| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file ForceField.cpp | 
| 45 | * @author tlin | 
| 46 | * @date 11/04/2004 | 
| 47 | * @time 22:51am | 
| 48 | * @version 1.0 | 
| 49 | */ | 
| 50 |  | 
| 51 | #include <algorithm> | 
| 52 | #include "UseTheForce/ForceField.hpp" | 
| 53 | #include "utils/simError.h" | 
| 54 | #include "utils/Tuple.hpp" | 
| 55 | namespace OpenMD { | 
| 56 |  | 
| 57 | ForceField::ForceField() { | 
| 58 |  | 
| 59 | char* tempPath; | 
| 60 | tempPath = getenv("FORCE_PARAM_PATH"); | 
| 61 |  | 
| 62 | if (tempPath == NULL) { | 
| 63 | //convert a macro from compiler to a string in c++ | 
| 64 | STR_DEFINE(ffPath_, FRC_PATH ); | 
| 65 | } else { | 
| 66 | ffPath_ = tempPath; | 
| 67 | } | 
| 68 | } | 
| 69 |  | 
| 70 | /** | 
| 71 | * getAtomType by string | 
| 72 | * | 
| 73 | * finds the requested atom type in this force field using the string | 
| 74 | * name of the atom type. | 
| 75 | */ | 
| 76 | AtomType* ForceField::getAtomType(const std::string &at) { | 
| 77 | std::vector<std::string> keys; | 
| 78 | keys.push_back(at); | 
| 79 | return atomTypeCont_.find(keys); | 
| 80 | } | 
| 81 |  | 
| 82 | /** | 
| 83 | * getAtomType by ident | 
| 84 | * | 
| 85 | * finds the requested atom type in this force field using the | 
| 86 | * integer ident instead of the string name of the atom type. | 
| 87 | */ | 
| 88 | AtomType* ForceField::getAtomType(int ident) { | 
| 89 | std::string at = atypeIdentToName.find(ident)->second; | 
| 90 | return getAtomType(at); | 
| 91 | } | 
| 92 |  | 
| 93 | BondType* ForceField::getBondType(const std::string &at1, | 
| 94 | const std::string &at2) { | 
| 95 | std::vector<std::string> keys; | 
| 96 | keys.push_back(at1); | 
| 97 | keys.push_back(at2); | 
| 98 |  | 
| 99 | //try exact match first | 
| 100 | BondType* bondType = bondTypeCont_.find(keys); | 
| 101 | if (bondType) { | 
| 102 | return bondType; | 
| 103 | } else { | 
| 104 | AtomType* atype1; | 
| 105 | AtomType* atype2; | 
| 106 | std::vector<std::string> at1key; | 
| 107 | at1key.push_back(at1); | 
| 108 | atype1 = atomTypeCont_.find(at1key); | 
| 109 |  | 
| 110 | std::vector<std::string> at2key; | 
| 111 | at2key.push_back(at2); | 
| 112 | atype2 = atomTypeCont_.find(at2key); | 
| 113 |  | 
| 114 | // query atom types for their chains of responsibility | 
| 115 | std::vector<AtomType*> at1Chain = atype1->allYourBase(); | 
| 116 | std::vector<AtomType*> at2Chain = atype2->allYourBase(); | 
| 117 |  | 
| 118 | std::vector<AtomType*>::iterator i; | 
| 119 | std::vector<AtomType*>::iterator j; | 
| 120 |  | 
| 121 | int ii = 0; | 
| 122 | int jj = 0; | 
| 123 | int bondTypeScore; | 
| 124 |  | 
| 125 | std::vector<std::pair<int, std::vector<std::string> > > foundBonds; | 
| 126 |  | 
| 127 | for (i = at1Chain.begin(); i != at1Chain.end(); i++) { | 
| 128 | jj = 0; | 
| 129 | for (j = at2Chain.begin(); j != at2Chain.end(); j++) { | 
| 130 |  | 
| 131 | bondTypeScore = ii + jj; | 
| 132 |  | 
| 133 | std::vector<std::string> myKeys; | 
| 134 | myKeys.push_back((*i)->getName()); | 
| 135 | myKeys.push_back((*j)->getName()); | 
| 136 |  | 
| 137 | BondType* bondType = bondTypeCont_.find(myKeys); | 
| 138 | if (bondType) { | 
| 139 | foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); | 
