| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file ForceManager.cpp | 
| 45 | * @author tlin | 
| 46 | * @date 11/09/2004 | 
| 47 | * @version 1.0 | 
| 48 | */ | 
| 49 |  | 
| 50 |  | 
| 51 | #include "brains/ForceManager.hpp" | 
| 52 | #include "primitives/Molecule.hpp" | 
| 53 | #define __OPENMD_C | 
| 54 | #include "utils/simError.h" | 
| 55 | #include "primitives/Bond.hpp" | 
| 56 | #include "primitives/Bend.hpp" | 
| 57 | #include "primitives/Torsion.hpp" | 
| 58 | #include "primitives/Inversion.hpp" | 
| 59 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 60 | #include "perturbations/UniformField.hpp" | 
| 61 | #include "perturbations/UniformGradient.hpp" | 
| 62 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 63 |  | 
| 64 | #include <cstdio> | 
| 65 | #include <iostream> | 
| 66 | #include <iomanip> | 
| 67 |  | 
| 68 | using namespace std; | 
| 69 | namespace OpenMD { | 
| 70 |  | 
| 71 | ForceManager::ForceManager(SimInfo * info) : initialized_(false), info_(info), | 
| 72 | switcher_(NULL) { | 
| 73 | forceField_ = info_->getForceField(); | 
| 74 | interactionMan_ = new InteractionManager(); | 
| 75 | fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); | 
| 76 | thermo = new Thermo(info_); | 
| 77 | } | 
| 78 |  | 
| 79 | ForceManager::~ForceManager() { | 
| 80 | perturbations_.clear(); | 
| 81 |  | 
| 82 | delete switcher_; | 
| 83 | delete interactionMan_; | 
| 84 | delete fDecomp_; | 
| 85 | delete thermo; | 
| 86 | } | 
| 87 |  | 
| 88 | /** | 
| 89 | * setupCutoffs | 
| 90 | * | 
| 91 | * Sets the values of cutoffRadius, switchingRadius, and cutoffMethod | 
| 92 | * | 
| 93 | * cutoffRadius : realType | 
| 94 | *  If the cutoffRadius was explicitly set, use that value. | 
| 95 | *  If the cutoffRadius was not explicitly set: | 
| 96 | *      Are there electrostatic atoms?  Use 12.0 Angstroms. | 
| 97 | *      No electrostatic atoms?  Poll the atom types present in the | 
| 98 | *      simulation for suggested cutoff values (e.g. 2.5 * sigma). | 
| 99 | *      Use the maximum suggested value that was found. | 
| 100 | * | 
| 101 | * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED, | 
| 102 | *                        SHIFTED_POTENTIAL, or EWALD_FULL) | 
| 103 | *      If cutoffMethod was explicitly set, use that choice. | 
| 104 | *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE | 
| 105 | * | 
| 106 | * switchingRadius : realType | 
| 107 | *  If the cutoffMethod was set to SWITCHED: | 
| 108 | *      If the switchingRadius was explicitly set, use that value | 
| 109 | *          (but do a sanity check first). | 
| 110 | *      If the switchingRadius was not explicitly set: use 0.85 * | 
| 111 | *      cutoffRadius_ | 
| 112 | *  If the cutoffMethod was not set to SWITCHED: | 
| 113 | *      Set switchingRadius equal to cutoffRadius for safety. | 
| 114 | */ | 
| 115 | void ForceManager::setupCutoffs() { | 
| 116 |  | 
| 117 | Globals* simParams_ = info_->getSimParams(); | 
| 118 | int mdFileVersion; | 
| 119 | rCut_ = 0.0; //Needs a value for a later max() call; | 
| 120 |  | 
| 121 | if (simParams_->haveMDfileVersion()) | 
| 122 | mdFileVersion = simParams_->getMDfileVersion(); | 
| 123 | else | 
| 124 | mdFileVersion = 0; | 
| 125 |  | 
| 126 | // We need the list of simulated atom types to figure out cutoffs | 
| 127 | // as well as long range corrections. | 
| 128 |  | 
| 129 | set<AtomType*>::iterator i; | 
| 130 | set<AtomType*> atomTypes_; | 
| 131 | atomTypes_ = info_->getSimulatedAtomTypes(); | 
| 132 |  | 
| 133 | if (simParams_->haveCutoffRadius()) { | 
| 134 | rCut_ = simParams_->getCutoffRadius(); | 
| 135 | } else { | 
| 136 | if (info_->usesElectrostaticAtoms()) { | 
| 137 | sprintf(painCave.errMsg, | 
| 138 | "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" | 
| 139 | "\tOpenMD will use a default value of 12.0 angstroms" | 
| 140 | "\tfor the cutoffRadius.\n"); | 
| 141 | painCave.isFatal = 0; | 
| 142 | painCave.severity = OPENMD_INFO; | 
| 143 | simError(); | 
| 144 | rCut_ = 12.0; | 
| 145 | } else { | 
| 146 | RealType thisCut; | 
| 147 | for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { | 
| 148 | thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); | 
| 149 | rCut_ = max(thisCut, rCut_); | 
| 150 | } | 
| 151 | sprintf(painCave.errMsg, | 
| 152 | "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" | 
| 153 | "\tOpenMD will use %lf angstroms.\n", | 
| 154 | rCut_); | 
| 155 | painCave.isFatal = 0; | 
| 156 | painCave.severity = OPENMD_INFO; | 
| 157 | simError(); | 
