| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
| 41 |
* Created by Joseph R. Michalka on Oct 12 2012 |
| 42 |
* @author Joseph R. Michalka |
| 43 |
* @version $Id: RhoZ.cpp 1665 2011-11-22 20:38:56Z gezelter $ |
| 44 |
* |
| 45 |
*/ |
| 46 |
|
| 47 |
/* Surface Diffusion |
| 48 |
* Attempting to track/measure the surface diffusion rates of particles on... wait for it.. |
| 49 |
* a surface. |
| 50 |
* This program was initially created to track Platinum particles moving around a 557 surface. |
| 51 |
* Hence why we are trying to keep the x and y movement separate. |
| 52 |
* |
| 53 |
*/ |
| 54 |
|
| 55 |
#include <algorithm> |
| 56 |
#include <fstream> |
| 57 |
#include "applications/staticProps/SurfaceDiffusion.hpp" |
| 58 |
#include "utils/simError.h" |
| 59 |
#include "io/DumpReader.hpp" |
| 60 |
#include "primitives/Molecule.hpp" |
| 61 |
namespace OpenMD { |
| 62 |
|
| 63 |
SurfaceDiffusion::SurfaceDiffusion(SimInfo* info, const std::string& filename, const std::string& sele, RealType len) |
| 64 |
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan1_(info){ |
| 65 |
|
| 66 |
evaluator_.loadScriptString(sele); |
| 67 |
if (!evaluator_.isDynamic()) { |
| 68 |
seleMan1_.setSelectionSet(evaluator_.evaluate()); |
| 69 |
} |
| 70 |
|
| 71 |
//Depending on the selection 'sele1="select Pt"' need a vector equal to the |
| 72 |
//number of Platinums in the system (for this specific case) |
| 73 |
selectionCount_ = seleMan1_.getSelectionCount(); |
| 74 |
cout << "SelectionCount_: " << selectionCount_ << "\n"; |
| 75 |
|
| 76 |
moBool_.resize(selectionCount_); |
| 77 |
positions_.resize(selectionCount_); |
| 78 |
|
| 79 |
filename_ = filename; |
| 80 |
singleMoveDistance_ = 2.0; |
| 81 |
} |
| 82 |
|
| 83 |
SurfaceDiffusion::~SurfaceDiffusion(){ |
| 84 |
|
| 85 |
} |
| 86 |
|
| 87 |
void SurfaceDiffusion::process() { |
| 88 |
Molecule* mol; |
| 89 |
RigidBody* rb; |
| 90 |
StuntDouble* sd; |
| 91 |
SimInfo::MoleculeIterator mi; |
| 92 |
Molecule::RigidBodyIterator rbIter; |
| 93 |
|
| 94 |
DumpReader reader(info_, dumpFilename_); |
| 95 |
int nFrames = reader.getNFrames(); |
| 96 |
frames_ = 0; |
| 97 |
nProcessed_ = nFrames/step_; |
| 98 |
|
| 99 |
//positions_ and moBool_ are 2D arrays, need the second dimension filled as well |
| 100 |
for(int i = 0; i < selectionCount_; i++){ |
| 101 |
moBool_[i].resize(nFrames); |
| 102 |
positions_[i].resize(nFrames); |
| 103 |
} |
| 104 |
|
| 105 |
int iterator; |
| 106 |
int index = 0; |
| 107 |
/* Loop over all frames storing the positions in a vec< vec<pos> > |
| 108 |
* At the end, positions.length() should equal seleMan1_.size() or w/e |
| 109 |
* And positions[index].length() should equal nFrames (or nFrames/istep) |
| 110 |
*/ |
| 111 |
for(int istep = 0; istep < nFrames; istep += step_){ |
| 112 |
frames_++; |
| 113 |
reader.readFrame(istep); |
| 114 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 115 |
|
| 116 |
for(mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)){ |
