| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4] Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * | 
| 41 | *  Created by Joseph R. Michalka on Oct 12 2012 | 
| 42 | *  @author  Joseph R. Michalka | 
| 43 | *  @version $Id: RhoZ.cpp 1665 2011-11-22 20:38:56Z gezelter $ | 
| 44 | * | 
| 45 | */ | 
| 46 |  | 
| 47 | /* Surface Diffusion | 
| 48 | * Attempting to track/measure the surface diffusion rates of particles on... wait for it.. | 
| 49 | * a surface. | 
| 50 | * This program was initially created to track Platinum particles moving around a 557 surface. | 
| 51 | * Hence why we are trying to keep the x and y movement separate. | 
| 52 | * | 
| 53 | */ | 
| 54 |  | 
| 55 | #include <algorithm> | 
| 56 | #include <fstream> | 
| 57 | #include "applications/staticProps/SurfaceDiffusion.hpp" | 
| 58 | #include "utils/simError.h" | 
| 59 | #include "io/DumpReader.hpp" | 
| 60 | #include "primitives/Molecule.hpp" | 
| 61 | namespace OpenMD { | 
| 62 |  | 
| 63 | SurfaceDiffusion::SurfaceDiffusion(SimInfo* info, const std::string& filename, const std::string& sele, RealType len) | 
| 64 | : StaticAnalyser(info, filename), selectionScript_(sele),  evaluator_(info), seleMan1_(info){ | 
| 65 |  | 
| 66 | evaluator_.loadScriptString(sele); | 
| 67 | if (!evaluator_.isDynamic()) { | 
| 68 | seleMan1_.setSelectionSet(evaluator_.evaluate()); | 
| 69 | } | 
| 70 |  | 
| 71 | //Depending on the selection 'sele1="select Pt"' need a vector equal to the | 
| 72 | //number of Platinums in the system (for this specific case) | 
| 73 | selectionCount_ = seleMan1_.getSelectionCount(); | 
| 74 | cout << "SelectionCount_: " << selectionCount_ << "\n"; | 
| 75 |  | 
| 76 | moBool_.resize(selectionCount_); | 
| 77 | positions_.resize(selectionCount_); | 
| 78 |  | 
| 79 | filename_ = filename; | 
| 80 | singleMoveDistance_ = 2.0; | 
| 81 | } | 
| 82 |  | 
| 83 | SurfaceDiffusion::~SurfaceDiffusion(){ | 
| 84 |  | 
| 85 | } | 
| 86 |  | 
| 87 | void SurfaceDiffusion::process() { | 
| 88 | Molecule* mol; | 
| 89 | RigidBody* rb; | 
| 90 | StuntDouble* sd; | 
| 91 | SimInfo::MoleculeIterator mi; | 
| 92 | Molecule::RigidBodyIterator rbIter; | 
| 93 |  | 
| 94 | DumpReader reader(info_, dumpFilename_); | 
| 95 | int nFrames = reader.getNFrames(); | 
| 96 | frames_ = 0; | 
| 97 | nProcessed_ = nFrames/step_; | 
| 98 |  | 
| 99 | // positions_ and moBool_ are 2D arrays, need the second dimension | 
| 100 | // filled as well | 
| 101 | for(int i = 0; i < selectionCount_; i++){ | 
| 102 | moBool_[i].resize(nFrames); | 
| 103 | positions_[i].resize(nFrames); | 
| 104 | } | 
| 105 |  | 
| 106 | int iterator; | 
| 107 | int index = 0; | 
| 108 | /* Loop over all frames storing the positions in a vec< vec<pos> > | 
| 109 | * At the end, positions.length() should equal seleMan1_.size() or | 
| 110 | * w/e And positions[index].length() should equal nFrames (or | 
| 111 | * nFrames/istep) | 
| 112 | */ | 
| 113 | for(int istep = 0; istep < nFrames; istep += step_){ | 
| 114 | frames_++; | 
| 115 | reader.readFrame(istep); | 
| 116 | currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 117 |  | 
| 118 | for(mol = info_->beginMolecule(mi); mol != NULL; | 
