| 1 |
< |
#include <stdlib.h> |
| 2 |
< |
#include <string.h> |
| 3 |
< |
#include <math.h> |
| 1 |
> |
/* |
| 2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
> |
* |
| 4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
> |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
> |
* redistribute this software in source and binary code form, provided |
| 7 |
> |
* that the following conditions are met: |
| 8 |
> |
* |
| 9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
> |
* publication of scientific results based in part on use of the |
| 11 |
> |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
> |
* the article in which the program was described (Matthew |
| 13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
> |
* |
| 18 |
> |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
> |
* notice, this list of conditions and the following disclaimer. |
| 20 |
> |
* |
| 21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
> |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
> |
* documentation and/or other materials provided with the |
| 24 |
> |
* distribution. |
| 25 |
> |
* |
| 26 |
> |
* This software is provided "AS IS," without a warranty of any |
| 27 |
> |
* kind. All express or implied conditions, representations and |
| 28 |
> |
* warranties, including any implied warranty of merchantability, |
| 29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
> |
* be liable for any damages suffered by licensee as a result of |
| 32 |
> |
* using, modifying or distributing the software or its |
| 33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
> |
* damages, however caused and regardless of the theory of liability, |
| 37 |
> |
* arising out of the use of or inability to use software, even if the |
| 38 |
> |
* University of Notre Dame has been advised of the possibility of |
| 39 |
> |
* such damages. |
| 40 |
> |
*/ |
| 41 |
> |
|
| 42 |
> |
/** |
| 43 |
> |
* @file SimInfo.cpp |
| 44 |
> |
* @author tlin |
| 45 |
> |
* @date 11/02/2004 |
| 46 |
> |
* @version 1.0 |
| 47 |
> |
*/ |
| 48 |
|
|
| 49 |
< |
#include <iostream> |
| 50 |
< |
using namespace std; |
| 49 |
> |
#include <algorithm> |
| 50 |
> |
#include <set> |
| 51 |
|
|
| 52 |
|
#include "brains/SimInfo.hpp" |
| 53 |
< |
#define __C |
| 54 |
< |
#include "brains/fSimulation.h" |
| 55 |
< |
#include "utils/simError.h" |
| 12 |
< |
#include "UseTheForce/DarkSide/simulation_interface.h" |
| 53 |
> |
#include "math/Vector3.hpp" |
| 54 |
> |
#include "primitives/Molecule.hpp" |
| 55 |
> |
#include "UseTheForce/doForces_interface.h" |
| 56 |
|
#include "UseTheForce/notifyCutoffs_interface.h" |
| 57 |
+ |
#include "utils/MemoryUtils.hpp" |
| 58 |
+ |
#include "utils/simError.h" |
| 59 |
+ |
#include "selection/SelectionManager.hpp" |
| 60 |
|
|
| 15 |
– |
//#include "UseTheForce/fortranWrappers.hpp" |
| 16 |
– |
|
| 17 |
– |
#include "math/MatVec3.h" |
| 18 |
– |
|
| 61 |
|
#ifdef IS_MPI |
| 62 |
< |
#include "brains/mpiSimulation.hpp" |
| 63 |
< |
#endif |
| 62 |
> |
#include "UseTheForce/mpiComponentPlan.h" |
| 63 |
> |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
| 64 |
> |
#endif |
| 65 |
|
|
| 66 |
< |
inline double roundMe( double x ){ |
| 24 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
| 25 |
< |
} |
| 26 |
< |
|
| 27 |
< |
inline double min( double a, double b ){ |
| 28 |
< |
return (a < b ) ? a : b; |
| 29 |
< |
} |
| 66 |
> |
namespace oopse { |
| 67 |
|
|
| 68 |
< |
SimInfo* currentInfo; |
| 68 |
> |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
| 69 |
> |
ForceField* ff, Globals* simParams) : |
| 70 |
> |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
| 71 |
> |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
| 72 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
| 73 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
| 74 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
| 75 |
> |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
| 76 |
> |
sman_(NULL), fortranInitialized_(false) { |
| 77 |
|
|
| 78 |
< |
SimInfo::SimInfo(){ |
| 78 |
> |
|
| 79 |
> |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
| 80 |
> |
MoleculeStamp* molStamp; |
| 81 |
> |
int nMolWithSameStamp; |
| 82 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
| 83 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
| 84 |
> |
CutoffGroupStamp* cgStamp; |
| 85 |
> |
RigidBodyStamp* rbStamp; |
| 86 |
> |
int nRigidAtoms = 0; |
| 87 |
> |
|
| 88 |
> |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
| 89 |
> |
molStamp = i->first; |
| 90 |
> |
nMolWithSameStamp = i->second; |
| 91 |
> |
|
| 92 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
| 93 |
|
|
| 94 |
< |
n_constraints = 0; |
| 95 |
< |
nZconstraints = 0; |
| 37 |
< |
n_oriented = 0; |
| 38 |
< |
n_dipoles = 0; |
| 39 |
< |
ndf = 0; |
| 40 |
< |
ndfRaw = 0; |
| 41 |
< |
nZconstraints = 0; |
| 42 |
< |
the_integrator = NULL; |
| 43 |
< |
setTemp = 0; |
| 44 |
< |
thermalTime = 0.0; |
| 45 |
< |
currentTime = 0.0; |
| 46 |
< |
rCut = 0.0; |
| 47 |
< |
rSw = 0.0; |
| 94 |
> |
//calculate atoms in molecules |
| 95 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
| 96 |
|
|
| 49 |
– |
haveRcut = 0; |
| 50 |
– |
haveRsw = 0; |
| 51 |
– |
boxIsInit = 0; |
| 52 |
– |
|
| 53 |
– |
resetTime = 1e99; |
| 97 |
|
|
| 98 |
< |
orthoRhombic = 0; |
| 99 |
< |
orthoTolerance = 1E-6; |
| 100 |
< |
useInitXSstate = true; |
| 98 |
> |
//calculate atoms in cutoff groups |
| 99 |
> |
int nAtomsInGroups = 0; |
| 100 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
| 101 |
> |
|
| 102 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
| 103 |
> |
cgStamp = molStamp->getCutoffGroup(j); |
| 104 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
| 105 |
> |
} |
| 106 |
|
|
| 107 |
< |
usePBC = 0; |
| 108 |
< |
useLJ = 0; |
| 61 |
< |
useSticky = 0; |
| 62 |
< |
useCharges = 0; |
| 63 |
< |
useDipoles = 0; |
| 64 |
< |
useReactionField = 0; |
| 65 |
< |
useGB = 0; |
| 66 |
< |
useEAM = 0; |
| 67 |
< |
useSolidThermInt = 0; |
| 68 |
< |
useLiquidThermInt = 0; |
| 107 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
| 108 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
| 109 |
|
|
| 110 |
< |
haveCutoffGroups = false; |
| 110 |
> |
//calculate atoms in rigid bodies |
| 111 |
> |
int nAtomsInRigidBodies = 0; |
| 112 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
| 113 |
> |
|
| 114 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
| 115 |
> |
rbStamp = molStamp->getRigidBody(j); |
| 116 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
| 117 |
> |
} |
| 118 |
|
|
| 119 |
< |
excludes = Exclude::Instance(); |
| 119 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
| 120 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
| 121 |
> |
|
| 122 |
> |
} |
| 123 |
|
|
| 124 |
< |
myConfiguration = new SimState(); |
| 124 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
