86 |
|
} |
87 |
|
|
88 |
|
void RNEMDZ::processFrame(int istep) { |
89 |
+ |
RealType z; |
90 |
+ |
|
91 |
+ |
hmat_ = currentSnapshot_->getHmat(); |
92 |
+ |
for (int i = 0; i < nBins_; i++) { |
93 |
+ |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat_(2,2); |
94 |
+ |
dynamic_cast<Accumulator*>(z_->accumulator[i])->add(z); |
95 |
+ |
} |
96 |
+ |
volume_ = currentSnapshot_->getVolume(); |
97 |
+ |
|
98 |
+ |
|
99 |
|
Molecule* mol; |
100 |
|
RigidBody* rb; |
101 |
|
StuntDouble* sd; |
104 |
|
int i; |
105 |
|
|
106 |
|
vector<RealType> binMass(nBins_, 0.0); |
107 |
< |
vector<Vector3d> binVel(nBins_, V3Zero); |
107 |
> |
vector<Vector3d> binP(nBins_, V3Zero); |
108 |
|
vector<RealType> binKE(nBins_, 0.0); |
109 |
|
vector<unsigned int> binDof(nBins_, 0); |
100 |
– |
vector<unsigned int> binCount(nBins_, 0); |
110 |
|
|
102 |
– |
|
111 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
112 |
|
mol = info_->nextMolecule(mi)) { |
113 |
|
|
115 |
|
|
116 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
117 |
|
rb = mol->nextRigidBody(rbIter)) { |
118 |
< |
rb->updateAtoms(); |
118 |
> |
rb->updateAtomVel(); |
119 |
|
} |
120 |
|
} |
121 |
< |
|
121 |
> |
|
122 |
|
if (evaluator_.isDynamic()) { |
123 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
124 |
|
} |
133 |
|
Vector3d vel = sd->getVel(); |
134 |
|
RealType m = sd->getMass(); |
135 |
|
|
128 |
– |
currentSnapshot_->wrapVector(pos); |
136 |
|
int bin = getBin(pos); |
130 |
– |
binCount[bin] += 1; |
137 |
|
|
138 |
|
binMass[bin] += m; |
139 |
< |
binVel[bin] += vel; |
139 |
> |
binP[bin] += m * vel; |
140 |
|
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
141 |
|
binDof[bin] += 3; |
142 |
|
|
160 |
|
} |
161 |
|
|
162 |
|
for (unsigned int i = 0; i < nBins_; i++) { |
163 |
+ |
|
164 |
|
if (binDof[i] > 0) { |
165 |
|
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
166 |
|
PhysicalConstants::energyConvert); |
167 |
|
RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
168 |
|
/ volume_; |
169 |
< |
Vector3d vel = binVel[i] / RealType(binCount[i]); |
169 |
> |
Vector3d vel = binP[i] / binMass[i]; |
170 |
> |
|
171 |
|
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
172 |
|
dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); |
173 |
|
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
217 |
|
data_.push_back(density); |
218 |
|
} |
219 |
|
|
212 |
– |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
213 |
– |
RealType mass = sd->getMass(); |
214 |
– |
Vector3d vel = sd->getVel(); |
215 |
– |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
216 |
– |
Vector3d aVel = cross(rPos, vel); |
220 |
|
|
221 |
< |
RealType KE = 0.5 * (mass * vel.lengthSquare()); |
219 |
< |
int dof = 3; |
221 |
> |
void RNEMDR::processFrame(int istep) { |
222 |
|
|
223 |
< |
if (sd->isDirectional()) { |
224 |
< |
Vector3d angMom = sd->getJ(); |
225 |
< |
Mat3x3d I = sd->getI(); |
226 |
< |
if (sd->isLinear()) { |
227 |
< |
int i = sd->linearAxis(); |
228 |
< |
int j = (i + 1) % 3; |
229 |
< |
int k = (i + 2) % 3; |
230 |
< |
KE += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
231 |
< |
angMom[k] * angMom[k] / I(k, k)); |
232 |
< |
dof += 2; |
233 |
< |
} else { |
234 |
< |
KE += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
235 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
236 |
< |
angMom[2] * angMom[2] / I(2, 2)); |
237 |
< |
dof += 3; |
223 |
> |
Molecule* mol; |
224 |
> |
RigidBody* rb; |
225 |
> |
StuntDouble* sd; |
226 |
> |
SimInfo::MoleculeIterator mi; |
227 |
> |
Molecule::RigidBodyIterator rbIter; |
228 |
> |
int i; |
229 |
> |
|
230 |
> |
vector<RealType> binMass(nBins_, 0.0); |
231 |
> |
vector<Mat3x3d> binI(nBins_); |
232 |
> |
vector<Vector3d> binL(nBins_, V3Zero); |
233 |
> |