| 117 |
//change the positions of atoms which belong to the rigidbodies |
| 118 |
for(rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)){ |
| 119 |
rb->updateAtoms(); |
| 120 |
} |
| 121 |
} |
| 122 |
|
| 123 |
index = 0; //count over atoms since iterators aren't the most friendly for such plebian things |
| 124 |
for(sd = seleMan1_.beginSelected(iterator); sd != NULL; sd = seleMan1_.nextSelected(iterator)){ |
| 125 |
Vector3d pos = sd->getPos(); |
| 126 |
positions_[index][istep] = pos; |
| 127 |
index++; |
| 128 |
} |
| 129 |
} |
| 130 |
|
| 131 |
|
| 132 |
cout << "Position Array size: " << positions_.size() << "\n"; |
| 133 |
cout << "Frames analyzed: " << positions_[0].size() << "\n"; |
| 134 |
|
| 135 |
|
| 136 |
for(int i = 0; i < positions_.size(); i++){ |
| 137 |
int frameIndex = positions_[i].size(); |
| 138 |
for(int j = 1; j < frameIndex; j++){ |
| 139 |
Vector3d posF1 = positions_[i][j-1]; |
| 140 |
Vector3d posF2 = positions_[i][j]; |
| 141 |
Vector3d diff = posF2 - posF1; |
| 142 |
if(usePeriodicBoundaryConditions_){ |
| 143 |
currentSnapshot_->wrapVector(diff); |
| 144 |
} |
| 145 |
double dist = diff.length(); |
| 146 |
if(dist > singleMoveDistance_){ |
| 147 |
moBool_[i][j] = true; |
| 148 |
}else{ |
| 149 |
moBool_[i][j] = false; |
| 150 |
} |
| 151 |
} |
| 152 |
} |
| 153 |
|
| 154 |
int mobileAtomCount = 0; |
| 155 |
for(int i = 0; i < moBool_.size(); i++){ |
| 156 |
int frameIndex = moBool_[i].size(); |
| 157 |
bool mobileAtom = false; |
| 158 |
for(int j = 0; j < frameIndex; j++){ |
| 159 |
mobileAtom = mobileAtom || moBool_[i][j]; |
| 160 |
} |
| 161 |
moBool_[i][0] = mobileAtom; //is true if any value later in the array is true, false otherwise |
| 162 |
if(mobileAtom){ |
| 163 |
mobileAtomCount++; |
| 164 |
} |
| 165 |
} |
| 166 |
|
| 167 |
cout << "Mobile atom count: " << mobileAtomCount << "\n"; |
| 168 |
|
| 169 |
//Here I shrink the size of the arrays, why look through 3888, when you only need ~800. |
| 170 |
//Additionally, all of these are mobile at some point in time, the others aren't, dead weight and |
| 171 |
//memory |
| 172 |
positions2_.resize(mobileAtomCount); |
| 173 |
moBool2_.resize(mobileAtomCount); |
| 174 |
int pos2index = 0; |
| 175 |
for(int i = 0; i < positions_.size(); i++){ |
| 176 |
int frameCount = positions_[i].size(); |
| 177 |
if(moBool_[i][0]){ |
| 178 |
for(int j = 0; j < frameCount; j++){ |
| 179 |
positions2_[pos2index].push_back(positions_[i][j]); |
| 180 |
moBool2_[pos2index].push_back(moBool_[i][j]); |
| 181 |
} |
| 182 |
pos2index++; |
| 183 |
} |
| 184 |
} |
| 185 |
|
| 186 |
positions_.clear(); |
| 187 |
moBool_.clear(); |
| 188 |
|
| 189 |
cout << "positions_ has been cleared: " << positions_.size() << "\n"; |
| 190 |
cout << "positions2_ has been filled: " << positions2_.size() << "\n"; |
| 191 |
cout << "positions2_ has " << positions2_[0].size() << " frames\n"; |
| 192 |
|
| 193 |
//The important one! |
| 194 |