| 125 |
> |
//therefore the total number of cutoff groups in the system is equal to |
| 126 |
> |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
| 127 |
> |
//file plus the number of cutoff groups defined in meta-data file |
| 128 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
| 129 |
|
|
| 130 |
< |
has_minimizer = false; |
| 131 |
< |
the_minimizer =NULL; |
| 130 |
> |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
| 131 |
> |
//therefore the total number of integrable objects in the system is equal to |
| 132 |
> |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
| 133 |
> |
//file plus the number of rigid bodies defined in meta-data file |
| 134 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
| 135 |
|
|
| 136 |
< |
ngroup = 0; |
| 136 |
> |
nGlobalMols_ = molStampIds_.size(); |
| 137 |
|
|
| 138 |
< |
} |
| 138 |
> |
#ifdef IS_MPI |
| 139 |
> |
molToProcMap_.resize(nGlobalMols_); |
| 140 |
> |
#endif |
| 141 |
|
|
| 142 |
+ |
} |
| 143 |
|
|
| 144 |
< |
SimInfo::~SimInfo(){ |
| 144 |
> |
SimInfo::~SimInfo() { |
| 145 |
> |
std::map<int, Molecule*>::iterator i; |
| 146 |
> |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
| 147 |
> |
delete i->second; |
| 148 |
> |
} |
| 149 |
> |
molecules_.clear(); |
| 150 |
> |
|
| 151 |
> |
delete stamps_; |
| 152 |
> |
delete sman_; |
| 153 |
> |
delete simParams_; |
| 154 |
> |
delete forceField_; |
| 155 |
> |
} |
| 156 |
|
|
| 157 |
< |
delete myConfiguration; |
| 157 |
> |
int SimInfo::getNGlobalConstraints() { |
| 158 |
> |
int nGlobalConstraints; |
| 159 |
> |
#ifdef IS_MPI |
| 160 |
> |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
| 161 |
> |
MPI_COMM_WORLD); |
| 162 |
> |
#else |
| 163 |
> |
nGlobalConstraints = nConstraints_; |
| 164 |
> |
#endif |
| 165 |
> |
return nGlobalConstraints; |
| 166 |
> |
} |
| 167 |
|
|
| 168 |
< |
map<string, GenericData*>::iterator i; |
| 169 |
< |
|
| 90 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
| 91 |
< |
delete (*i).second; |
| 168 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
| 169 |
> |
MoleculeIterator i; |
| 170 |
|
|
| 171 |
< |
} |
| 171 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
| 172 |
> |
if (i == molecules_.end() ) { |
| 173 |
|
|
| 174 |
< |
void SimInfo::setBox(double newBox[3]) { |
| 175 |
< |
|
| 176 |
< |
int i, j; |
| 177 |
< |
double tempMat[3][3]; |
| 178 |
< |
|
| 179 |
< |
for(i=0; i<3; i++) |
| 180 |
< |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
| 174 |
> |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
| 175 |
> |
|
| 176 |
> |
nAtoms_ += mol->getNAtoms(); |
| 177 |
> |
nBonds_ += mol->getNBonds(); |
| 178 |
> |
nBends_ += mol->getNBends(); |
| 179 |
> |
nTorsions_ += mol->getNTorsions(); |
| 180 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
| 181 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
| 182 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
| 183 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
| 184 |
|
|
| 185 |
< |
tempMat[0][0] = newBox[0]; |
| 186 |
< |
tempMat[1][1] = newBox[1]; |
| 187 |
< |
tempMat[2][2] = newBox[2]; |
| 185 |
> |
addExcludePairs(mol); |
| 186 |
> |
|
| 187 |
> |
return true; |
| 188 |
> |
} else { |
| 189 |
> |
return false; |
| 190 |
> |
} |
| 191 |
> |
} |
| 192 |
|
|
| 193 |
< |
setBoxM( tempMat ); |
| 193 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
| 194 |
> |
MoleculeIterator i; |
| 195 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
| 196 |
|
|
| 197 |
< |
} |
| 197 |
> |
if (i != molecules_.end() ) { |
| 198 |
|
|
| 199 |
< |
void SimInfo::setBoxM( double theBox[3][3] ){ |
| 200 |
< |
|
| 201 |
< |
int i, j; |
| 202 |
< |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
| 203 |
< |
// ordering in the array is as follows: |
| 204 |
< |
// [ 0 3 6 ] |
| 205 |
< |
// [ 1 4 7 ] |
| 206 |
< |
// [ 2 5 8 ] |
| 207 |
< |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
| 199 |
> |
assert(mol == i->second); |
| 200 |
> |
|
| 201 |
> |
nAtoms_ -= mol->getNAtoms(); |
| 202 |
> |
nBonds_ -= mol->getNBonds(); |
| 203 |
> |
nBends_ -= mol->getNBends(); |
| 204 |
> |
nTorsions_ -= mol->getNTorsions(); |
| 205 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
| 206 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
| 207 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
| 208 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
| 209 |
|
|
| 210 |
< |
if( !boxIsInit ) boxIsInit = 1; |
| 210 |
> |
removeExcludePairs(mol); |
| 211 |
> |
molecules_.erase(mol->getGlobalIndex()); |
| 212 |
|
|
| 213 |
< |
for(i=0; i < 3; i++) |
| 214 |
< |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
| 215 |
< |
|
| 216 |
< |
calcBoxL(); |
| 217 |
< |
calcHmatInv(); |
| 128 |
< |
|
| 129 |
< |
for(i=0; i < 3; i++) { |
| 130 |
< |
for (j=0; j < 3; j++) { |
| 131 |
< |
FortranHmat[3*j + i] = Hmat[i][j]; |
| 132 |
< |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
| 213 |
> |
delete mol; |
| 214 |
> |
|
| 215 |
> |
return true; |
| 216 |
> |
} else { |
| 217 |
> |
return false; |
| 218 |
|
} |
| 134 |
– |
} |
| 219 |
|
|
| 136 |
– |
setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic); |
| 137 |
– |
|
| 138 |
– |
} |
| 139 |
– |
|
| 220 |
|
|
| 221 |
< |
void SimInfo::getBoxM (double theBox[3][3]) { |
| 221 |
> |
} |
| 222 |
|
|
| 223 |
< |
int i, j; |
| 224 |
< |
for(i=0; i<3; i++) |
| 225 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
| 226 |
< |
} |
| 223 |
> |
|
| 224 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
| 225 |
> |
i = molecules_.begin(); |
| 226 |
> |
return i == molecules_.end() ? NULL : i->second; |
| 227 |
> |
} |
| 228 |
|
|
| 229 |
+ |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
| 230 |
+ |
++i; |
| 231 |
+ |
return i == molecules_.end() ? NULL : i->second; |
| 232 |
+ |
} |
| 233 |
|
|
| 149 |
– |
void SimInfo::scaleBox(double scale) { |
| 150 |
– |
double theBox[3][3]; |
| 151 |
– |
int i, j; |
| 234 |
|
|
| 235 |
< |
// cerr << "Scaling box by " << scale << "\n"; |
| 235 |
> |
void SimInfo::calcNdf() { |
| 236 |
> |
int ndf_local; |
| 237 |
> |
MoleculeIterator i; |
| 238 |
> |
std::vector<StuntDouble*>::iterator j; |
| 239 |
> |
Molecule* mol; |
| 240 |
> |
StuntDouble* integrableObject; |
| 241 |
|
|
| 242 |
< |
for(i=0; i<3; i++) |
| 243 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
| 242 |
> |
ndf_local = 0; |
| 243 |
> |
|
| 244 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 245 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 246 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 247 |
|
|
| 248 |
< |
setBoxM(theBox); |
| 248 |
> |
ndf_local += 3; |
| 249 |
|
|
| 250 |
< |
} |
| 250 |
> |
if (integrableObject->isDirectional()) { |
| 251 |
> |
if (integrableObject->isLinear()) { |
| 252 |
> |
ndf_local += 2; |
| 253 |
> |
} else { |
| 254 |
> |
ndf_local += 3; |
| 255 |
> |
} |
| 256 |
> |
} |
| 257 |
> |
|