| 158 | } | 
| 159 | } | 
| 160 |  | 
| 161 | fDecomp_->setCutoffRadius(rCut_); | 
| 162 | interactionMan_->setCutoffRadius(rCut_); | 
| 163 | rCutSq_ = rCut_ * rCut_; | 
| 164 |  | 
| 165 | map<string, CutoffMethod> stringToCutoffMethod; | 
| 166 | stringToCutoffMethod["HARD"] = HARD; | 
| 167 | stringToCutoffMethod["SWITCHED"] = SWITCHED; | 
| 168 | stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; | 
| 169 | stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; | 
| 170 | stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED; | 
| 171 | stringToCutoffMethod["EWALD_FULL"] = EWALD_FULL; | 
| 172 |  | 
| 173 | if (simParams_->haveCutoffMethod()) { | 
| 174 | string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); | 
| 175 | map<string, CutoffMethod>::iterator i; | 
| 176 | i = stringToCutoffMethod.find(cutMeth); | 
| 177 | if (i == stringToCutoffMethod.end()) { | 
| 178 | sprintf(painCave.errMsg, | 
| 179 | "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" | 
| 180 | "\tShould be one of: " | 
| 181 | "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n" | 
| 182 | "\tSHIFTED_FORCE, or EWALD_FULL\n", | 
| 183 | cutMeth.c_str()); | 
| 184 | painCave.isFatal = 1; | 
| 185 | painCave.severity = OPENMD_ERROR; | 
| 186 | simError(); | 
| 187 | } else { | 
| 188 | cutoffMethod_ = i->second; | 
| 189 | } | 
| 190 | } else { | 
| 191 | if (mdFileVersion > 1) { | 
| 192 | sprintf(painCave.errMsg, | 
| 193 | "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" | 
| 194 | "\tOpenMD will use SHIFTED_FORCE.\n"); | 
| 195 | painCave.isFatal = 0; | 
| 196 | painCave.severity = OPENMD_INFO; | 
| 197 | simError(); | 
| 198 | cutoffMethod_ = SHIFTED_FORCE; | 
| 199 | } else { | 
| 200 | // handle the case where the old file version was in play | 
| 201 | // (there should be no cutoffMethod, so we have to deduce it | 
| 202 | // from other data). | 
| 203 |  | 
| 204 | sprintf(painCave.errMsg, | 
| 205 | "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n" | 
| 206 | "\tOpenMD found a file which does not set a cutoffMethod.\n" | 
| 207 | "\tOpenMD will attempt to deduce a cutoffMethod using the\n" | 
| 208 | "\tbehavior of the older (version 1) code.  To remove this\n" | 
| 209 | "\twarning, add an explicit cutoffMethod and change the top\n" | 
| 210 | "\tof the file so that it begins with <OpenMD version=2>\n"); | 
| 211 | painCave.isFatal = 0; | 
| 212 | painCave.severity = OPENMD_WARNING; | 
| 213 | simError(); | 
| 214 |  | 
| 215 | // The old file version tethered the shifting behavior to the | 
| 216 | // electrostaticSummationMethod keyword. | 
| 217 |  | 
| 218 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 219 | string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 220 | toUpper(myMethod); | 
| 221 |  | 
| 222 | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 223 | cutoffMethod_ = SHIFTED_POTENTIAL; | 
| 224 | } else if (myMethod == "SHIFTED_FORCE") { | 
| 225 | cutoffMethod_ = SHIFTED_FORCE; | 
| 226 | } else if (myMethod == "TAYLOR_SHIFTED") { | 
| 227 | cutoffMethod_ = TAYLOR_SHIFTED; | 
| 228 | } else if (myMethod == "EWALD_FULL") { | 
| 229 | cutoffMethod_ = EWALD_FULL; | 
| 230 | } | 
| 231 |  | 
| 232 | if (simParams_->haveSwitchingRadius()) | 
| 233 | rSwitch_ = simParams_->getSwitchingRadius(); | 
| 234 |  | 
| 235 | if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" || | 
| 236 | myMethod == "TAYLOR_SHIFTED" || myMethod == "EWALD_FULL") { | 
| 237 | if (simParams_->haveSwitchingRadius()){ | 
| 238 | sprintf(painCave.errMsg, | 
| 239 | "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n" | 
| 240 | "\tA value was set for the switchingRadius\n" | 
| 241 | "\teven though the electrostaticSummationMethod was\n" | 
| 242 | "\tset to %s\n", myMethod.c_str()); | 
| 243 | painCave.severity = OPENMD_WARNING; | 
| 244 | painCave.isFatal = 1; | 
| 245 | simError(); | 
| 246 | } | 
| 247 | } | 
| 248 | if (abs(rCut_ - rSwitch_) < 0.0001) { | 
| 249 | if (cutoffMethod_ == SHIFTED_FORCE) { | 
| 250 | sprintf(painCave.errMsg, | 
| 251 | "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" | 
| 252 | "\tcutoffRadius and switchingRadius are set to the\n" | 
| 253 | "\tsame value.  OpenMD will use shifted force\n" | 
| 254 | "\tpotentials instead of switching functions.\n"); | 
| 255 | painCave.isFatal = 0; | 
| 256 | painCave.severity = OPENMD_WARNING; | 
| 257 | simError(); | 
| 258 | } else { | 
| 259 | cutoffMethod_ = SHIFTED_POTENTIAL; | 
| 260 | sprintf(painCave.errMsg, | 
| 261 | "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" | 