| 140 | } | 
| 141 | jj++; | 
| 142 | } | 
| 143 | ii++; | 
| 144 | } | 
| 145 |  | 
| 146 |  | 
| 147 | if (foundBonds.size() > 0) { | 
| 148 | // sort the foundBonds by the score: | 
| 149 | std::sort(foundBonds.begin(), foundBonds.end()); | 
| 150 |  | 
| 151 | int bestScore = foundBonds[0].first; | 
| 152 | std::vector<std::string> theKeys = foundBonds[0].second; | 
| 153 |  | 
| 154 | BondType* bestType = bondTypeCont_.find(theKeys); | 
| 155 |  | 
| 156 | return bestType; | 
| 157 | } else { | 
| 158 | //if no exact match found, try wild card match | 
| 159 | return bondTypeCont_.find(keys, wildCardAtomTypeName_); | 
| 160 | } | 
| 161 | } | 
| 162 | } | 
| 163 |  | 
| 164 | BendType* ForceField::getBendType(const std::string &at1, | 
| 165 | const std::string &at2, | 
| 166 | const std::string &at3) { | 
| 167 | std::vector<std::string> keys; | 
| 168 | keys.push_back(at1); | 
| 169 | keys.push_back(at2); | 
| 170 | keys.push_back(at3); | 
| 171 |  | 
| 172 | //try exact match first | 
| 173 | BendType* bendType = bendTypeCont_.find(keys); | 
| 174 | if (bendType) { | 
| 175 | return bendType; | 
| 176 | } else { | 
| 177 |  | 
| 178 | AtomType* atype1; | 
| 179 | AtomType* atype2; | 
| 180 | AtomType* atype3; | 
| 181 | std::vector<std::string> at1key; | 
| 182 | at1key.push_back(at1); | 
| 183 | atype1 = atomTypeCont_.find(at1key); | 
| 184 |  | 
| 185 | std::vector<std::string> at2key; | 
| 186 | at2key.push_back(at2); | 
| 187 | atype2 = atomTypeCont_.find(at2key); | 
| 188 |  | 
| 189 | std::vector<std::string> at3key; | 
| 190 | at3key.push_back(at3); | 
| 191 | atype3 = atomTypeCont_.find(at3key); | 
| 192 |  | 
| 193 | // query atom types for their chains of responsibility | 
| 194 | std::vector<AtomType*> at1Chain = atype1->allYourBase(); | 
| 195 | std::vector<AtomType*> at2Chain = atype2->allYourBase(); | 
| 196 | std::vector<AtomType*> at3Chain = atype3->allYourBase(); | 
| 197 |  | 
| 198 | std::vector<AtomType*>::iterator i; | 
| 199 | std::vector<AtomType*>::iterator j; | 
| 200 | std::vector<AtomType*>::iterator k; | 
| 201 |  | 
| 202 | int ii = 0; | 
| 203 | int jj = 0; | 
| 204 | int kk = 0; | 
| 205 | int IKscore; | 
| 206 |  | 
| 207 | std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; | 
| 208 |  | 
| 209 | for (j = at2Chain.begin(); j != at2Chain.end(); j++) { | 
| 210 | ii = 0; | 
| 211 | for (i = at1Chain.begin(); i != at1Chain.end(); i++) { | 
| 212 | kk = 0; | 
| 213 | for (k = at3Chain.begin(); k != at3Chain.end(); k++) { | 
| 214 |  | 
| 215 | IKscore = ii + kk; | 
| 216 |  | 
| 217 | std::vector<std::string> myKeys; | 
| 218 | myKeys.push_back((*i)->getName()); | 
| 219 | myKeys.push_back((*j)->getName()); | 
| 220 | myKeys.push_back((*k)->getName()); | 
| 221 |  | 
| 222 | BendType* bendType = bendTypeCont_.find(myKeys); | 
| 223 | if (bendType) { | 
| 224 | foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); | 
| 225 | } | 
| 226 | kk++; | 
| 227 | } | 
| 228 | ii++; | 
| 229 | } | 
| 230 | jj++; | 
| 231 | } | 
| 232 |  | 
| 233 | if (foundBends.size() > 0) { | 
| 234 | std::sort(foundBends.begin(), foundBends.end()); | 
| 235 | int jscore = foundBends[0].first; | 
| 236 | int ikscore = foundBends[0].second; | 
| 237 | std::vector<std::string> theKeys = foundBends[0].third; | 