| 258 |
> |
}//end for (integrableObject) |
| 259 |
> |
}// end for (mol) |
| 260 |
> |
|
| 261 |
> |
// n_constraints is local, so subtract them on each processor |
| 262 |
> |
ndf_local -= nConstraints_; |
| 263 |
|
|
| 264 |
< |
void SimInfo::calcHmatInv( void ) { |
| 265 |
< |
|
| 266 |
< |
int oldOrtho; |
| 267 |
< |
int i,j; |
| 268 |
< |
double smallDiag; |
| 167 |
< |
double tol; |
| 168 |
< |
double sanity[3][3]; |
| 264 |
> |
#ifdef IS_MPI |
| 265 |
> |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 266 |
> |
#else |
| 267 |
> |
ndf_ = ndf_local; |
| 268 |
> |
#endif |
| 269 |
|
|
| 270 |
< |
invertMat3( Hmat, HmatInv ); |
| 270 |
> |
// nZconstraints_ is global, as are the 3 COM translations for the |
| 271 |
> |
// entire system: |
| 272 |
> |
ndf_ = ndf_ - 3 - nZconstraint_; |
| 273 |
|
|
| 274 |
< |
// check to see if Hmat is orthorhombic |
| 173 |
< |
|
| 174 |
< |
oldOrtho = orthoRhombic; |
| 274 |
> |
} |
| 275 |
|
|
| 276 |
< |
smallDiag = fabs(Hmat[0][0]); |
| 277 |
< |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
| 178 |
< |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
| 179 |
< |
tol = smallDiag * orthoTolerance; |
| 276 |
> |
void SimInfo::calcNdfRaw() { |
| 277 |
> |
int ndfRaw_local; |
| 278 |
|
|
| 279 |
< |
orthoRhombic = 1; |
| 280 |
< |
|
| 281 |
< |
for (i = 0; i < 3; i++ ) { |
| 282 |
< |
for (j = 0 ; j < 3; j++) { |
| 283 |
< |
if (i != j) { |
| 284 |
< |
if (orthoRhombic) { |
| 285 |
< |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
| 286 |
< |
} |
| 279 |
> |
MoleculeIterator i; |
| 280 |
> |
std::vector<StuntDouble*>::iterator j; |
| 281 |
> |
Molecule* mol; |
| 282 |
> |
StuntDouble* integrableObject; |
| 283 |
> |
|
| 284 |
> |
// Raw degrees of freedom that we have to set |
| 285 |
> |
ndfRaw_local = 0; |
| 286 |
> |
|
| 287 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 288 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 289 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
| 290 |
> |
|
| 291 |
> |
ndfRaw_local += 3; |
| 292 |
> |
|
| 293 |
> |
if (integrableObject->isDirectional()) { |
| 294 |
> |
if (integrableObject->isLinear()) { |
| 295 |
> |
ndfRaw_local += 2; |
| 296 |
> |
} else { |
| 297 |
> |
ndfRaw_local += 3; |
| 298 |
> |
} |
| 299 |
> |
} |
| 300 |
> |
|
| 301 |
|
} |
| 302 |
|
} |
| 303 |
+ |
|
| 304 |
+ |
#ifdef IS_MPI |
| 305 |
+ |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 306 |
+ |
#else |
| 307 |
+ |
ndfRaw_ = ndfRaw_local; |
| 308 |
+ |
#endif |
| 309 |
|
} |
| 310 |
|
|
| 311 |
< |
if( oldOrtho != orthoRhombic ){ |
| 312 |
< |
|
| 195 |
< |
if( orthoRhombic ) { |
| 196 |
< |
sprintf( painCave.errMsg, |
| 197 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
| 198 |
< |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
| 199 |
< |
"\tThis is usually a good thing, but if you wan't the\n" |
| 200 |
< |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
| 201 |
< |
"\tvariable ( currently set to %G ) smaller.\n", |
| 202 |
< |
orthoTolerance); |
| 203 |
< |
painCave.severity = OOPSE_INFO; |
| 204 |
< |
simError(); |
| 205 |
< |
} |
| 206 |
< |
else { |
| 207 |
< |
sprintf( painCave.errMsg, |
| 208 |
< |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
| 209 |
< |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
| 210 |
< |
"\tThis is usually because the box has deformed under\n" |
| 211 |
< |
"\tNPTf integration. If you wan't to live on the edge with\n" |
| 212 |
< |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
| 213 |
< |
"\tvariable ( currently set to %G ) larger.\n", |
| 214 |
< |
orthoTolerance); |
| 215 |
< |
painCave.severity = OOPSE_WARNING; |
| 216 |
< |
simError(); |
| 217 |
< |
} |
| 218 |
< |
} |
| 219 |
< |
} |
| 311 |
> |
void SimInfo::calcNdfTrans() { |
| 312 |
> |
int ndfTrans_local; |
| 313 |
|
|
| 314 |
< |
void SimInfo::calcBoxL( void ){ |
| 314 |
> |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
| 315 |
|
|
| 223 |
– |
double dx, dy, dz, dsq; |
| 316 |
|
|
| 317 |
< |
// boxVol = Determinant of Hmat |
| 317 |
> |
#ifdef IS_MPI |
| 318 |
> |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 319 |
> |
#else |
| 320 |
> |
ndfTrans_ = ndfTrans_local; |
| 321 |
> |
#endif |
| 322 |
|
|
| 323 |
< |
boxVol = matDet3( Hmat ); |
| 323 |
> |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
| 324 |
> |
|
| 325 |
> |
} |
| 326 |
|
|
| 327 |
< |
// boxLx |
| 328 |
< |
|
| 329 |
< |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
| 330 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
| 331 |
< |
boxL[0] = sqrt( dsq ); |
| 332 |
< |
//maxCutoff = 0.5 * boxL[0]; |
| 327 |
> |
void SimInfo::addExcludePairs(Molecule* mol) { |
| 328 |
> |
std::vector<Bond*>::iterator bondIter; |
| 329 |
> |
std::vector<Bend*>::iterator bendIter; |
| 330 |
> |
std::vector<Torsion*>::iterator torsionIter; |
| 331 |
> |
Bond* bond; |
| 332 |
> |
Bend* bend; |
| 333 |
> |
Torsion* torsion; |
| 334 |
> |
int a; |
| 335 |
> |
int b; |
| 336 |
> |
int c; |
| 337 |
> |
int d; |
| 338 |
> |
|
| 339 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
| 340 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
| 341 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
| 342 |
> |
exclude_.addPair(a, b); |
| 343 |
> |
} |
| 344 |
|
|
| 345 |
< |
// boxLy |
| 346 |
< |
|
| 347 |
< |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
| 348 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
| 240 |
< |
boxL[1] = sqrt( dsq ); |
| 241 |
< |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
| 345 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
| 346 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
| 347 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
| 348 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
| 349 |
|
|
| 350 |
+ |
exclude_.addPair(a, b); |
| 351 |
+ |
exclude_.addPair(a, c); |
| 352 |
+ |
exclude_.addPair(b, c); |
| 353 |
+ |
} |
| 354 |
|
|
| 355 |
< |
// boxLz |
| 356 |
< |
|
| 357 |
< |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
| 358 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
| 359 |
< |
boxL[2] = sqrt( dsq ); |
| 249 |
< |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
| 355 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
| 356 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
| 357 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
| 358 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
| 359 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
| 360 |
|
|
| 361 |
< |
//calculate the max cutoff |
| 362 |
< |
maxCutoff = calcMaxCutOff(); |
| 363 |
< |
|
| 364 |
< |
checkCutOffs(); |
| 361 |
> |
exclude_.addPair(a, b); |
| 362 |
> |
exclude_.addPair(a, c); |
| 363 |
> |
exclude_.addPair(a, d); |
| 364 |
> |
exclude_.addPair(b, c); |
| 365 |
> |
exclude_.addPair(b, d); |
| 366 |
> |
exclude_.addPair(c, d); |
| 367 |
> |
} |
| 368 |
|
|
| 369 |
< |
} |