| 262 | "\tcutoffRadius and switchingRadius are set to the\n" | 
| 263 | "\tsame value.  OpenMD will use shifted potentials\n" | 
| 264 | "\tinstead of switching functions.\n"); | 
| 265 | painCave.isFatal = 0; | 
| 266 | painCave.severity = OPENMD_WARNING; | 
| 267 | simError(); | 
| 268 | } | 
| 269 | } | 
| 270 | } | 
| 271 | } | 
| 272 | } | 
| 273 |  | 
| 274 | // create the switching function object: | 
| 275 |  | 
| 276 | switcher_ = new SwitchingFunction(); | 
| 277 |  | 
| 278 | if (cutoffMethod_ == SWITCHED) { | 
| 279 | if (simParams_->haveSwitchingRadius()) { | 
| 280 | rSwitch_ = simParams_->getSwitchingRadius(); | 
| 281 | if (rSwitch_ > rCut_) { | 
| 282 | sprintf(painCave.errMsg, | 
| 283 | "ForceManager::setupCutoffs: switchingRadius (%f) is larger " | 
| 284 | "than the cutoffRadius(%f)\n", rSwitch_, rCut_); | 
| 285 | painCave.isFatal = 1; | 
| 286 | painCave.severity = OPENMD_ERROR; | 
| 287 | simError(); | 
| 288 | } | 
| 289 | } else { | 
| 290 | rSwitch_ = 0.85 * rCut_; | 
| 291 | sprintf(painCave.errMsg, | 
| 292 | "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" | 
| 293 | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" | 
| 294 | "\tswitchingRadius = %f. for this simulation\n", rSwitch_); | 
| 295 | painCave.isFatal = 0; | 
| 296 | painCave.severity = OPENMD_WARNING; | 
| 297 | simError(); | 
| 298 | } | 
| 299 | } else { | 
| 300 | if (mdFileVersion > 1) { | 
| 301 | // throw an error if we define a switching radius and don't need one. | 
| 302 | // older file versions should not do this. | 
| 303 | if (simParams_->haveSwitchingRadius()) { | 
| 304 | map<string, CutoffMethod>::const_iterator it; | 
| 305 | string theMeth; | 
| 306 | for (it = stringToCutoffMethod.begin(); | 
| 307 | it != stringToCutoffMethod.end(); ++it) { | 
| 308 | if (it->second == cutoffMethod_) { | 
| 309 | theMeth = it->first; | 
| 310 | break; | 
| 311 | } | 
| 312 | } | 
| 313 | sprintf(painCave.errMsg, | 
| 314 | "ForceManager::setupCutoffs: the cutoffMethod (%s)\n" | 
| 315 | "\tis not set to SWITCHED, so switchingRadius value\n" | 
| 316 | "\twill be ignored for this simulation\n", theMeth.c_str()); | 
| 317 | painCave.isFatal = 0; | 
| 318 | painCave.severity = OPENMD_WARNING; | 
| 319 | simError(); | 
| 320 | } | 
| 321 | } | 
| 322 | rSwitch_ = rCut_; | 
| 323 | } | 
| 324 |  | 
| 325 | // Default to cubic switching function. | 
| 326 | sft_ = cubic; | 
| 327 | if (simParams_->haveSwitchingFunctionType()) { | 
| 328 | string funcType = simParams_->getSwitchingFunctionType(); | 
| 329 | toUpper(funcType); | 
| 330 | if (funcType == "CUBIC") { | 
| 331 | sft_ = cubic; | 
| 332 | } else { | 
| 333 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 334 | sft_ = fifth_order_poly; | 
| 335 | } else { | 
| 336 | // throw error | 
| 337 | sprintf( painCave.errMsg, | 
| 338 | "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" | 
| 339 | "\tswitchingFunctionType must be one of: " | 
| 340 | "\"cubic\" or \"fifth_order_polynomial\".", | 
| 341 | funcType.c_str() ); | 
| 342 | painCave.isFatal = 1; | 
| 343 | painCave.severity = OPENMD_ERROR; | 
| 344 | simError(); | 
| 345 | } | 
| 346 | } | 
| 347 | } | 
| 348 | switcher_->setSwitchType(sft_); | 
| 349 | switcher_->setSwitch(rSwitch_, rCut_); | 
| 350 | } | 
| 351 |  | 
| 352 | void ForceManager::initialize() { | 
| 353 |  | 
| 354 | if (!info_->isTopologyDone()) { | 
| 355 |  | 
| 356 | info_->update(); | 
| 357 | interactionMan_->setSimInfo(info_); | 
| 358 | interactionMan_->initialize(); | 
| 359 |  | 
| 360 | //! We want to delay the cutoffs until after the interaction | 
| 361 | //! manager has set up the atom-atom interactions so that we can | 
| 362 | //! query them for suggested cutoff values | 
| 363 | setupCutoffs(); | 
| 364 |  | 
| 365 | info_->prepareTopology(); | 
| 366 |  | 
| 367 | doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); | 
| 368 | doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); | 
| 369 | if (doHeatFlux_) doParticlePot_ = true; | 
| 370 |  | 
| 371 | doElectricField_ = info_->getSimParams()->getOutputElectricField(); | 
| 372 | doSitePotential_ = info_->getSimParams()->getOutputSitePotential(); | 
| 373 |  | 
| 374 | } | 
| 375 |  | 
| 376 | ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); | 
| 377 |  | 
| 378 | //! Force fields can set options on how to scale van der Waals and | 
| 379 | //! electrostatic interactions for atoms connected via bonds, bends | 
| 380 | //! and torsions in this case the topological distance between | 