| 238 |  | 
| 239 | BendType* bestType = bendTypeCont_.find(theKeys); | 
| 240 | return bestType; | 
| 241 | } else { | 
| 242 | //if no exact match found, try wild card match | 
| 243 | return bendTypeCont_.find(keys, wildCardAtomTypeName_); | 
| 244 | } | 
| 245 | } | 
| 246 | } | 
| 247 |  | 
| 248 | TorsionType* ForceField::getTorsionType(const std::string &at1, | 
| 249 | const std::string &at2, | 
| 250 | const std::string &at3, | 
| 251 | const std::string &at4) { | 
| 252 | std::vector<std::string> keys; | 
| 253 | keys.push_back(at1); | 
| 254 | keys.push_back(at2); | 
| 255 | keys.push_back(at3); | 
| 256 | keys.push_back(at4); | 
| 257 |  | 
| 258 |  | 
| 259 | //try exact match first | 
| 260 | TorsionType* torsionType = torsionTypeCont_.find(keys); | 
| 261 | if (torsionType) { | 
| 262 | return torsionType; | 
| 263 | } else { | 
| 264 |  | 
| 265 | AtomType* atype1; | 
| 266 | AtomType* atype2; | 
| 267 | AtomType* atype3; | 
| 268 | AtomType* atype4; | 
| 269 | std::vector<std::string> at1key; | 
| 270 | at1key.push_back(at1); | 
| 271 | atype1 = atomTypeCont_.find(at1key); | 
| 272 |  | 
| 273 | std::vector<std::string> at2key; | 
| 274 | at2key.push_back(at2); | 
| 275 | atype2 = atomTypeCont_.find(at2key); | 
| 276 |  | 
| 277 | std::vector<std::string> at3key; | 
| 278 | at3key.push_back(at3); | 
| 279 | atype3 = atomTypeCont_.find(at3key); | 
| 280 |  | 
| 281 | std::vector<std::string> at4key; | 
| 282 | at4key.push_back(at4); | 
| 283 | atype4 = atomTypeCont_.find(at4key); | 
| 284 |  | 
| 285 | // query atom types for their chains of responsibility | 
| 286 | std::vector<AtomType*> at1Chain = atype1->allYourBase(); | 
| 287 | std::vector<AtomType*> at2Chain = atype2->allYourBase(); | 
| 288 | std::vector<AtomType*> at3Chain = atype3->allYourBase(); | 
| 289 | std::vector<AtomType*> at4Chain = atype4->allYourBase(); | 
| 290 |  | 
| 291 | std::vector<AtomType*>::iterator i; | 
| 292 | std::vector<AtomType*>::iterator j; | 
| 293 | std::vector<AtomType*>::iterator k; | 
| 294 | std::vector<AtomType*>::iterator l; | 
| 295 |  | 
| 296 | int ii = 0; | 
| 297 | int jj = 0; | 
| 298 | int kk = 0; | 
| 299 | int ll = 0; | 
| 300 | int ILscore; | 
| 301 | int JKscore; | 
| 302 |  | 
| 303 | std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; | 
| 304 |  | 
| 305 | for (j = at2Chain.begin(); j != at2Chain.end(); j++) { | 
| 306 | kk = 0; | 
| 307 | for (k = at3Chain.begin(); k != at3Chain.end(); k++) { | 
| 308 | ii = 0; | 
| 309 | for (i = at1Chain.begin(); i != at1Chain.end(); i++) { | 
| 310 | ll = 0; | 
| 311 | for (l = at4Chain.begin(); l != at4Chain.end(); l++) { | 
| 312 |  | 
| 313 | ILscore = ii + ll; | 
| 314 | JKscore = jj + kk; | 
| 315 |  | 
| 316 | std::vector<std::string> myKeys; | 
| 317 | myKeys.push_back((*i)->getName()); | 
| 318 | myKeys.push_back((*j)->getName()); | 
| 319 | myKeys.push_back((*k)->getName()); | 
| 320 | myKeys.push_back((*l)->getName()); | 
| 321 |  | 
| 322 | TorsionType* torsionType = torsionTypeCont_.find(myKeys); | 
| 323 | if (torsionType) { | 
| 324 | foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); | 
| 325 | } | 
| 326 | ll++; | 
| 327 | } | 
| 328 | ii++; | 
| 329 | } | 
| 330 | kk++; | 
| 331 | } | 
| 332 | jj++; | 