| 369 |
> |
Molecule::RigidBodyIterator rbIter; |
| 370 |
> |
RigidBody* rb; |
| 371 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 372 |
> |
std::vector<Atom*> atoms = rb->getAtoms(); |
| 373 |
> |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
| 374 |
> |
for (int j = i + 1; j < atoms.size(); ++j) { |
| 375 |
> |
a = atoms[i]->getGlobalIndex(); |
| 376 |
> |
b = atoms[j]->getGlobalIndex(); |
| 377 |
> |
exclude_.addPair(a, b); |
| 378 |
> |
} |
| 379 |
> |
} |
| 380 |
> |
} |
| 381 |
|
|
| 382 |
+ |
} |
| 383 |
|
|
| 384 |
< |
double SimInfo::calcMaxCutOff(){ |
| 385 |
< |
|
| 386 |
< |
double ri[3], rj[3], rk[3]; |
| 387 |
< |
double rij[3], rjk[3], rki[3]; |
| 388 |
< |
double minDist; |
| 389 |
< |
|
| 390 |
< |
ri[0] = Hmat[0][0]; |
| 391 |
< |
ri[1] = Hmat[1][0]; |
| 392 |
< |
ri[2] = Hmat[2][0]; |
| 393 |
< |
|
| 394 |
< |
rj[0] = Hmat[0][1]; |
| 270 |
< |
rj[1] = Hmat[1][1]; |
| 271 |
< |
rj[2] = Hmat[2][1]; |
| 272 |
< |
|
| 273 |
< |
rk[0] = Hmat[0][2]; |
| 274 |
< |
rk[1] = Hmat[1][2]; |
| 275 |
< |
rk[2] = Hmat[2][2]; |
| 384 |
> |
void SimInfo::removeExcludePairs(Molecule* mol) { |
| 385 |
> |
std::vector<Bond*>::iterator bondIter; |
| 386 |
> |
std::vector<Bend*>::iterator bendIter; |
| 387 |
> |
std::vector<Torsion*>::iterator torsionIter; |
| 388 |
> |
Bond* bond; |
| 389 |
> |
Bend* bend; |
| 390 |
> |
Torsion* torsion; |
| 391 |
> |
int a; |
| 392 |
> |
int b; |
| 393 |
> |
int c; |
| 394 |
> |
int d; |
| 395 |
|
|
| 396 |
< |
crossProduct3(ri, rj, rij); |
| 397 |
< |
distXY = dotProduct3(rk,rij) / norm3(rij); |
| 396 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
| 397 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
| 398 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
| 399 |
> |
exclude_.removePair(a, b); |
| 400 |
> |
} |
| 401 |
|
|
| 402 |
< |
crossProduct3(rj,rk, rjk); |
| 403 |
< |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
| 402 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
| 403 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
| 404 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
| 405 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
| 406 |
|
|
| 407 |
< |
crossProduct3(rk,ri, rki); |
| 408 |
< |
distZX = dotProduct3(rj,rki) / norm3(rki); |
| 407 |
> |
exclude_.removePair(a, b); |
| 408 |
> |
exclude_.removePair(a, c); |
| 409 |
> |
exclude_.removePair(b, c); |
| 410 |
> |
} |
| 411 |
|
|
| 412 |
< |
minDist = min(min(distXY, distYZ), distZX); |
| 413 |
< |
return minDist/2; |
| 414 |
< |
|
| 415 |
< |
} |
| 412 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
| 413 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
| 414 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
| 415 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
| 416 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
| 417 |
|
|
| 418 |
< |
void SimInfo::wrapVector( double thePos[3] ){ |
| 418 |
> |
exclude_.removePair(a, b); |
| 419 |
> |
exclude_.removePair(a, c); |
| 420 |
> |
exclude_.removePair(a, d); |
| 421 |
> |
exclude_.removePair(b, c); |
| 422 |
> |
exclude_.removePair(b, d); |
| 423 |
> |
exclude_.removePair(c, d); |
| 424 |
> |
} |
| 425 |
|
|
| 426 |
< |
int i; |
| 427 |
< |
double scaled[3]; |
| 426 |
> |
Molecule::RigidBodyIterator rbIter; |
| 427 |
> |
RigidBody* rb; |
| 428 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 429 |
> |
std::vector<Atom*> atoms = rb->getAtoms(); |
| 430 |
> |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
| 431 |
> |
for (int j = i + 1; j < atoms.size(); ++j) { |
| 432 |
> |
a = atoms[i]->getGlobalIndex(); |
| 433 |
> |
b = atoms[j]->getGlobalIndex(); |
| 434 |
> |
exclude_.removePair(a, b); |
| 435 |
> |
} |
| 436 |
> |
} |
| 437 |
> |
} |
| 438 |
|
|
| 296 |
– |
if( !orthoRhombic ){ |
| 297 |
– |
// calc the scaled coordinates. |
| 298 |
– |
|
| 299 |
– |
|
| 300 |
– |
matVecMul3(HmatInv, thePos, scaled); |
| 301 |
– |
|
| 302 |
– |
for(i=0; i<3; i++) |
| 303 |
– |
scaled[i] -= roundMe(scaled[i]); |
| 304 |
– |
|
| 305 |
– |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 306 |
– |
|
| 307 |
– |
matVecMul3(Hmat, scaled, thePos); |
| 308 |
– |
|
| 439 |
|
} |
| 310 |
– |
else{ |
| 311 |
– |
// calc the scaled coordinates. |
| 312 |
– |
|
| 313 |
– |
for(i=0; i<3; i++) |
| 314 |
– |
scaled[i] = thePos[i]*HmatInv[i][i]; |
| 315 |
– |
|
| 316 |
– |
// wrap the scaled coordinates |
| 317 |
– |
|
| 318 |
– |
for(i=0; i<3; i++) |
| 319 |
– |
scaled[i] -= roundMe(scaled[i]); |
| 320 |
– |
|
| 321 |
– |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 322 |
– |
|
| 323 |
– |
for(i=0; i<3; i++) |
| 324 |
– |
thePos[i] = scaled[i]*Hmat[i][i]; |
| 325 |
– |
} |
| 326 |
– |
|
| 327 |
– |
} |
| 440 |
|
|
| 441 |
|
|
| 442 |
< |
int SimInfo::getNDF(){ |
| 443 |
< |
int ndf_local; |
| 442 |
> |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
| 443 |
> |
int curStampId; |
| 444 |
|
|
| 445 |
< |
ndf_local = 0; |
| 446 |
< |
|
| 447 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
| 448 |
< |
ndf_local += 3; |
| 449 |
< |
if (integrableObjects[i]->isDirectional()) { |
| 338 |
< |
if (integrableObjects[i]->isLinear()) |
| 339 |
< |
ndf_local += 2; |
| 340 |
< |
else |
| 341 |
< |
ndf_local += 3; |
| 342 |
< |
} |
| 445 |
> |
//index from 0 |
| 446 |
> |
curStampId = moleculeStamps_.size(); |
| 447 |
> |
|
| 448 |
> |
moleculeStamps_.push_back(molStamp); |
| 449 |
> |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
| 450 |
|
} |
| 451 |
|
|
| 452 |
< |
// n_constraints is local, so subtract them on each processor: |
| 452 |
> |
void SimInfo::update() { |
| 453 |
|
|
| 454 |
< |
ndf_local -= n_constraints; |
| 454 |
> |
setupSimType(); |
| 455 |
|
|
| 456 |
|
#ifdef IS_MPI |
| 457 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 351 |
< |
#else |
| 352 |
< |
ndf = ndf_local; |
| 457 |
> |
setupFortranParallel(); |
| 458 |
|
#endif |
| 459 |
|
|
| 460 |
< |
// nZconstraints is global, as are the 3 COM translations for the |
| 356 |
< |
// entire system: |
| 460 |
> |
setupFortranSim(); |
| 461 |
|
|
| 462 |
< |
ndf = ndf - 3 - nZconstraints; |
| 462 |
> |
//setup fortran force field |
| 463 |
> |
/** @deprecate */ |
| 464 |
> |
int isError = 0; |
| 465 |
> |
initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW, |
| 466 |
> |
&fInfo_.SIM_uses_DW, &isError ); |
| 467 |
> |
if(isError){ |
| 468 |
> |
sprintf( painCave.errMsg, |
| 469 |
> |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
| 470 |
> |
painCave.isFatal = 1; |
| 471 |
> |
simError(); |
| 472 |
> |
} |
| 473 |
> |
|
| 474 |
> |
|
| 475 |
> |
setupCutoff(); |
| 476 |
|
|
| 477 |
< |
return ndf; |
| 478 |
< |
} |
| 477 |
> |
calcNdf(); |
| 478 |
> |
calcNdfRaw(); |
| 479 |
> |
calcNdfTrans(); |
| 480 |
|
|
| 481 |
< |
int SimInfo::getNDFraw() { |
| 482 |
< |
int ndfRaw_local; |
| 481 |
> |
fortranInitialized_ = true; |
| 482 |
> |
} |
| 483 |
|
|
| 484 |