| 381 | //! atoms is: | 
| 382 | //! 0 = topologically unconnected | 
| 383 | //! 1 = bonded together | 
| 384 | //! 2 = connected via a bend | 
| 385 | //! 3 = connected via a torsion | 
| 386 |  | 
| 387 | vdwScale_.reserve(4); | 
| 388 | fill(vdwScale_.begin(), vdwScale_.end(), 0.0); | 
| 389 |  | 
| 390 | electrostaticScale_.reserve(4); | 
| 391 | fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); | 
| 392 |  | 
| 393 | vdwScale_[0] = 1.0; | 
| 394 | vdwScale_[1] = fopts.getvdw12scale(); | 
| 395 | vdwScale_[2] = fopts.getvdw13scale(); | 
| 396 | vdwScale_[3] = fopts.getvdw14scale(); | 
| 397 |  | 
| 398 | electrostaticScale_[0] = 1.0; | 
| 399 | electrostaticScale_[1] = fopts.getelectrostatic12scale(); | 
| 400 | electrostaticScale_[2] = fopts.getelectrostatic13scale(); | 
| 401 | electrostaticScale_[3] = fopts.getelectrostatic14scale(); | 
| 402 |  | 
| 403 | if (info_->getSimParams()->haveUniformField()) { | 
| 404 | UniformField* eField = new UniformField(info_); | 
| 405 | perturbations_.push_back(eField); | 
| 406 | } | 
| 407 | if (info_->getSimParams()->haveUniformGradientStrength() || | 
| 408 | info_->getSimParams()->haveUniformGradientDirection1() || | 
| 409 | info_->getSimParams()->haveUniformGradientDirection2() ) { | 
| 410 | UniformGradient* eGrad = new UniformGradient(info_); | 
| 411 | perturbations_.push_back(eGrad); | 
| 412 | } | 
| 413 |  | 
| 414 | usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions(); | 
| 415 |  | 
| 416 | fDecomp_->distributeInitialData(); | 
| 417 |  | 
| 418 | initialized_ = true; | 
| 419 |  | 
| 420 | } | 
| 421 |  | 
| 422 | void ForceManager::calcForces() { | 
| 423 |  | 
| 424 | if (!initialized_) initialize(); | 
| 425 |  | 
| 426 | preCalculation(); | 
| 427 | shortRangeInteractions(); | 
| 428 | longRangeInteractions(); | 
| 429 | postCalculation(); | 
| 430 | } | 
| 431 |  | 
| 432 | void ForceManager::preCalculation() { | 
| 433 | SimInfo::MoleculeIterator mi; | 
| 434 | Molecule* mol; | 
| 435 | Molecule::AtomIterator ai; | 
| 436 | Atom* atom; | 
| 437 | Molecule::RigidBodyIterator rbIter; | 
| 438 | RigidBody* rb; | 
| 439 | Molecule::CutoffGroupIterator ci; | 
| 440 | CutoffGroup* cg; | 
| 441 |  | 
| 442 | // forces and potentials are zeroed here, before any are | 
| 443 | // accumulated. | 
| 444 |  | 
| 445 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 446 |  | 
| 447 | snap->setBondPotential(0.0); | 
| 448 | snap->setBendPotential(0.0); | 
| 449 | snap->setTorsionPotential(0.0); | 
| 450 | snap->setInversionPotential(0.0); | 
| 451 |  | 
| 452 | potVec zeroPot(0.0); | 
| 453 | snap->setLongRangePotential(zeroPot); | 
| 454 | snap->setExcludedPotentials(zeroPot); | 
| 455 |  | 
| 456 | snap->setRestraintPotential(0.0); | 
| 457 | snap->setRawPotential(0.0); | 
| 458 |  | 
| 459 | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 460 | mol = info_->nextMolecule(mi)) { | 
| 461 | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 462 | atom = mol->nextAtom(ai)) { | 
| 463 | atom->zeroForcesAndTorques(); | 
| 464 | } | 
| 465 |  | 
| 466 | //change the positions of atoms which belong to the rigidbodies | 
| 467 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 468 | rb = mol->nextRigidBody(rbIter)) { | 
| 469 | rb->zeroForcesAndTorques(); | 
| 470 | } | 
| 471 |  | 
| 472 | if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ | 
| 473 | for(cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 474 | cg = mol->nextCutoffGroup(ci)) { | 
| 475 | //calculate the center of mass of cutoff group | 
| 476 | cg->updateCOM(); | 
| 477 | } | 
| 478 | } | 
| 479 | } | 
| 480 |  | 
| 481 | // Zero out the stress tensor | 
| 482 | stressTensor *= 0.0; | 
| 483 | // Zero out the heatFlux | 
| 484 | fDecomp_->setHeatFlux( Vector3d(0.0) ); | 
| 485 | } | 
| 486 |  | 
| 487 | void ForceManager::shortRangeInteractions() { | 
| 488 | Molecule* mol; | 
| 489 | RigidBody* rb; | 
| 490 | Bond* bond; | 
| 491 | Bend* bend; | 
| 492 | Torsion* torsion; | 
| 493 | Inversion* inversion; | 
| 494 | SimInfo::MoleculeIterator mi; | 
| 495 | Molecule::RigidBodyIterator rbIter; | 
| 496 | Molecule::BondIterator bondIter;; | 
| 497 | Molecule::BendIterator  bendIter; | 
| 498 | Molecule::TorsionIterator  torsionIter; | 
| 499 | Molecule::InversionIterator  inversionIter; | 
| 500 | RealType bondPotential = 0.0; | 
| 501 | RealType bendPotential = 0.0; | 
| 502 | RealType torsionPotential = 0.0; | 
| 503 | RealType inversionPotential = 0.0; | 
| 504 |  | 
| 505 | //calculate short range interactions | 
