binMass[i]; |
181 |
> |
|
182 |
|
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
183 |
|
dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); |
184 |
|
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
228 |
|
data_.push_back(density); |
229 |
|
} |
230 |
|
|
212 |
– |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
213 |
– |
RealType mass = sd->getMass(); |
214 |
– |
Vector3d vel = sd->getVel(); |
215 |
– |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
216 |
– |
Vector3d aVel = cross(rPos, vel); |
231 |
|
|
232 |
< |
RealType KE = 0.5 * (mass * vel.lengthSquare()); |
219 |
< |
int dof = 3; |
232 |
> |
void RNEMDR::processFrame(int istep) { |
233 |
|
|
234 |
< |
if (sd->isDirectional()) { |
235 |
< |
Vector3d angMom = sd->getJ(); |
236 |
< |
Mat3x3d I = sd->getI(); |
237 |
< |
if (sd->isLinear()) { |
238 |
< |
int i = sd->linearAxis(); |
239 |
< |
int j = (i + 1) % 3; |
240 |
< |
int k = (i + 2) % 3; |
241 |
< |
KE += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
242 |
< |
angMom[k] * angMom[k] / I(k, k)); |
243 |
< |
dof += 2; |
244 |
< |
} else { |
245 |
< |
KE += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
246 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
247 |
< |
angMom[2] * angMom[2] / I(2, 2)); |
248 |
< |
dof += 3; |
249 |
< |
} |
234 |
> |
Molecule* mol; |
235 |
> |
RigidBody* rb; |
236 |
> |
StuntDouble* sd; |
237 |
> |
SimInfo::MoleculeIterator mi; |
238 |
> |
Molecule::RigidBodyIterator rbIter; |
239 |
> |
int i; |
240 |
> |
|
241 |
> |
vector<RealType> binMass(nBins_, 0.0); |
242 |
> |
vector<Vector3d> binaVel(nBins_, V3Zero); |
243 |
> |
vector<RealType> binKE(nBins_, 0.0); |
244 |
> |
vector<unsigned int> binDof(nBins_, 0); |
245 |
> |
vector<unsigned int> binCount(nBins_, 0); |
246 |
> |
|
247 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
248 |
> |
mol = info_->nextMolecule(mi)) { |
249 |
> |
|
250 |
> |
// change the positions of atoms which belong to the rigidbodies |
251 |
> |
|
252 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
253 |
> |
rb = mol->nextRigidBody(rbIter)) { |
254 |
> |
rb->updateAtomVel(); |
255 |
> |
} |
256 |
|
} |
257 |
+ |
|
258 |
+ |
if (evaluator_.isDynamic()) { |
259 |
+ |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
260 |
+ |
} |
261 |
|
|
262 |
< |
RealType temp = 2.0 * KE / (dof * PhysicalConstants::kb * |
263 |
< |
PhysicalConstants::energyConvert); |
262 |
> |
// loop over the selected atoms: |
263 |
> |
|
264 |
> |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
265 |
> |
sd = seleMan_.nextSelected(i)) { |
266 |
> |
|
267 |
> |
// figure out where that object is: |
268 |
|
|
269 |
< |
RealType rinner = (RealType)bin * binWidth_; |
270 |
< |
RealType router = (RealType)(bin+1) * binWidth_; |
271 |
< |
RealType den = mass * 3.0 * PhysicalConstants::densityConvert |
272 |
< |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
269 |
> |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
270 |
> |
Vector3d vel = sd->getVel(); |
271 |
> |
Vector3d aVel = cross(rPos, vel); |
272 |
> |
RealType m = sd->getMass(); |
273 |
> |
|
274 |
> |
int bin = getBin(rPos); |
275 |
> |
|
276 |
> |
binCount[bin] += 1; |
277 |
> |
|
278 |
> |
binMass[bin] += m; |
279 |
> |
binaVel[bin] += aVel; |
280 |
> |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
281 |
> |
binDof[bin] += 3; |
282 |
> |
|
283 |
> |
if (sd->isDirectional()) { |
284 |
> |
Vector3d angMom = sd->getJ(); |
285 |
> |
Mat3x3d I = sd->getI(); |
286 |
> |
if (sd->isLinear()) { |
287 |
> |
int i = sd->linearAxis(); |
288 |
> |
int j = (i + 1) % 3; |
289 |
> |
int k = (i + 2) % 3; |
290 |
> |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
291 |
> |
angMom[k] * angMom[k] / I(k, k)); |
292 |
> |
binDof[bin] += 2; |
293 |
> |
} else { |
294 |
> |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
295 |
> |
angMom[1] * angMom[1] / I(1, 1) + |
296 |
> |
angMom[2] * angMom[2] / I(2, 2)); |
297 |
> |
binDof[bin] += 3; |
298 |
> |
} |
299 |
> |
} |
300 |
> |
} |
301 |
|
|
302 |
< |
dynamic_cast<Accumulator *>(temperature->accumulator[bin])->add(temp); |
303 |
< |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[bin])->add(aVel); |
304 |
< |
dynamic_cast<Accumulator *>(density->accumulator[bin])->add(den); |
302 |
> |
for (unsigned int i = 0; i < nBins_; i++) { |
303 |
> |
RealType rinner = (RealType)i * binWidth_; |
304 |
> |
RealType router = (RealType)(i+1) * binWidth_; |
305 |
> |
if (binDof[i] > 0) { |
306 |
> |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
307 |
> |
PhysicalConstants::energyConvert); |
308 |
> |
RealType den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
309 |
> |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
310 |
> |
Vector3d aVel = binaVel[i] / RealType(binCount[i]); |
311 |
> |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
312 |
> |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(aVel); |
313 |
> |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
314 |
> |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
315 |
> |
} |
316 |
> |
} |
317 |
> |
} |
318 |
|
|
319 |
+ |
|
320 |
+ |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
321 |
|
} |
322 |
|
} |
323 |
|
|