< |
// Raw degrees of freedom that we have to set |
| 485 |
< |
ndfRaw_local = 0; |
| 484 |
> |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
| 485 |
> |
SimInfo::MoleculeIterator mi; |
| 486 |
> |
Molecule* mol; |
| 487 |
> |
Molecule::AtomIterator ai; |
| 488 |
> |
Atom* atom; |
| 489 |
> |
std::set<AtomType*> atomTypes; |
| 490 |
|
|
| 491 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
| 492 |
< |
ndfRaw_local += 3; |
| 493 |
< |
if (integrableObjects[i]->isDirectional()) { |
| 494 |
< |
if (integrableObjects[i]->isLinear()) |
| 495 |
< |
ndfRaw_local += 2; |
| 496 |
< |
else |
| 375 |
< |
ndfRaw_local += 3; |
| 491 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 492 |
> |
|
| 493 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 494 |
> |
atomTypes.insert(atom->getAtomType()); |
| 495 |
> |
} |
| 496 |
> |
|
| 497 |
|
} |
| 498 |
+ |
|
| 499 |
+ |
return atomTypes; |
| 500 |
|
} |
| 501 |
+ |
|
| 502 |
+ |
void SimInfo::setupSimType() { |
| 503 |
+ |
std::set<AtomType*>::iterator i; |
| 504 |
+ |
std::set<AtomType*> atomTypes; |
| 505 |
+ |
atomTypes = getUniqueAtomTypes(); |
| 506 |
|
|
| 507 |
< |
#ifdef IS_MPI |
| 508 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 509 |
< |
#else |
| 510 |
< |
ndfRaw = ndfRaw_local; |
| 511 |
< |
#endif |
| 507 |
> |
int useLennardJones = 0; |
| 508 |
> |
int useElectrostatic = 0; |
| 509 |
> |
int useEAM = 0; |
| 510 |
> |
int useCharge = 0; |
| 511 |
> |
int useDirectional = 0; |
| 512 |
> |
int useDipole = 0; |
| 513 |
> |
int useGayBerne = 0; |
| 514 |
> |
int useSticky = 0; |
| 515 |
> |
int useStickyPower = 0; |
| 516 |
> |
int useShape = 0; |
| 517 |
> |
int useFLARB = 0; //it is not in AtomType yet |
| 518 |
> |
int useDirectionalAtom = 0; |
| 519 |
> |
int useElectrostatics = 0; |
| 520 |
> |
//usePBC and useRF are from simParams |
| 521 |
> |
int usePBC = simParams_->getPBC(); |
| 522 |
> |
int useRF = simParams_->getUseRF(); |
| 523 |
> |
int useUW = simParams_->getUseUndampedWolf(); |
| 524 |
> |
int useDW = simParams_->getUseDampedWolf(); |
| 525 |
|
|
| 526 |
< |
return ndfRaw; |
| 527 |
< |
} |
| 526 |
> |
//loop over all of the atom types |
| 527 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
| 528 |
> |
useLennardJones |= (*i)->isLennardJones(); |
| 529 |
> |
useElectrostatic |= (*i)->isElectrostatic(); |
| 530 |
> |
useEAM |= (*i)->isEAM(); |
| 531 |
> |
useCharge |= (*i)->isCharge(); |
| 532 |
> |
useDirectional |= (*i)->isDirectional(); |
| 533 |
> |
useDipole |= (*i)->isDipole(); |
| 534 |
> |
useGayBerne |= (*i)->isGayBerne(); |
| 535 |
> |
useSticky |= (*i)->isSticky(); |
| 536 |
> |
useStickyPower |= (*i)->isStickyPower(); |
| 537 |
> |
useShape |= (*i)->isShape(); |
| 538 |
> |
} |
| 539 |
|
|
| 540 |
< |
int SimInfo::getNDFtranslational() { |
| 541 |
< |
int ndfTrans_local; |
| 540 |
> |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
| 541 |
> |
useDirectionalAtom = 1; |
| 542 |
> |
} |
| 543 |
|
|
| 544 |
< |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
| 544 |
> |
if (useCharge || useDipole) { |
| 545 |
> |
useElectrostatics = 1; |
| 546 |
> |
} |
| 547 |
|
|
| 548 |
+ |
#ifdef IS_MPI |
| 549 |
+ |
int temp; |
| 550 |
|
|
| 551 |
< |
#ifdef IS_MPI |
| 552 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 396 |
< |
#else |
| 397 |
< |
ndfTrans = ndfTrans_local; |
| 398 |
< |
#endif |
| 551 |
> |
temp = usePBC; |
| 552 |
> |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 553 |
|
|
| 554 |
< |
ndfTrans = ndfTrans - 3 - nZconstraints; |
| 555 |
< |
|
| 402 |
< |
return ndfTrans; |
| 403 |
< |
} |
| 554 |
> |
temp = useDirectionalAtom; |
| 555 |
> |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 556 |
|
|
| 557 |
< |
int SimInfo::getTotIntegrableObjects() { |
| 558 |
< |
int nObjs_local; |
| 407 |
< |
int nObjs; |
| 557 |
> |
temp = useLennardJones; |
| 558 |
> |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 559 |
|
|
| 560 |
< |
nObjs_local = integrableObjects.size(); |
| 560 |
> |
temp = useElectrostatics; |
| 561 |
> |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 562 |
|
|
| 563 |
+ |
temp = useCharge; |
| 564 |
+ |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 565 |
|
|
| 566 |
< |
#ifdef IS_MPI |
| 567 |
< |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 414 |
< |
#else |
| 415 |
< |
nObjs = nObjs_local; |
| 416 |
< |
#endif |
| 566 |
> |
temp = useDipole; |
| 567 |
> |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 568 |
|
|
| 569 |
+ |
temp = useSticky; |
| 570 |
+ |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 571 |
|
|
| 572 |
< |
return nObjs; |
| 573 |
< |
} |
| 572 |
> |
temp = useStickyPower; |
| 573 |
> |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 574 |
> |
|
| 575 |
> |
temp = useGayBerne; |
| 576 |
> |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 577 |
|
|
| 578 |
< |
void SimInfo::refreshSim(){ |
| 578 |
> |
temp = useEAM; |
| 579 |
> |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 580 |
|
|
| 581 |
< |
simtype fInfo; |
| 582 |
< |
int isError; |
| 426 |
< |
int n_global; |
| 427 |
< |
int* excl; |
| 581 |
> |
temp = useShape; |
| 582 |
> |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 583 |
|
|
| 584 |
< |
fInfo.dielect = 0.0; |
| 584 |
> |
temp = useFLARB; |
| 585 |
> |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 586 |
|
|
| 587 |
< |
if( useDipoles ){ |
| 588 |
< |
if( useReactionField )fInfo.dielect = dielectric; |
| 433 |
< |
} |
| 587 |
> |
temp = useRF; |
| 588 |
> |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 589 |
|
|
| 590 |
< |
fInfo.SIM_uses_PBC = usePBC; |
| 591 |
< |
//fInfo.SIM_uses_LJ = 0; |
| 437 |
< |
fInfo.SIM_uses_LJ = useLJ; |
| 438 |
< |
fInfo.SIM_uses_sticky = useSticky; |
| 439 |
< |
//fInfo.SIM_uses_sticky = 0; |
| 440 |
< |
fInfo.SIM_uses_charges = useCharges; |
| 441 |
< |
fInfo.SIM_uses_dipoles = useDipoles; |
| 442 |
< |
//fInfo.SIM_uses_dipoles = 0; |
| 443 |
< |
fInfo.SIM_uses_RF = useReactionField; |
| 444 |
< |
//fInfo.SIM_uses_RF = 0; |
| 445 |
< |
fInfo.SIM_uses_GB = useGB; |
| 446 |
< |
fInfo.SIM_uses_EAM = useEAM; |
| 590 |
> |
temp = useUW; |
| 591 |
> |
MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 592 |
|
|
| 593 |
< |
n_exclude = excludes->getSize(); |
| 594 |
< |
excl = excludes->getFortranArray(); |
| 595 |
< |
|
| 451 |
< |
#ifdef IS_MPI |
| 452 |
< |
n_global = mpiSim->getNAtomsGlobal(); |
| 453 |
< |
#else |
| 454 |
< |
n_global = n_atoms; |
| 593 |
> |
temp = useDW; |
| 594 |
> |
MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 595 |
> |
|
| 596 |
|
#endif |
| 456 |
– |
|
| 457 |
– |
isError = 0; |
| 458 |
– |
|
| 459 |
– |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
| 460 |
– |
//it may not be a good idea to pass the address of first element in vector |
| 461 |
– |
//since c++ standard does not require vector to be stored continuously in meomory |
| 462 |
– |