| 119 | mol = info_->nextMolecule(mi)){ | 
| 120 | //change the positions of atoms which belong to the rigidbodies | 
| 121 | for(rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 122 | rb = mol->nextRigidBody(rbIter)){ | 
| 123 | rb->updateAtoms(); | 
| 124 | } | 
| 125 | } | 
| 126 |  | 
| 127 | index = 0; // count over atoms since iterators aren't the most | 
| 128 | // friendly for such plebian things | 
| 129 | for(sd = seleMan1_.beginSelected(iterator); sd != NULL; | 
| 130 | sd = seleMan1_.nextSelected(iterator)){ | 
| 131 | Vector3d pos = sd->getPos(); | 
| 132 | positions_[index][istep] = pos; | 
| 133 | index++; | 
| 134 | } | 
| 135 | } | 
| 136 |  | 
| 137 | cout << "Position Array size: " << positions_.size() << "\n"; | 
| 138 | cout << "Frames analyzed: " << positions_[0].size() << "\n"; | 
| 139 |  | 
| 140 | for(std::size_t i = 0; i < positions_.size(); i++){ | 
| 141 | int frameIndex = positions_[i].size(); | 
| 142 | for(int j = 1; j < frameIndex; j++){ | 
| 143 | Vector3d posF1 = positions_[i][j-1]; | 
| 144 | Vector3d posF2 = positions_[i][j]; | 
| 145 | Vector3d diff = posF2 - posF1; | 
| 146 | if(usePeriodicBoundaryConditions_){ | 
| 147 | currentSnapshot_->wrapVector(diff); | 
| 148 | } | 
| 149 | double dist = diff.length(); | 
| 150 | if(dist > singleMoveDistance_){ | 
| 151 | moBool_[i][j] = true; | 
| 152 | }else{ | 
| 153 | moBool_[i][j] = false; | 
| 154 | } | 
| 155 | } | 
| 156 | } | 
| 157 |  | 
| 158 | int mobileAtomCount = 0; | 
| 159 | for(std::size_t i = 0; i < moBool_.size(); i++){ | 
| 160 | int frameIndex = moBool_[i].size(); | 
| 161 | bool mobileAtom = false; | 
| 162 | for(int j = 0; j < frameIndex; j++){ | 
| 163 | mobileAtom = mobileAtom || moBool_[i][j]; | 
| 164 | } | 
| 165 | moBool_[i][0] = mobileAtom; // is true if any value later in the | 
| 166 | // array is true, false otherwise | 
| 167 | if(mobileAtom){ | 
| 168 | mobileAtomCount++; | 
| 169 | } | 
| 170 | } | 
| 171 |  | 
| 172 | cout << "Mobile atom count: " << mobileAtomCount << "\n"; | 
| 173 |  | 
| 174 | // Here I shrink the size of the arrays, why look through 3888, | 
| 175 | // when you only need ~800.  Additionally, all of these are mobile | 
| 176 | // at some point in time, the others aren't, dead weight and | 
| 177 | // memory | 
| 178 | positions2_.resize(mobileAtomCount); | 
| 179 | moBool2_.resize(mobileAtomCount); | 
| 180 | int pos2index = 0; | 
| 181 | for(std::size_t i = 0; i < positions_.size(); i++){ | 
| 182 | int frameCount = positions_[i].size(); | 
| 183 | if(moBool_[i][0]){ | 
| 184 | for(int j = 0; j < frameCount; j++){ | 
| 185 | positions2_[pos2index].push_back(positions_[i][j]); | 
| 186 | moBool2_[pos2index].push_back(moBool_[i][j]); | 
| 187 | } | 
| 188 | pos2index++; | 
| 189 | } | 
| 190 | } | 
| 191 |  | 
| 192 | positions_.clear(); | 
| 193 | moBool_.clear(); | 
| 194 |  | 
| 195 | cout << "positions_ has been cleared: " << positions_.size() << "\n"; | 
| 196 | cout << "positions2_ has been filled: " << positions2_.size() << "\n"; | 
| 197 | cout << "positions2_ has " << positions2_[0].size() << " frames\n"; | 
| 198 |  | 
| 199 | //The important one! | 