| 333 | } | 
| 334 |  | 
| 335 | if (foundTorsions.size() > 0) { | 
| 336 | std::sort(foundTorsions.begin(), foundTorsions.end()); | 
| 337 | int jkscore = foundTorsions[0].first; | 
| 338 | int ilscore = foundTorsions[0].second; | 
| 339 | std::vector<std::string> theKeys = foundTorsions[0].third; | 
| 340 |  | 
| 341 | TorsionType* bestType = torsionTypeCont_.find(theKeys); | 
| 342 | return bestType; | 
| 343 | } else { | 
| 344 | //if no exact match found, try wild card match | 
| 345 | return torsionTypeCont_.find(keys, wildCardAtomTypeName_); | 
| 346 | } | 
| 347 | } | 
| 348 | } | 
| 349 |  | 
| 350 | InversionType* ForceField::getInversionType(const std::string &at1, | 
| 351 | const std::string &at2, | 
| 352 | const std::string &at3, | 
| 353 | const std::string &at4) { | 
| 354 | std::vector<std::string> keys; | 
| 355 | keys.push_back(at1); | 
| 356 | keys.push_back(at2); | 
| 357 | keys.push_back(at3); | 
| 358 | keys.push_back(at4); | 
| 359 |  | 
| 360 | //try exact match first | 
| 361 | InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); | 
| 362 | if (inversionType) { | 
| 363 | return inversionType; | 
| 364 | } else { | 
| 365 |  | 
| 366 | AtomType* atype1; | 
| 367 | AtomType* atype2; | 
| 368 | AtomType* atype3; | 
| 369 | AtomType* atype4; | 
| 370 | std::vector<std::string> at1key; | 
| 371 | at1key.push_back(at1); | 
| 372 | atype1 = atomTypeCont_.find(at1key); | 
| 373 |  | 
| 374 | std::vector<std::string> at2key; | 
| 375 | at2key.push_back(at2); | 
| 376 | atype2 = atomTypeCont_.find(at2key); | 
| 377 |  | 
| 378 | std::vector<std::string> at3key; | 
| 379 | at3key.push_back(at3); | 
| 380 | atype3 = atomTypeCont_.find(at3key); | 
| 381 |  | 
| 382 | std::vector<std::string> at4key; | 
| 383 | at4key.push_back(at4); | 
| 384 | atype4 = atomTypeCont_.find(at4key); | 
| 385 |  | 
| 386 | // query atom types for their chains of responsibility | 
| 387 | std::vector<AtomType*> at1Chain = atype1->allYourBase(); | 
| 388 | std::vector<AtomType*> at2Chain = atype2->allYourBase(); | 
| 389 | std::vector<AtomType*> at3Chain = atype3->allYourBase(); | 
| 390 | std::vector<AtomType*> at4Chain = atype4->allYourBase(); | 
| 391 |  | 
| 392 | std::vector<AtomType*>::iterator i; | 
| 393 | std::vector<AtomType*>::iterator j; | 
| 394 | std::vector<AtomType*>::iterator k; | 
| 395 | std::vector<AtomType*>::iterator l; | 
| 396 |  | 
| 397 | int ii = 0; | 
| 398 | int jj = 0; | 
| 399 | int kk = 0; | 
| 400 | int ll = 0; | 
| 401 | int Iscore; | 
| 402 | int JKLscore; | 
| 403 |  | 
| 404 | std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; | 
| 405 |  | 
| 406 | for (j = at2Chain.begin(); j != at2Chain.end(); j++) { | 
| 407 | kk = 0; | 
| 408 | for (k = at3Chain.begin(); k != at3Chain.end(); k++) { | 
| 409 | ii = 0; | 
| 410 | for (i = at1Chain.begin(); i != at1Chain.end(); i++) { | 
| 411 | ll = 0; | 
| 412 | for (l = at4Chain.begin(); l != at4Chain.end(); l++) { | 
| 413 |  | 
| 414 | Iscore = ii; | 
| 415 | JKLscore = jj + kk + ll; | 
| 416 |  | 
| 417 | std::vector<std::string> myKeys; | 
| 418 | myKeys.push_back((*i)->getName()); | 
| 419 | myKeys.push_back((*j)->getName()); | 
| 420 | myKeys.push_back((*k)->getName()); | 
| 421 | myKeys.push_back((*l)->getName()); | 
| 422 |  | 