//Most of the compilers will organize the memory of vector continuously |
| 463 |
– |
setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
| 464 |
– |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
| 465 |
– |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
| 597 |
|
|
| 598 |
< |
if( isError ){ |
| 599 |
< |
|
| 600 |
< |
sprintf( painCave.errMsg, |
| 601 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
| 602 |
< |
painCave.isFatal = 1; |
| 603 |
< |
painCave.severity = OOPSE_ERROR; |
| 604 |
< |
simError(); |
| 598 |
> |
fInfo_.SIM_uses_PBC = usePBC; |
| 599 |
> |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
| 600 |
> |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
| 601 |
> |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
| 602 |
> |
fInfo_.SIM_uses_Charges = useCharge; |
| 603 |
> |
fInfo_.SIM_uses_Dipoles = useDipole; |
| 604 |
> |
fInfo_.SIM_uses_Sticky = useSticky; |
| 605 |
> |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
| 606 |
> |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
| 607 |
> |
fInfo_.SIM_uses_EAM = useEAM; |
| 608 |
> |
fInfo_.SIM_uses_Shapes = useShape; |
| 609 |
> |
fInfo_.SIM_uses_FLARB = useFLARB; |
| 610 |
> |
fInfo_.SIM_uses_RF = useRF; |
| 611 |
> |
fInfo_.SIM_uses_UW = useUW; |
| 612 |
> |
fInfo_.SIM_uses_DW = useDW; |
| 613 |
> |
|
| 614 |
> |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
| 615 |
> |
|
| 616 |
> |
if (simParams_->haveDielectric()) { |
| 617 |
> |
fInfo_.dielect = simParams_->getDielectric(); |
| 618 |
> |
} else { |
| 619 |
> |
sprintf(painCave.errMsg, |
| 620 |
> |
"SimSetup Error: No Dielectric constant was set.\n" |
| 621 |
> |
"\tYou are trying to use Reaction Field without" |
| 622 |
> |
"\tsetting a dielectric constant!\n"); |
| 623 |
> |
painCave.isFatal = 1; |
| 624 |
> |
simError(); |
| 625 |
> |
} |
| 626 |
> |
|
| 627 |
> |
} else { |
| 628 |
> |
fInfo_.dielect = 0.0; |
| 629 |
> |
} |
| 630 |
> |
|
| 631 |
|
} |
| 475 |
– |
|
| 476 |
– |
#ifdef IS_MPI |
| 477 |
– |
sprintf( checkPointMsg, |
| 478 |
– |
"succesfully sent the simulation information to fortran.\n"); |
| 479 |
– |
MPIcheckPoint(); |
| 480 |
– |
#endif // is_mpi |
| 481 |
– |
|
| 482 |
– |
this->ndf = this->getNDF(); |
| 483 |
– |
this->ndfRaw = this->getNDFraw(); |
| 484 |
– |
this->ndfTrans = this->getNDFtranslational(); |
| 485 |
– |
} |
| 632 |
|
|
| 633 |
< |
void SimInfo::setDefaultRcut( double theRcut ){ |
| 634 |
< |
|
| 635 |
< |
haveRcut = 1; |
| 636 |
< |
rCut = theRcut; |
| 637 |
< |
rList = rCut + 1.0; |
| 638 |
< |
|
| 639 |
< |
notifyFortranCutoffs( &rCut, &rSw, &rList ); |
| 494 |
< |
} |
| 633 |
> |
void SimInfo::setupFortranSim() { |
| 634 |
> |
int isError; |
| 635 |
> |
int nExclude; |
| 636 |
> |
std::vector<int> fortranGlobalGroupMembership; |
| 637 |
> |
|
| 638 |
> |
nExclude = exclude_.getSize(); |
| 639 |
> |
isError = 0; |
| 640 |
|
|
| 641 |
< |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
| 641 |
> |
//globalGroupMembership_ is filled by SimCreator |
| 642 |
> |
for (int i = 0; i < nGlobalAtoms_; i++) { |
| 643 |
> |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
| 644 |
> |
} |
| 645 |
|
|
| 646 |
< |
rSw = theRsw; |
| 647 |
< |
setDefaultRcut( theRcut ); |
| 648 |
< |
} |
| 646 |
> |
//calculate mass ratio of cutoff group |
| 647 |
> |
std::vector<double> mfact; |
| 648 |
> |
SimInfo::MoleculeIterator mi; |
| 649 |
> |
Molecule* mol; |
| 650 |
> |
Molecule::CutoffGroupIterator ci; |
| 651 |
> |
CutoffGroup* cg; |
| 652 |
> |
Molecule::AtomIterator ai; |
| 653 |
> |
Atom* atom; |
| 654 |
> |
double totalMass; |
| 655 |
|
|
| 656 |
+ |
//to avoid memory reallocation, reserve enough space for mfact |
| 657 |
+ |
mfact.reserve(getNCutoffGroups()); |
| 658 |
+ |
|
| 659 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 660 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
| 661 |
|
|
| 662 |
< |
void SimInfo::checkCutOffs( void ){ |
| 663 |
< |
|
| 664 |
< |
if( boxIsInit ){ |
| 662 |
> |
totalMass = cg->getMass(); |
| 663 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
| 664 |
> |
mfact.push_back(atom->getMass()/totalMass); |
| 665 |
> |
} |
| 666 |
> |
|
| 667 |
> |
} |
| 668 |
> |
} |
| 669 |
> |
|
| 670 |
> |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
| 671 |
> |
std::vector<int> identArray; |
| 672 |
> |
|
| 673 |
> |
//to avoid memory reallocation, reserve enough space identArray |
| 674 |
> |
identArray.reserve(getNAtoms()); |
| 675 |
|
|
| 676 |
< |
//we need to check cutOffs against the box |
| 676 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 677 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 678 |
> |
identArray.push_back(atom->getIdent()); |
| 679 |
> |
} |
| 680 |
> |
} |
| 681 |
> |
|
| 682 |
> |
//fill molMembershipArray |
| 683 |
> |
//molMembershipArray is filled by SimCreator |
| 684 |
> |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
| 685 |
> |
for (int i = 0; i < nGlobalAtoms_; i++) { |
| 686 |
> |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
| 687 |
> |
} |
| 688 |
|
|
| 689 |
< |
if( rCut > maxCutoff ){ |
| 689 |
> |
//setup fortran simulation |
| 690 |
> |
int nGlobalExcludes = 0; |
| 691 |
> |
int* globalExcludes = NULL; |
| 692 |
> |
int* excludeList = exclude_.getExcludeList(); |
| 693 |
> |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
| 694 |
> |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
| 695 |
> |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
| 696 |
> |
|
| 697 |
> |
if( isError ){ |
| 698 |
> |
|
| 699 |
|
sprintf( painCave.errMsg, |
| 700 |
< |
"cutoffRadius is too large for the current periodic box.\n" |
| 512 |
< |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
| 513 |
< |
"\tThis is larger than half of at least one of the\n" |
| 514 |
< |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
| 515 |
< |
"\n" |
| 516 |
< |
"\t[ %G %G %G ]\n" |
| 517 |
< |
"\t[ %G %G %G ]\n" |
| 518 |
< |
"\t[ %G %G %G ]\n", |
| 519 |
< |
rCut, currentTime, |
| 520 |
< |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
| 521 |
< |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
| 522 |
< |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
| 523 |
< |
painCave.severity = OOPSE_ERROR; |
| 700 |
> |
"There was an error setting the simulation information in fortran.\n" ); |
| 701 |
|
painCave.isFatal = 1; |
| 702 |
+ |
painCave.severity = OOPSE_ERROR; |
| 703 |
|
simError(); |
| 704 |
< |
} |
| 527 |
< |
} else { |
| 528 |
< |
// initialize this stuff before using it, OK? |
| 529 |
< |
sprintf( painCave.errMsg, |
| 530 |
< |
"Trying to check cutoffs without a box.\n" |
| 531 |
< |
"\tOOPSE should have better programmers than that.\n" ); |
| 532 |
< |
painCave.severity = OOPSE_ERROR; |
| 533 |
< |
painCave.isFatal = 1; |
| 534 |
< |
simError(); |
| 535 |
< |
} |
| 536 |
< |
|
| 537 |
< |
} |
| 704 |
> |
} |
| 705 |
|
|
| 706 |
< |