vector<RealType> binKE(nBins_, 0.0); |
234 |
> |
vector<int> binDof(nBins_, 0); |
235 |
> |
|
236 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
237 |
> |
mol = info_->nextMolecule(mi)) { |
238 |
> |
|
239 |
> |
// change the positions of atoms which belong to the rigidbodies |
240 |
> |
|
241 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
242 |
> |
rb = mol->nextRigidBody(rbIter)) { |
243 |
> |
rb->updateAtomVel(); |
244 |
|
} |
245 |
|
} |
246 |
+ |
|
247 |
+ |
if (evaluator_.isDynamic()) { |
248 |
+ |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
249 |
+ |
} |
250 |
|
|
251 |
< |
RealType temp = 2.0 * KE / (dof * PhysicalConstants::kb * |
252 |
< |
PhysicalConstants::energyConvert); |
251 |
> |
// loop over the selected atoms: |
252 |
> |
|
253 |
> |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
254 |
> |
sd = seleMan_.nextSelected(i)) { |
255 |
|
|
256 |
< |
RealType rinner = (RealType)bin * binWidth_; |
257 |
< |
RealType router = (RealType)(bin+1) * binWidth_; |
258 |
< |
RealType den = mass * 3.0 * PhysicalConstants::densityConvert |
259 |
< |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
256 |
> |
// figure out where that object is: |
257 |
> |
int bin = getBin( sd->getPos() ); |
258 |
> |
|
259 |
> |
if (bin >= 0 && bin < nBins_) { |
260 |
> |
|
261 |
> |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
262 |
> |
Vector3d vel = sd->getVel(); |
263 |
> |
RealType m = sd->getMass(); |
264 |
> |
Vector3d L = m * cross(rPos, vel); |
265 |
> |
Mat3x3d I(0.0); |
266 |
> |
I = outProduct(rPos, rPos) * m; |
267 |
> |
RealType r2 = rPos.lengthSquare(); |
268 |
> |
I(0, 0) += m * r2; |
269 |
> |
I(1, 1) += m * r2; |
270 |
> |
I(2, 2) += m * r2; |
271 |
> |
|
272 |
> |
binMass[bin] += m; |
273 |
> |
binI[bin] += I; |
274 |
> |
binL[bin] += L; |
275 |
> |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
276 |
> |
binDof[bin] += 3; |
277 |
> |
|
278 |
> |
if (sd->isDirectional()) { |
279 |
> |
Vector3d angMom = sd->getJ(); |
280 |
> |
Mat3x3d Ia = sd->getI(); |
281 |
> |
if (sd->isLinear()) { |
282 |
> |
int i = sd->linearAxis(); |
283 |
> |
int j = (i + 1) % 3; |
284 |
> |
int k = (i + 2) % 3; |
285 |
> |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) + |
286 |
> |
angMom[k] * angMom[k] / Ia(k, k)); |
287 |
> |
binDof[bin] += 2; |
288 |
> |
} else { |
289 |
> |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) + |
290 |
> |
angMom[1] * angMom[1] / Ia(1, 1) + |
291 |
> |
angMom[2] * angMom[2] / Ia(2, 2)); |
292 |
> |
binDof[bin] += 3; |
293 |
> |
} |
294 |
> |
} |
295 |
> |
} |
296 |
> |
} |
297 |
|
|
298 |
< |
dynamic_cast<Accumulator *>(temperature->accumulator[bin])->add(temp); |
299 |
< |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[bin])->add(aVel); |
300 |
< |
dynamic_cast<Accumulator *>(density->accumulator[bin])->add(den); |
298 |
> |
for (unsigned int i = 0; i < nBins_; i++) { |
299 |
> |
RealType rinner = (RealType)i * binWidth_; |
300 |
> |
RealType router = (RealType)(i+1) * binWidth_; |
301 |
> |
if (binDof[i] > 0) { |
302 |
> |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
303 |
> |
PhysicalConstants::energyConvert); |
304 |
> |
RealType den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
305 |
> |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
306 |
|
|
307 |
+ |
Vector3d omega = binI[i].inverse() * binL[i]; |
308 |
+ |
|
309 |
+ |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
310 |
+ |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(omega); |
311 |
+ |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
312 |
+ |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
313 |
+ |
} |
314 |
+ |
} |
315 |
|
} |
316 |
+ |
|
317 |
+ |
|
318 |
+ |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
319 |
+ |
} |
320 |
|
} |
321 |
|
|