| 506 | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 507 | mol = info_->nextMolecule(mi)) { | 
| 508 |  | 
| 509 | //change the positions of atoms which belong to the rigidbodies | 
| 510 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 511 | rb = mol->nextRigidBody(rbIter)) { | 
| 512 | rb->updateAtoms(); | 
| 513 | } | 
| 514 |  | 
| 515 | for (bond = mol->beginBond(bondIter); bond != NULL; | 
| 516 | bond = mol->nextBond(bondIter)) { | 
| 517 | bond->calcForce(doParticlePot_); | 
| 518 | bondPotential += bond->getPotential(); | 
| 519 | } | 
| 520 |  | 
| 521 | for (bend = mol->beginBend(bendIter); bend != NULL; | 
| 522 | bend = mol->nextBend(bendIter)) { | 
| 523 |  | 
| 524 | RealType angle; | 
| 525 | bend->calcForce(angle, doParticlePot_); | 
| 526 | RealType currBendPot = bend->getPotential(); | 
| 527 |  | 
| 528 | bendPotential += bend->getPotential(); | 
| 529 | map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); | 
| 530 | if (i == bendDataSets.end()) { | 
| 531 | BendDataSet dataSet; | 
| 532 | dataSet.prev.angle = dataSet.curr.angle = angle; | 
| 533 | dataSet.prev.potential = dataSet.curr.potential = currBendPot; | 
| 534 | dataSet.deltaV = 0.0; | 
| 535 | bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, | 
| 536 | dataSet)); | 
| 537 | }else { | 
| 538 | i->second.prev.angle = i->second.curr.angle; | 
| 539 | i->second.prev.potential = i->second.curr.potential; | 
| 540 | i->second.curr.angle = angle; | 
| 541 | i->second.curr.potential = currBendPot; | 
| 542 | i->second.deltaV =  fabs(i->second.curr.potential - | 
| 543 | i->second.prev.potential); | 
| 544 | } | 
| 545 | } | 
| 546 |  | 
| 547 | for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; | 
| 548 | torsion = mol->nextTorsion(torsionIter)) { | 
| 549 | RealType angle; | 
| 550 | torsion->calcForce(angle, doParticlePot_); | 
| 551 | RealType currTorsionPot = torsion->getPotential(); | 
| 552 | torsionPotential += torsion->getPotential(); | 
| 553 | map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); | 
| 554 | if (i == torsionDataSets.end()) { | 
| 555 | TorsionDataSet dataSet; | 
| 556 | dataSet.prev.angle = dataSet.curr.angle = angle; | 
| 557 | dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; | 
| 558 | dataSet.deltaV = 0.0; | 
| 559 | torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); | 
| 560 | }else { | 
| 561 | i->second.prev.angle = i->second.curr.angle; | 
| 562 | i->second.prev.potential = i->second.curr.potential; | 
| 563 | i->second.curr.angle = angle; | 
| 564 | i->second.curr.potential = currTorsionPot; | 
| 565 | i->second.deltaV =  fabs(i->second.curr.potential - | 
| 566 | i->second.prev.potential); | 
| 567 | } | 
| 568 | } | 
| 569 |  | 
| 570 | for (inversion = mol->beginInversion(inversionIter); | 
| 571 | inversion != NULL; | 
| 572 | inversion = mol->nextInversion(inversionIter)) { | 
| 573 | RealType angle; | 
| 574 | inversion->calcForce(angle, doParticlePot_); | 
| 575 | RealType currInversionPot = inversion->getPotential(); | 
| 576 | inversionPotential += inversion->getPotential(); | 
| 577 | map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); | 
| 578 | if (i == inversionDataSets.end()) { | 
| 579 | InversionDataSet dataSet; | 
| 580 | dataSet.prev.angle = dataSet.curr.angle = angle; | 
| 581 | dataSet.prev.potential = dataSet.curr.potential = currInversionPot; | 
| 582 | dataSet.deltaV = 0.0; | 
| 583 | inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); | 
| 584 | }else { | 
| 585 | i->second.prev.angle = i->second.curr.angle; | 
| 586 | i->second.prev.potential = i->second.curr.potential; | 
| 587 | i->second.curr.angle = angle; | 
| 588 | i->second.curr.potential = currInversionPot; | 
| 589 | i->second.deltaV =  fabs(i->second.curr.potential - | 
| 590 | i->second.prev.potential); | 
| 591 | } | 
| 592 | } | 
| 593 | } | 
| 594 |  | 
| 595 | #ifdef IS_MPI | 
| 596 | // Collect from all nodes.  This should eventually be moved into a | 
| 597 | // SystemDecomposition, but this is a better place than in | 
| 598 | // Thermo to do the collection. | 
| 599 |  | 
| 600 | MPI_Allreduce(MPI_IN_PLACE, &bondPotential, 1, MPI_REALTYPE, | 
| 601 | MPI_SUM, MPI_COMM_WORLD); | 
| 602 | MPI_Allreduce(MPI_IN_PLACE, &bendPotential, 1, MPI_REALTYPE, | 
| 603 | MPI_SUM, MPI_COMM_WORLD); | 
| 604 | MPI_Allreduce(MPI_IN_PLACE, &torsionPotential, 1, | 
| 605 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 606 | MPI_Allreduce(MPI_IN_PLACE, &inversionPotential, 1, | 
| 607 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 608 | #endif | 