void SimInfo::addProperty(GenericData* prop){ |
| 707 |
< |
|
| 708 |
< |
map<string, GenericData*>::iterator result; |
| 709 |
< |
result = properties.find(prop->getID()); |
| 710 |
< |
|
| 544 |
< |
//we can't simply use properties[prop->getID()] = prop, |
| 545 |
< |
//it will cause memory leak if we already contain a propery which has the same name of prop |
| 546 |
< |
|
| 547 |
< |
if(result != properties.end()){ |
| 548 |
< |
|
| 549 |
< |
delete (*result).second; |
| 550 |
< |
(*result).second = prop; |
| 551 |
< |
|
| 706 |
> |
#ifdef IS_MPI |
| 707 |
> |
sprintf( checkPointMsg, |
| 708 |
> |
"succesfully sent the simulation information to fortran.\n"); |
| 709 |
> |
MPIcheckPoint(); |
| 710 |
> |
#endif // is_mpi |
| 711 |
|
} |
| 553 |
– |
else{ |
| 712 |
|
|
| 555 |
– |
properties[prop->getID()] = prop; |
| 713 |
|
|
| 714 |
< |
} |
| 714 |
> |
#ifdef IS_MPI |
| 715 |
> |
void SimInfo::setupFortranParallel() { |
| 716 |
|
|
| 717 |
< |
} |
| 717 |
> |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
| 718 |
> |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
| 719 |
> |
std::vector<int> localToGlobalCutoffGroupIndex; |
| 720 |
> |
SimInfo::MoleculeIterator mi; |
| 721 |
> |
Molecule::AtomIterator ai; |
| 722 |
> |
Molecule::CutoffGroupIterator ci; |
| 723 |
> |
Molecule* mol; |
| 724 |
> |
Atom* atom; |
| 725 |
> |
CutoffGroup* cg; |
| 726 |
> |
mpiSimData parallelData; |
| 727 |
> |
int isError; |
| 728 |
|
|
| 729 |
< |
GenericData* SimInfo::getProperty(const string& propName){ |
| 562 |
< |
|
| 563 |
< |
map<string, GenericData*>::iterator result; |
| 564 |
< |
|
| 565 |
< |
//string lowerCaseName = (); |
| 566 |
< |
|
| 567 |
< |
result = properties.find(propName); |
| 568 |
< |
|
| 569 |
< |
if(result != properties.end()) |
| 570 |
< |
return (*result).second; |
| 571 |
< |
else |
| 572 |
< |
return NULL; |
| 573 |
< |
} |
| 729 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 730 |
|
|
| 731 |
+ |
//local index(index in DataStorge) of atom is important |
| 732 |
+ |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 733 |
+ |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
| 734 |
+ |
} |
| 735 |
|
|
| 736 |
< |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
| 737 |
< |
vector<int>& FglobalGroupMembership, |
| 738 |
< |
vector<double>& mfact){ |
| 739 |
< |
|
| 740 |
< |
Molecule* myMols; |
| 741 |
< |
Atom** myAtoms; |
| 582 |
< |
int numAtom; |
| 583 |
< |
double mtot; |
| 584 |
< |
int numMol; |
| 585 |
< |
int numCutoffGroups; |
| 586 |
< |
CutoffGroup* myCutoffGroup; |
| 587 |
< |
vector<CutoffGroup*>::iterator iterCutoff; |
| 588 |
< |
Atom* cutoffAtom; |
| 589 |
< |
vector<Atom*>::iterator iterAtom; |
| 590 |
< |
int atomIndex; |
| 591 |
< |
double totalMass; |
| 592 |
< |
|
| 593 |
< |
mfact.clear(); |
| 594 |
< |
FglobalGroupMembership.clear(); |
| 595 |
< |
|
| 736 |
> |
//local index of cutoff group is trivial, it only depends on the order of travesing |
| 737 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
| 738 |
> |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
| 739 |
> |
} |
| 740 |
> |
|
| 741 |
> |
} |
| 742 |
|
|
| 743 |
< |
// Fix the silly fortran indexing problem |
| 744 |
< |
#ifdef IS_MPI |
| 745 |
< |
numAtom = mpiSim->getNAtomsGlobal(); |
| 746 |
< |
#else |
| 747 |
< |
numAtom = n_atoms; |
| 748 |
< |
#endif |
| 749 |
< |
for (int i = 0; i < numAtom; i++) |
| 750 |
< |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
| 751 |
< |
|
| 743 |
> |
//fill up mpiSimData struct |
| 744 |
> |
parallelData.nMolGlobal = getNGlobalMolecules(); |
| 745 |
> |
parallelData.nMolLocal = getNMolecules(); |
| 746 |
> |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
| 747 |
> |
parallelData.nAtomsLocal = getNAtoms(); |
| 748 |
> |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
| 749 |
> |
parallelData.nGroupsLocal = getNCutoffGroups(); |
| 750 |
> |
parallelData.myNode = worldRank; |
| 751 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
| 752 |
|
|
| 753 |
< |
myMols = info->molecules; |
| 754 |
< |
numMol = info->n_mol; |
| 755 |
< |
for(int i = 0; i < numMol; i++){ |
| 756 |
< |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
| 757 |
< |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
| 758 |
< |
myCutoffGroup != NULL; |
| 759 |
< |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
| 760 |
< |
|
| 761 |
< |
totalMass = myCutoffGroup->getMass(); |
| 762 |
< |
|
| 617 |
< |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
| 618 |
< |
cutoffAtom != NULL; |
| 619 |
< |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
| 620 |
< |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
| 621 |
< |
} |
| 753 |
> |
//pass mpiSimData struct and index arrays to fortran |
| 754 |
> |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
| 755 |
> |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
| 756 |
> |
&localToGlobalCutoffGroupIndex[0], &isError); |
| 757 |
> |
|
| 758 |
> |
if (isError) { |
| 759 |
> |
sprintf(painCave.errMsg, |
| 760 |
> |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
| 761 |
> |
painCave.isFatal = 1; |
| 762 |
> |
simError(); |
| 763 |
|
} |
| 764 |
+ |
|
| 765 |
+ |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
| 766 |
+ |
MPIcheckPoint(); |
| 767 |
+ |
|
| 768 |
+ |
|
| 769 |
|
} |
| 770 |
|
|
| 771 |
< |
} |
| 771 |
> |
#endif |
| 772 |
> |
|
| 773 |
> |
double SimInfo::calcMaxCutoffRadius() { |
| 774 |
> |
|
| 775 |
> |
|
| 776 |
> |
std::set<AtomType*> atomTypes; |
| 777 |
> |
std::set<AtomType*>::iterator i; |
| 778 |
> |
std::vector<double> cutoffRadius; |
| 779 |
> |
|
| 780 |
> |
//get the unique atom types |
| 781 |
> |
atomTypes = getUniqueAtomTypes(); |
| 782 |
> |
|
| 783 |
> |
//query the max cutoff radius among these atom types |
| 784 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
| 785 |
> |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
| 786 |
> |
} |
| 787 |
> |
|
| 788 |
> |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
| 789 |
> |
#ifdef IS_MPI |
| 790 |
> |
//pick the max cutoff radius among the processors |
| 791 |
> |
#endif |
| 792 |
> |
|
| 793 |
> |
return maxCutoffRadius; |
| 794 |
> |
} |
| 795 |
> |
|
| 796 |
> |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
| 797 |
> |
|
| 798 |
> |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
| 799 |
> |
|
| 800 |
> |
if (!simParams_->haveRcut()){ |
| 801 |
> |
sprintf(painCave.errMsg, |
| 802 |
> |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
| 803 |
> |
"\tOOPSE will use a default value of 15.0 angstroms" |
| 804 |
> |
"\tfor the cutoffRadius.\n"); |
| 805 |
> |
painCave.isFatal = 0; |
| 806 |
> |
simError(); |
| 807 |
> |
rcut = 15.0; |
| 808 |
> |
} else{ |
| 809 |
> |
rcut = simParams_->getRcut(); |
| 810 |
> |
} |
| 811 |
> |
|
| 812 |
> |
if (!simParams_->haveRsw()){ |
| 813 |
> |
sprintf(painCave.errMsg, |
| 814 |
> |