| 423 | InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); | 
| 424 | if (inversionType) { | 
| 425 | foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); | 
| 426 | } | 
| 427 | ll++; | 
| 428 | } | 
| 429 | ii++; | 
| 430 | } | 
| 431 | kk++; | 
| 432 | } | 
| 433 | jj++; | 
| 434 | } | 
| 435 |  | 
| 436 | if (foundInversions.size() > 0) { | 
| 437 | std::sort(foundInversions.begin(), foundInversions.end()); | 
| 438 | int iscore = foundInversions[0].first; | 
| 439 | int jklscore = foundInversions[0].second; | 
| 440 | std::vector<std::string> theKeys = foundInversions[0].third; | 
| 441 |  | 
| 442 | InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); | 
| 443 | return bestType; | 
| 444 | } else { | 
| 445 | //if no exact match found, try wild card match | 
| 446 | return inversionTypeCont_.find(keys, wildCardAtomTypeName_); | 
| 447 | } | 
| 448 | } | 
| 449 | } | 
| 450 |  | 
| 451 | NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { | 
| 452 |  | 
| 453 | std::vector<std::string> keys; | 
| 454 | keys.push_back(at1); | 
| 455 | keys.push_back(at2); | 
| 456 |  | 
| 457 | //try exact match first | 
| 458 | NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); | 
| 459 | if (nbiType) { | 
| 460 | return nbiType; | 
| 461 | } else { | 
| 462 | AtomType* atype1; | 
| 463 | AtomType* atype2; | 
| 464 | std::vector<std::string> at1key; | 
| 465 | at1key.push_back(at1); | 
| 466 | atype1 = atomTypeCont_.find(at1key); | 
| 467 |  | 
| 468 | std::vector<std::string> at2key; | 
| 469 | at2key.push_back(at2); | 
| 470 | atype2 = atomTypeCont_.find(at2key); | 
| 471 |  | 
| 472 | // query atom types for their chains of responsibility | 
| 473 | std::vector<AtomType*> at1Chain = atype1->allYourBase(); | 
| 474 | std::vector<AtomType*> at2Chain = atype2->allYourBase(); | 
| 475 |  | 
| 476 | std::vector<AtomType*>::iterator i; | 
| 477 | std::vector<AtomType*>::iterator j; | 
| 478 |  | 
| 479 | int ii = 0; | 
| 480 | int jj = 0; | 
| 481 | int nbiTypeScore; | 
| 482 |  | 
| 483 | std::vector<std::pair<int, std::vector<std::string> > > foundNBI; | 
| 484 |  | 
| 485 | for (i = at1Chain.begin(); i != at1Chain.end(); i++) { | 
| 486 | jj = 0; | 
| 487 | for (j = at2Chain.begin(); j != at2Chain.end(); j++) { | 
| 488 |  | 
| 489 | nbiTypeScore = ii + jj; | 
| 490 |  | 
| 491 | std::vector<std::string> myKeys; | 
| 492 | myKeys.push_back((*i)->getName()); | 
| 493 | myKeys.push_back((*j)->getName()); | 
| 494 |  | 
| 495 | NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys); | 
| 496 | if (nbiType) { | 
| 497 | foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys)); | 
| 498 | } | 
| 499 | jj++; | 
| 500 | } | 
| 501 | ii++; | 
| 502 | } | 
| 503 |  | 
| 504 |  | 
| 505 | if (foundNBI.size() > 0) { | 
| 506 | // sort the foundNBI by the score: | 
| 507 | std::sort(foundNBI.begin(), foundNBI.end()); | 
| 508 |  | 
| 509 | int bestScore = foundNBI[0].first; | 
| 510 | std::vector<std::string> theKeys = foundNBI[0].second; | 
| 511 |  | 
| 512 | NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys); | 
| 513 | return bestType; | 
| 514 | } else { | 
| 515 | //if no exact match found, try wild card match | 
| 516 | return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); | 