| 609 |  | 
| 610 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 611 |  | 
| 612 | curSnapshot->setBondPotential(bondPotential); | 
| 613 | curSnapshot->setBendPotential(bendPotential); | 
| 614 | curSnapshot->setTorsionPotential(torsionPotential); | 
| 615 | curSnapshot->setInversionPotential(inversionPotential); | 
| 616 |  | 
| 617 | // RealType shortRangePotential = bondPotential + bendPotential + | 
| 618 | //   torsionPotential +  inversionPotential; | 
| 619 |  | 
| 620 | // curSnapshot->setShortRangePotential(shortRangePotential); | 
| 621 | } | 
| 622 |  | 
| 623 | void ForceManager::longRangeInteractions() { | 
| 624 |  | 
| 625 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 626 | DataStorage* config = &(curSnapshot->atomData); | 
| 627 | DataStorage* cgConfig = &(curSnapshot->cgData); | 
| 628 |  | 
| 629 | //calculate the center of mass of cutoff group | 
| 630 |  | 
| 631 | SimInfo::MoleculeIterator mi; | 
| 632 | Molecule* mol; | 
| 633 | Molecule::CutoffGroupIterator ci; | 
| 634 | CutoffGroup* cg; | 
| 635 |  | 
| 636 | if(info_->getNCutoffGroups() != info_->getNAtoms()){ | 
| 637 | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 638 | mol = info_->nextMolecule(mi)) { | 
| 639 | for(cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 640 | cg = mol->nextCutoffGroup(ci)) { | 
| 641 | cg->updateCOM(); | 
| 642 | } | 
| 643 | } | 
| 644 | } else { | 
| 645 | // center of mass of the group is the same as position of the atom | 
| 646 | // if cutoff group does not exist | 
| 647 | cgConfig->position = config->position; | 
| 648 | cgConfig->velocity = config->velocity; | 
| 649 | } | 
| 650 |  | 
| 651 | fDecomp_->zeroWorkArrays(); | 
| 652 | fDecomp_->distributeData(); | 
| 653 |  | 
| 654 | int cg1, cg2, atom1, atom2, topoDist; | 
| 655 | Vector3d d_grp, dag, d, gvel2, vel2; | 
| 656 | RealType rgrpsq, rgrp, r2, r; | 
| 657 | RealType electroMult, vdwMult; | 
| 658 | RealType vij(0.0); | 
| 659 | Vector3d fij, fg, f1; | 
| 660 | bool in_switching_region; | 
| 661 | RealType sw, dswdr, swderiv; | 
| 662 | vector<int> atomListColumn, atomListRow; | 
| 663 | InteractionData idat; | 
| 664 | SelfData sdat; | 
| 665 | RealType mf; | 
| 666 | RealType vpair; | 
| 667 | RealType dVdFQ1(0.0); | 
| 668 | RealType dVdFQ2(0.0); | 
| 669 | potVec longRangePotential(0.0); | 
| 670 | RealType reciprocalPotential(0.0); | 
| 671 | potVec workPot(0.0); | 
| 672 | potVec exPot(0.0); | 
| 673 | Vector3d eField1(0.0); | 
| 674 | Vector3d eField2(0.0); | 
| 675 | RealType sPot1(0.0); | 
| 676 | RealType sPot2(0.0); | 
| 677 | bool newAtom1; | 
| 678 |  | 
| 679 | vector<int>::iterator ia, jb; | 
| 680 |  | 
| 681 | int loopStart, loopEnd; | 
| 682 |  | 
| 683 | idat.rcut = &rCut_; | 
| 684 | idat.vdwMult = &vdwMult; | 
| 685 | idat.electroMult = &electroMult; | 
| 686 | idat.pot = &workPot; | 
| 687 | idat.excludedPot = &exPot; | 
| 688 | sdat.pot = fDecomp_->getEmbeddingPotential(); | 
| 689 | sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); | 
| 690 | idat.vpair = &vpair; | 
| 691 | idat.dVdFQ1 = &dVdFQ1; | 
| 692 | idat.dVdFQ2 = &dVdFQ2; | 
| 693 | idat.eField1 = &eField1; | 
| 694 | idat.eField2 = &eField2; | 
| 695 | idat.sPot1 = &sPot1; | 
| 696 | idat.sPot2 = &sPot2; | 
| 697 | idat.f1 = &f1; | 
| 698 | idat.sw = &sw; | 
| 699 | idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; | 
| 700 | idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || | 
| 701 | cutoffMethod_ == TAYLOR_SHIFTED) ? true : false; | 
| 702 | idat.doParticlePot = doParticlePot_; | 
| 703 | idat.doElectricField = doElectricField_; | 
| 704 | idat.doSitePotential = doSitePotential_; | 
| 705 | sdat.doParticlePot = doParticlePot_; | 
| 706 |  | 
| 707 | loopEnd = PAIR_LOOP; | 
| 708 | if (info_->requiresPrepair() ) { | 
| 709 | loopStart = PREPAIR_LOOP; | 
| 710 | } else { | 
| 711 | loopStart = PAIR_LOOP; | 
| 712 | } | 
| 713 | for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { | 
| 714 |  | 
| 715 | if (iLoop == loopStart) { | 
| 716 | bool update_nlist = fDecomp_->checkNeighborList(); | 
| 717 | if (update_nlist) { | 
| 718 | if (!usePeriodicBoundaryConditions_) | 
| 719 | Mat3x3d bbox = thermo->getBoundingBox(); | 
| 720 | fDecomp_->buildNeighborList(neighborList_, point_); | 
| 721 | } | 
| 722 | } | 
| 723 |  | 
| 724 | for (cg1 = 0; cg1 < int(point_.size()) - 1; cg1++) { | 
| 725 |  | 
| 726 | atomListRow = fDecomp_->getAtomsInGroupRow(cg1); | 
| 727 | newAtom1 = true; | 
| 728 |  | 