positionCorrelation(); |
| 195 |
|
| 196 |
|
| 197 |
//Write out my data |
| 198 |
std::ofstream diffStream; |
| 199 |
setOutputName(getPrefix(filename_) + ".Mdiffusion"); |
| 200 |
diffStream.open(outputFilename_.c_str()); |
| 201 |
diffStream << "#X&Y diffusion amounts\n"; |
| 202 |
diffStream << "#singleMoveDistance_: " << singleMoveDistance_ << "\n"; |
| 203 |
|
| 204 |
diffStream << "#Number of mobile atoms: " << positions2_.size() << "\n"; |
| 205 |
|
| 206 |
diffStream << "#time, <x(t)-x(0)>, <y(t)-y(0)>, <r(t)-r(0)>\n"; |
| 207 |
for(int i = 0; i < xHist_.size(); i++){ |
| 208 |
diffStream << i << ", " << xHist_[i] << ", " << yHist_[i] << ", " << rHist_[i] << "\n"; |
| 209 |
} |
| 210 |
diffStream.close(); |
| 211 |
|
| 212 |
} |
| 213 |
|
| 214 |
void SurfaceDiffusion::positionCorrelation(){ |
| 215 |
RealType xDist = 0.0; |
| 216 |
RealType yDist = 0.0; |
| 217 |
RealType rDist = 0.0; |
| 218 |
int timeShift = 0; |
| 219 |
Vector3d kPos; |
| 220 |
Vector3d jPos; |
| 221 |
//biggest timeShift is positions2_[0].size() - 1? |
| 222 |
xHist_.clear(); |
| 223 |
yHist_.clear(); |
| 224 |
rHist_.clear(); |
| 225 |
count_.clear(); |
| 226 |
int frameResize = positions2_[0].size(); |
| 227 |
xHist_.resize(frameResize); |
| 228 |
yHist_.resize(frameResize); |
| 229 |
rHist_.resize(frameResize); |
| 230 |
count_.resize(frameResize); |
| 231 |
//loop over particles |
| 232 |
// loop over frames starting at j |
| 233 |
// loop over frames starting at k = j (time shift of 0) |
| 234 |
for(int i = 0; i < positions2_.size(); i++){ |
| 235 |
int frames = positions2_[i].size() - 1; //for counting properly, otherwise moBool2_[i][j+1] will |
| 236 |
// go over |
| 237 |
for(int j = 0; j < frames; j++){ |
| 238 |
//if the particle is mobile between j and j + 1, then count it for all timeShifts |
| 239 |
if(moBool2_[i][j+1]){ |
| 240 |
for(int k = j; k < positions2_[0].size(); k++){ |
| 241 |
//<x(t)-x(0)> <y(t)-y(0)> <r(t)-r(0)> |
| 242 |
//The positions stored are not wrapped, thus I don't need to worry about pbc |
| 243 |
//Mean square displacement |
| 244 |
//So I do want the squared distances |
| 245 |
|
| 246 |
kPos = positions2_[i][k]; |
| 247 |
jPos = positions2_[i][j]; |
| 248 |
xDist = kPos.x() - jPos.x(); |
| 249 |
xDist = xDist*xDist; |
| 250 |
|
| 251 |
yDist = kPos.y() - jPos.y(); |
| 252 |
yDist = yDist*yDist; |
| 253 |
|
| 254 |
rDist = (kPos - jPos).lengthSquare(); |
| 255 |
|
| 256 |
|
| 257 |
timeShift = k - j; |
| 258 |
xHist_[timeShift] += xDist; |
| 259 |
yHist_[timeShift] += yDist; |
| 260 |
rHist_[timeShift] += rDist; |
| 261 |
count_[timeShift]++; |
| 262 |
} |
| 263 |
} |
| 264 |
} |
| 265 |
} |
| 266 |
cout << "X, Y, R calculated\n"; |
| 267 |
|
| 268 |
for(int i = 0; i < xHist_.size(); i++){ |
| 269 |
xHist_[i] = xHist_[i]/(count_[i]); |
| 270 |
yHist_[i] = yHist_[i]/(count_[i]); |
| 271 |
rHist_[i] = rHist_[i]/(count_[i]); |
| 272 |
} |
| 273 |
cout << "X, Y, R normalized\n"; |
| 274 |
} |
| 275 |
|
| 276 |
} |