| 517 | } | 
| 518 | } | 
| 519 | } | 
| 520 |  | 
| 521 | BondType* ForceField::getExactBondType(const std::string &at1, | 
| 522 | const std::string &at2){ | 
| 523 | std::vector<std::string> keys; | 
| 524 | keys.push_back(at1); | 
| 525 | keys.push_back(at2); | 
| 526 | return bondTypeCont_.find(keys); | 
| 527 | } | 
| 528 |  | 
| 529 | BendType* ForceField::getExactBendType(const std::string &at1, | 
| 530 | const std::string &at2, | 
| 531 | const std::string &at3){ | 
| 532 | std::vector<std::string> keys; | 
| 533 | keys.push_back(at1); | 
| 534 | keys.push_back(at2); | 
| 535 | keys.push_back(at3); | 
| 536 | return bendTypeCont_.find(keys); | 
| 537 | } | 
| 538 |  | 
| 539 | TorsionType* ForceField::getExactTorsionType(const std::string &at1, | 
| 540 | const std::string &at2, | 
| 541 | const std::string &at3, | 
| 542 | const std::string &at4){ | 
| 543 | std::vector<std::string> keys; | 
| 544 | keys.push_back(at1); | 
| 545 | keys.push_back(at2); | 
| 546 | keys.push_back(at3); | 
| 547 | keys.push_back(at4); | 
| 548 | return torsionTypeCont_.find(keys); | 
| 549 | } | 
| 550 |  | 
| 551 | InversionType* ForceField::getExactInversionType(const std::string &at1, | 
| 552 | const std::string &at2, | 
| 553 | const std::string &at3, | 
| 554 | const std::string &at4){ | 
| 555 | std::vector<std::string> keys; | 
| 556 | keys.push_back(at1); | 
| 557 | keys.push_back(at2); | 
| 558 | keys.push_back(at3); | 
| 559 | keys.push_back(at4); | 
| 560 | return inversionTypeCont_.find(keys); | 
| 561 | } | 
| 562 |  | 
| 563 | NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ | 
| 564 | std::vector<std::string> keys; | 
| 565 | keys.push_back(at1); | 
| 566 | keys.push_back(at2); | 
| 567 | return nonBondedInteractionTypeCont_.find(keys); | 
| 568 | } | 
| 569 |  | 
| 570 |  | 
| 571 | bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { | 
| 572 | std::vector<std::string> keys; | 
| 573 | keys.push_back(at); | 
| 574 | atypeIdentToName[atomType->getIdent()] = at; | 
| 575 | return atomTypeCont_.add(keys, atomType); | 
| 576 | } | 
| 577 |  | 
| 578 | bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { | 
| 579 | std::vector<std::string> keys; | 
| 580 | keys.push_back(at); | 
| 581 | atypeIdentToName[atomType->getIdent()] = at; | 
| 582 | return atomTypeCont_.replace(keys, atomType); | 
| 583 | } | 
| 584 |  | 
| 585 | bool ForceField::addBondType(const std::string &at1, const std::string &at2, | 
| 586 | BondType* bondType) { | 
| 587 | std::vector<std::string> keys; | 
| 588 | keys.push_back(at1); | 
| 589 | keys.push_back(at2); | 
| 590 | return bondTypeCont_.add(keys, bondType); | 
| 591 | } | 
| 592 |  | 
| 593 | bool ForceField::addBendType(const std::string &at1, const std::string &at2, | 
| 594 | const std::string &at3, BendType* bendType) { | 
| 595 | std::vector<std::string> keys; | 
| 596 | keys.push_back(at1); | 
| 597 | keys.push_back(at2); | 
| 598 | keys.push_back(at3); | 
| 599 | return bendTypeCont_.add(keys, bendType); | 
| 600 | } | 
| 601 |  | 
| 602 | bool ForceField::addTorsionType(const std::string &at1, | 
| 603 | const std::string &at2, | 
| 604 | const std::string &at3, | 
| 605 | const std::string &at4, | 
| 606 | TorsionType* torsionType) { | 
| 607 | std::vector<std::string> keys; | 