| 729 | for (int m2 = point_[cg1]; m2 < point_[cg1+1]; m2++) { | 
| 730 |  | 
| 731 | cg2 = neighborList_[m2]; | 
| 732 |  | 
| 733 | d_grp  = fDecomp_->getIntergroupVector(cg1, cg2); | 
| 734 |  | 
| 735 | // already wrapped in the getIntergroupVector call: | 
| 736 | // curSnapshot->wrapVector(d_grp); | 
| 737 | rgrpsq = d_grp.lengthSquare(); | 
| 738 |  | 
| 739 | if (rgrpsq < rCutSq_) { | 
| 740 | if (iLoop == PAIR_LOOP) { | 
| 741 | vij = 0.0; | 
| 742 | fij.zero(); | 
| 743 | eField1.zero(); | 
| 744 | eField2.zero(); | 
| 745 | sPot1 = 0.0; | 
| 746 | sPot2 = 0.0; | 
| 747 | } | 
| 748 |  | 
| 749 | in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, | 
| 750 | rgrp); | 
| 751 |  | 
| 752 | atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); | 
| 753 |  | 
| 754 | if (doHeatFlux_) | 
| 755 | gvel2 = fDecomp_->getGroupVelocityColumn(cg2); | 
| 756 |  | 
| 757 | for (ia = atomListRow.begin(); | 
| 758 | ia != atomListRow.end(); ++ia) { | 
| 759 | atom1 = (*ia); | 
| 760 |  | 
| 761 | for (jb = atomListColumn.begin(); | 
| 762 | jb != atomListColumn.end(); ++jb) { | 
| 763 | atom2 = (*jb); | 
| 764 |  | 
| 765 | if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { | 
| 766 |  | 
| 767 | vpair = 0.0; | 
| 768 | workPot = 0.0; | 
| 769 | exPot = 0.0; | 
| 770 | f1.zero(); | 
| 771 | dVdFQ1 = 0.0; | 
| 772 | dVdFQ2 = 0.0; | 
| 773 |  | 
| 774 | fDecomp_->fillInteractionData(idat, atom1, atom2, newAtom1); | 
| 775 |  | 
| 776 | topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); | 
| 777 | vdwMult = vdwScale_[topoDist]; | 
| 778 | electroMult = electrostaticScale_[topoDist]; | 
| 779 |  | 
| 780 | if (atomListRow.size() == 1 && atomListColumn.size() == 1) { | 
| 781 | idat.d = &d_grp; | 
| 782 | idat.r2 = &rgrpsq; | 
| 783 | if (doHeatFlux_) | 
| 784 | vel2 = gvel2; | 
| 785 | } else { | 
| 786 | d = fDecomp_->getInteratomicVector(atom1, atom2); | 
| 787 | curSnapshot->wrapVector( d ); | 
| 788 | r2 = d.lengthSquare(); | 
| 789 | idat.d = &d; | 
| 790 | idat.r2 = &r2; | 
| 791 | if (doHeatFlux_) | 
| 792 | vel2 = fDecomp_->getAtomVelocityColumn(atom2); | 
| 793 | } | 
| 794 |  | 
| 795 | r = sqrt( *(idat.r2) ); | 
| 796 | idat.rij = &r; | 
| 797 |  | 
| 798 | if (iLoop == PREPAIR_LOOP) { | 
| 799 | interactionMan_->doPrePair(idat); | 
| 800 | } else { | 
| 801 | interactionMan_->doPair(idat); | 
| 802 | fDecomp_->unpackInteractionData(idat, atom1, atom2); | 
| 803 | vij += vpair; | 
| 804 | fij += f1; | 
| 805 | stressTensor -= outProduct( *(idat.d), f1); | 
| 806 | if (doHeatFlux_) | 
| 807 | fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); | 
| 808 | } | 
| 809 | } | 
| 810 | } | 
| 811 | } | 
| 812 |  | 
| 813 | if (iLoop == PAIR_LOOP) { | 
| 814 | if (in_switching_region) { | 
| 815 | swderiv = vij * dswdr / rgrp; | 
| 816 | fg = swderiv * d_grp; | 
| 817 | fij += fg; | 
| 818 |  | 
| 819 | if (atomListRow.size() == 1 && atomListColumn.size() == 1) { | 
| 820 | if (!fDecomp_->skipAtomPair(atomListRow[0], | 
| 821 | atomListColumn[0], | 
| 822 | cg1, cg2)) { | 
| 823 | stressTensor -= outProduct( *(idat.d), fg); | 
| 824 | if (doHeatFlux_) | 
| 825 | fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); | 
| 826 | } | 
| 827 | } | 
| 828 |  | 
| 829 | for (ia = atomListRow.begin(); | 
| 830 | ia != atomListRow.end(); ++ia) { | 
| 831 | atom1 = (*ia); | 
| 832 | mf = fDecomp_->getMassFactorRow(atom1); | 
| 833 | // fg is the force on atom ia due to cutoff group's | 
| 834 | // presence in switching region | 
| 835 | fg = swderiv * d_grp * mf; | 
| 836 | fDecomp_->addForceToAtomRow(atom1, fg); | 
| 837 | if (atomListRow.size() > 1) { | 
| 838 | if (info_->usesAtomicVirial()) { | 
| 839 | // find the distance between the atom | 
| 840 | // and the center of the cutoff group: | 
| 841 | dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); | 
| 842 | stressTensor -= outProduct(dag, fg); | 
| 843 | if (doHeatFlux_) | 
| 844 | fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); | 
| 845 | } | 
| 846 | } | 
| 847 | } | 
| 848 | for (jb = atomListColumn.begin(); | 
| 849 | jb != atomListColumn.end(); ++jb) { | 
| 850 | atom2 = (*jb); | 
| 851 | mf = fDecomp_->getMassFactorColumn(atom2); | 
| 852 | // fg is the force on atom jb due to cutoff group's | 
| 853 | // presence in switching region | 
| 854 | fg = -swderiv * d_grp * mf; | 
| 855 | fDecomp_->addForceToAtomColumn(atom2, fg); | 
| 856 |  | 
| 857 | if (atomListColumn.size() > 1) { | 
| 858 | if (info_->usesAtomicVirial()) { | 
| 859 | // find the distance between the atom | 
| 860 | // and the center of the cutoff group: | 