| 200 | positionCorrelation(); | 
| 201 |  | 
| 202 |  | 
| 203 | //Write out my data | 
| 204 | std::ofstream diffStream; | 
| 205 | setOutputName(getPrefix(filename_) + ".Mdiffusion"); | 
| 206 | diffStream.open(outputFilename_.c_str()); | 
| 207 | diffStream << "#X&Y diffusion amounts\n"; | 
| 208 | diffStream << "#singleMoveDistance_: " << singleMoveDistance_ << "\n"; | 
| 209 | diffStream << "#Number of mobile atoms: " << positions2_.size() << "\n"; | 
| 210 | diffStream << "#time, <x(t)-x(0)>, <y(t)-y(0)>, <r(t)-r(0)>\n"; | 
| 211 |  | 
| 212 | for(std::size_t i = 0; i < xHist_.size(); i++){ | 
| 213 | diffStream << i << ", " << xHist_[i] << ", " << yHist_[i] << ", " | 
| 214 | << rHist_[i] << "\n"; | 
| 215 | } | 
| 216 | diffStream.close(); | 
| 217 |  | 
| 218 | } | 
| 219 |  | 
| 220 | void SurfaceDiffusion::positionCorrelation(){ | 
| 221 | RealType xDist = 0.0; | 
| 222 | RealType yDist = 0.0; | 
| 223 | RealType rDist = 0.0; | 
| 224 | int timeShift = 0; | 
| 225 | Vector3d kPos; | 
| 226 | Vector3d jPos; | 
| 227 | //biggest timeShift is positions2_[0].size() - 1? | 
| 228 | xHist_.clear(); | 
| 229 | yHist_.clear(); | 
| 230 | rHist_.clear(); | 
| 231 | count_.clear(); | 
| 232 | int frameResize = positions2_[0].size(); | 
| 233 | xHist_.resize(frameResize); | 
| 234 | yHist_.resize(frameResize); | 
| 235 | rHist_.resize(frameResize); | 
| 236 | count_.resize(frameResize); | 
| 237 | //loop over particles | 
| 238 | // loop over frames starting at j | 
| 239 | //  loop over frames starting at k = j (time shift of 0) | 
| 240 | for(std::size_t i = 0; i < positions2_.size(); i++){ | 
| 241 | int frames = positions2_[i].size() - 1; // for counting | 
| 242 | // properly, otherwise | 
| 243 | // moBool2_[i][j+1] will | 
| 244 | // go over | 
| 245 | for(int j = 0; j < frames; j++){ | 
| 246 | // if the particle is mobile between j and j + 1, then count | 
| 247 | // it for all timeShifts | 
| 248 | if(moBool2_[i][j+1]){ | 
| 249 | for(std::size_t k = j; k < positions2_[0].size(); k++){ | 
| 250 | //<x(t)-x(0)>  <y(t)-y(0)>  <r(t)-r(0)> | 
| 251 | //The positions stored are not wrapped, thus I don't need | 
| 252 | //to worry about pbc | 
| 253 | //Mean square displacement | 
| 254 | //So I do want the squared distances | 
| 255 |  | 
| 256 | kPos = positions2_[i][k]; | 
| 257 | jPos = positions2_[i][j]; | 
| 258 | xDist = kPos.x() - jPos.x(); | 
| 259 | xDist = xDist*xDist; | 
| 260 |  | 
| 261 | yDist = kPos.y() - jPos.y(); | 
| 262 | yDist = yDist*yDist; | 
| 263 |  | 
| 264 | rDist = (kPos - jPos).lengthSquare(); | 
| 265 |  | 
| 266 |  | 
| 267 | timeShift = k - j; | 
| 268 | xHist_[timeShift] += xDist; | 
| 269 | yHist_[timeShift] += yDist; | 
| 270 | rHist_[timeShift] += rDist; | 
| 271 | count_[timeShift]++; | 
| 272 | } | 
| 273 | } | 
| 274 | } | 
| 275 | } | 
| 276 | cout << "X, Y, R calculated\n"; | 
| 277 |  | 
| 278 | for(std::size_t i = 0; i < xHist_.size(); i++){ | 
| 279 | xHist_[i] = xHist_[i]/(count_[i]); | 
| 280 | yHist_[i] = yHist_[i]/(count_[i]); | 
| 281 | rHist_[i] = rHist_[i]/(count_[i]); | 
| 282 | } | 
| 283 | cout << "X, Y, R normalized\n"; | 
| 284 | } | 
| 285 |  | 
| 286 | } |