| 608 | keys.push_back(at1); | 
| 609 | keys.push_back(at2); | 
| 610 | keys.push_back(at3); | 
| 611 | keys.push_back(at4); | 
| 612 | return torsionTypeCont_.add(keys, torsionType); | 
| 613 | } | 
| 614 |  | 
| 615 | bool ForceField::addInversionType(const std::string &at1, | 
| 616 | const std::string &at2, | 
| 617 | const std::string &at3, | 
| 618 | const std::string &at4, | 
| 619 | InversionType* inversionType) { | 
| 620 | std::vector<std::string> keys; | 
| 621 | keys.push_back(at1); | 
| 622 | keys.push_back(at2); | 
| 623 | keys.push_back(at3); | 
| 624 | keys.push_back(at4); | 
| 625 | return inversionTypeCont_.add(keys, inversionType); | 
| 626 | } | 
| 627 |  | 
| 628 | bool ForceField::addNonBondedInteractionType(const std::string &at1, | 
| 629 | const std::string &at2, | 
| 630 | NonBondedInteractionType* nbiType) { | 
| 631 | std::vector<std::string> keys; | 
| 632 | keys.push_back(at1); | 
| 633 | keys.push_back(at2); | 
| 634 | return nonBondedInteractionTypeCont_.add(keys, nbiType); | 
| 635 | } | 
| 636 |  | 
| 637 | RealType ForceField::getRcutFromAtomType(AtomType* at) { | 
| 638 | /**@todo */ | 
| 639 | GenericData* data; | 
| 640 | RealType rcut = 0.0; | 
| 641 |  | 
| 642 | if (at->isLennardJones()) { | 
| 643 | data = at->getPropertyByName("LennardJones"); | 
| 644 | if (data != NULL) { | 
| 645 | LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); | 
| 646 |  | 
| 647 | if (ljData != NULL) { | 
| 648 | LJParam ljParam = ljData->getData(); | 
| 649 |  | 
| 650 | //by default use 2.5*sigma as cutoff radius | 
| 651 | rcut = 2.5 * ljParam.sigma; | 
| 652 |  | 
| 653 | } else { | 
| 654 | sprintf( painCave.errMsg, | 
| 655 | "Can not cast GenericData to LJParam\n"); | 
| 656 | painCave.severity = OPENMD_ERROR; | 
| 657 | painCave.isFatal = 1; | 
| 658 | simError(); | 
| 659 | } | 
| 660 | } else { | 
| 661 | sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); | 
| 662 | painCave.severity = OPENMD_ERROR; | 
| 663 | painCave.isFatal = 1; | 
| 664 | simError(); | 
| 665 | } | 
| 666 | } | 
| 667 | return rcut; | 
| 668 | } | 
| 669 |  | 
| 670 |  | 
| 671 | ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { | 
| 672 | std::string forceFieldFilename(filename); | 
| 673 | ifstrstream* ffStream = new ifstrstream(); | 
| 674 |  | 
| 675 | //try to open the force filed file in current directory first | 
| 676 | ffStream->open(forceFieldFilename.c_str()); | 
| 677 | if(!ffStream->is_open()){ | 
| 678 |  | 
| 679 | forceFieldFilename = ffPath_ + "/" + forceFieldFilename; | 
| 680 | ffStream->open( forceFieldFilename.c_str() ); | 
| 681 |  | 
| 682 | //if current directory does not contain the force field file, | 
| 683 | //try to open it in the path | 
| 684 | if(!ffStream->is_open()){ | 
| 685 |  | 
| 686 | sprintf( painCave.errMsg, | 
| 687 | "Error opening the force field parameter file:\n" | 
| 688 | "\t%s\n" | 
| 689 | "\tHave you tried setting the FORCE_PARAM_PATH environment " | 
| 690 | "variable?\n", | 
| 691 | forceFieldFilename.c_str() ); | 
| 692 | painCave.severity = OPENMD_ERROR; | 
| 693 | painCave.isFatal = 1; | 
| 694 | simError(); | 
| 695 | } | 
| 696 | } | 
| 697 | return ffStream; | 
| 698 | } | 
| 699 |  | 
| 700 | } //end namespace OpenMD |