| 861 | dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); | 
| 862 | stressTensor -= outProduct(dag, fg); | 
| 863 | if (doHeatFlux_) | 
| 864 | fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); | 
| 865 | } | 
| 866 | } | 
| 867 | } | 
| 868 | } | 
| 869 | //if (!info_->usesAtomicVirial()) { | 
| 870 | //  stressTensor -= outProduct(d_grp, fij); | 
| 871 | //  if (doHeatFlux_) | 
| 872 | //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); | 
| 873 | //} | 
| 874 | } | 
| 875 | } | 
| 876 | } | 
| 877 | newAtom1 = false; | 
| 878 | } | 
| 879 |  | 
| 880 | if (iLoop == PREPAIR_LOOP) { | 
| 881 | if (info_->requiresPrepair()) { | 
| 882 |  | 
| 883 | fDecomp_->collectIntermediateData(); | 
| 884 |  | 
| 885 | for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { | 
| 886 | fDecomp_->fillSelfData(sdat, atom1); | 
| 887 | interactionMan_->doPreForce(sdat); | 
| 888 | } | 
| 889 |  | 
| 890 | fDecomp_->distributeIntermediateData(); | 
| 891 |  | 
| 892 | } | 
| 893 | } | 
| 894 | } | 
| 895 |  | 
| 896 | // collects pairwise information | 
| 897 | fDecomp_->collectData(); | 
| 898 | if (cutoffMethod_ == EWALD_FULL) { | 
| 899 | interactionMan_->doReciprocalSpaceSum(reciprocalPotential); | 
| 900 |  | 
| 901 | curSnapshot->setReciprocalPotential(reciprocalPotential); | 
| 902 | } | 
| 903 |  | 
| 904 | if (info_->requiresSelfCorrection()) { | 
| 905 | for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { | 
| 906 | fDecomp_->fillSelfData(sdat, atom1); | 
| 907 | interactionMan_->doSelfCorrection(sdat); | 
| 908 | } | 
| 909 | } | 
| 910 |  | 
| 911 | // collects single-atom information | 
| 912 | fDecomp_->collectSelfData(); | 
| 913 |  | 
| 914 | longRangePotential = *(fDecomp_->getEmbeddingPotential()) + | 
| 915 | *(fDecomp_->getPairwisePotential()); | 
| 916 |  | 
| 917 | curSnapshot->setLongRangePotential(longRangePotential); | 
| 918 |  | 
| 919 | curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + | 
| 920 | *(fDecomp_->getExcludedPotential())); | 
| 921 |  | 
| 922 | } | 
| 923 |  | 
| 924 | void ForceManager::postCalculation() { | 
| 925 |  | 
| 926 | vector<Perturbation*>::iterator pi; | 
| 927 | for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) { | 
| 928 | (*pi)->applyPerturbation(); | 
| 929 | } | 
| 930 |  | 
| 931 | SimInfo::MoleculeIterator mi; | 
| 932 | Molecule* mol; | 
| 933 | Molecule::RigidBodyIterator rbIter; | 
| 934 | RigidBody* rb; | 
| 935 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 936 |  | 
| 937 | // collect the atomic forces onto rigid bodies | 
| 938 |  | 
| 939 | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 940 | mol = info_->nextMolecule(mi)) { | 
| 941 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 942 | rb = mol->nextRigidBody(rbIter)) { | 
| 943 | Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); | 
| 944 | stressTensor += rbTau; | 
| 945 | } | 
| 946 | } | 
| 947 |  | 
| 948 | #ifdef IS_MPI | 
| 949 | MPI_Allreduce(MPI_IN_PLACE, stressTensor.getArrayPointer(), 9, | 
| 950 | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 951 | #endif | 
| 952 | curSnapshot->setStressTensor(stressTensor); | 
| 953 |  | 
| 954 | if (info_->getSimParams()->getUseLongRangeCorrections()) { | 
| 955 | /* | 
| 956 | RealType vol = curSnapshot->getVolume(); | 
| 957 | RealType Elrc(0.0); | 
| 958 | RealType Wlrc(0.0); | 
| 959 |  | 
| 960 | set<AtomType*>::iterator i; | 
| 961 | set<AtomType*>::iterator j; | 
| 962 |  | 
| 963 | RealType n_i, n_j; | 
| 964 | RealType rho_i, rho_j; | 
| 965 | pair<RealType, RealType> LRI; | 
| 966 |  | 
| 967 | for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { | 
| 968 | n_i = RealType(info_->getGlobalCountOfType(*i)); | 
| 969 | rho_i = n_i /  vol; | 
| 970 | for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) { | 
| 971 | n_j = RealType(info_->getGlobalCountOfType(*j)); | 
| 972 | rho_j = n_j / vol; | 
| 973 |  | 
| 974 | LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) ); | 
| 975 |  | 
| 976 | Elrc += n_i   * rho_j * LRI.first; | 
| 977 | Wlrc -= rho_i * rho_j * LRI.second; | 
| 978 | } | 
| 979 | } | 
| 980 | Elrc *= 2.0 * NumericConstant::PI; | 
| 981 | Wlrc *= 2.0 * NumericConstant::PI; | 
| 982 |  | 
| 983 | RealType lrp = curSnapshot->getLongRangePotential(); | 
| 984 | curSnapshot->setLongRangePotential(lrp + Elrc); | 
| 985 | stressTensor += Wlrc * SquareMatrix3<RealType>::identity(); | 
| 986 | curSnapshot->setStressTensor(stressTensor); | 
| 987 | */ | 
| 988 |  | 
| 989 | } | 
| 990 | } | 
| 991 | } |