"SimCreator Warning: No value was set for switchingRadius.\n" |
| 815 |
> |
"\tOOPSE will use a default value of\n" |
| 816 |
> |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
| 817 |
> |
painCave.isFatal = 0; |
| 818 |
> |
simError(); |
| 819 |
> |
rsw = 0.95 * rcut; |
| 820 |
> |
} else{ |
| 821 |
> |
rsw = simParams_->getRsw(); |
| 822 |
> |
} |
| 823 |
> |
|
| 824 |
> |
} else { |
| 825 |
> |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
| 826 |
> |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
| 827 |
> |
|
| 828 |
> |
if (simParams_->haveRcut()) { |
| 829 |
> |
rcut = simParams_->getRcut(); |
| 830 |
> |
} else { |
| 831 |
> |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
| 832 |
> |
rcut = calcMaxCutoffRadius(); |
| 833 |
> |
} |
| 834 |
> |
|
| 835 |
> |
if (simParams_->haveRsw()) { |
| 836 |
> |
rsw = simParams_->getRsw(); |
| 837 |
> |
} else { |
| 838 |
> |
rsw = rcut; |
| 839 |
> |
} |
| 840 |
> |
|
| 841 |
> |
} |
| 842 |
> |
} |
| 843 |
> |
|
| 844 |
> |
void SimInfo::setupCutoff() { |
| 845 |
> |
getCutoff(rcut_, rsw_); |
| 846 |
> |
double rnblist = rcut_ + 1; // skin of neighbor list |
| 847 |
> |
|
| 848 |
> |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
| 849 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
| 850 |
> |
} |
| 851 |
> |
|
| 852 |
> |
void SimInfo::addProperty(GenericData* genData) { |
| 853 |
> |
properties_.addProperty(genData); |
| 854 |
> |
} |
| 855 |
> |
|
| 856 |
> |
void SimInfo::removeProperty(const std::string& propName) { |
| 857 |
> |
properties_.removeProperty(propName); |
| 858 |
> |
} |
| 859 |
> |
|
| 860 |
> |
void SimInfo::clearProperties() { |
| 861 |
> |
properties_.clearProperties(); |
| 862 |
> |
} |
| 863 |
> |
|
| 864 |
> |
std::vector<std::string> SimInfo::getPropertyNames() { |
| 865 |
> |
return properties_.getPropertyNames(); |
| 866 |
> |
} |
| 867 |
> |
|
| 868 |
> |
std::vector<GenericData*> SimInfo::getProperties() { |
| 869 |
> |
return properties_.getProperties(); |
| 870 |
> |
} |
| 871 |
> |
|
| 872 |
> |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
| 873 |
> |
return properties_.getPropertyByName(propName); |
| 874 |
> |
} |
| 875 |
> |
|
| 876 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
| 877 |
> |
if (sman_ == sman) { |
| 878 |
> |
return; |
| 879 |
> |
} |
| 880 |
> |
delete sman_; |
| 881 |
> |
sman_ = sman; |
| 882 |
> |
|
| 883 |
> |
Molecule* mol; |
| 884 |
> |
RigidBody* rb; |
| 885 |
> |
Atom* atom; |
| 886 |
> |
SimInfo::MoleculeIterator mi; |
| 887 |
> |
Molecule::RigidBodyIterator rbIter; |
| 888 |
> |
Molecule::AtomIterator atomIter;; |
| 889 |
> |
|
| 890 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 891 |
> |
|
| 892 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
| 893 |
> |
atom->setSnapshotManager(sman_); |
| 894 |
> |
} |
| 895 |
> |
|
| 896 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 897 |
> |
rb->setSnapshotManager(sman_); |
| 898 |
> |
} |
| 899 |
> |
} |
| 900 |
> |
|
| 901 |
> |
} |
| 902 |
> |
|
| 903 |
> |
Vector3d SimInfo::getComVel(){ |
| 904 |
> |
SimInfo::MoleculeIterator i; |
| 905 |
> |
Molecule* mol; |
| 906 |
> |
|
| 907 |
> |
Vector3d comVel(0.0); |
| 908 |
> |
double totalMass = 0.0; |
| 909 |
> |
|
| 910 |
> |
|
| 911 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 912 |
> |
double mass = mol->getMass(); |
| 913 |
> |
totalMass += mass; |
| 914 |
> |
comVel += mass * mol->getComVel(); |
| 915 |
> |
} |
| 916 |
> |
|
| 917 |
> |
#ifdef IS_MPI |
| 918 |
> |
double tmpMass = totalMass; |
| 919 |
> |
Vector3d tmpComVel(comVel); |
| 920 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 921 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 922 |
> |
#endif |
| 923 |
> |
|
| 924 |
> |
comVel /= totalMass; |
| 925 |
> |
|
| 926 |
> |
return comVel; |
| 927 |
> |
} |
| 928 |
> |
|
| 929 |
> |
Vector3d SimInfo::getCom(){ |
| 930 |
> |
SimInfo::MoleculeIterator i; |
| 931 |
> |
Molecule* mol; |
| 932 |
> |
|
| 933 |
> |
Vector3d com(0.0); |
| 934 |
> |
double totalMass = 0.0; |
| 935 |
> |
|
| 936 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 937 |
> |
double mass = mol->getMass(); |
| 938 |
> |
totalMass += mass; |
| 939 |
> |
com += mass * mol->getCom(); |
| 940 |
> |
} |
| 941 |
> |
|
| 942 |
> |
#ifdef IS_MPI |
| 943 |
> |
double tmpMass = totalMass; |
| 944 |
> |
Vector3d tmpCom(com); |
| 945 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 946 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 947 |
> |
#endif |
| 948 |
> |
|
| 949 |
> |
com /= totalMass; |
| 950 |
> |
|
| 951 |
> |
return com; |
| 952 |
> |
|
| 953 |
> |
} |
| 954 |
> |
|
| 955 |
> |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
| 956 |
> |
|
| 957 |
> |
return o; |
| 958 |
> |
} |
| 959 |
> |
|
| 960 |
> |
|
| 961 |
> |
/* |
| 962 |
> |
Returns center of mass and center of mass velocity in one function call. |
| 963 |
> |
*/ |
| 964 |
> |
|
| 965 |
> |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
| 966 |
> |
SimInfo::MoleculeIterator i; |
| 967 |
> |
Molecule* mol; |
| 968 |
> |
|
| 969 |
> |
|
| 970 |
> |
double totalMass = 0.0; |
| 971 |
> |
|
| 972 |
> |
|
| 973 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 974 |
> |
double mass = mol->getMass(); |
| 975 |
> |
totalMass += mass; |
| 976 |
> |
com += mass * mol->getCom(); |
| 977 |
> |
comVel += mass * mol->getComVel(); |
| 978 |
> |
} |
| 979 |
> |
|
| 980 |
> |
#ifdef IS_MPI |
| 981 |
> |
double tmpMass = totalMass; |
| 982 |
> |
Vector3d tmpCom(com); |
| 983 |
> |
Vector3d tmpComVel(comVel); |
| 984 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 985 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 986 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 987 |
> |
#endif |
| 988 |
> |
|
| 989 |
> |
com /= totalMass; |
| 990 |
> |
comVel /= totalMass; |
| 991 |
> |
} |
| 992 |
> |
|
| 993 |
> |
/* |
| 994 |
> |
Return intertia tensor for entire system and angular momentum Vector. |
| 995 |
> |
|
| 996 |
> |
|
| 997 |
> |
[ Ixx -Ixy -Ixz ] |
| 998 |
> |
J =| -Iyx Iyy -Iyz | |
| 999 |
> |
[ -Izx -Iyz Izz ] |
| 1000 |
> |
*/ |
| 1001 |
> |
|
| 1002 |
> |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
| 1003 |
> |
|
| 1004 |
> |
|
| 1005 |
> |
double xx = 0.0; |
| 1006 |
> |
double yy = 0.0; |
| 1007 |
> |
double zz = 0.0; |
| 1008 |
> |
double xy = 0.0; |
| 1009 |
> |
double xz = 0.0; |
| 1010 |
> |
double yz = 0.0; |
| 1011 |
> |
Vector3d com(0.0); |
| 1012 |
> |
Vector3d comVel(0.0); |
| 1013 |
> |
|
| 1014 |
> |
getComAll(com, comVel); |
| 1015 |
> |
|
| 1016 |
> |
SimInfo::MoleculeIterator i; |
| 1017 |
> |
Molecule* mol; |
| 1018 |
> |
|
| 1019 |
> |
Vector3d thisq(0.0); |
| 1020 |
> |
Vector3d thisv(0.0); |
| 1021 |
> |
|
| 1022 |
> |
double thisMass = 0.0; |
| 1023 |
> |
|
| 1024 |
> |
|
| 1025 |
> |
|
| 1026 |
> |
|
| 1027 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 1028 |
> |
|
| 1029 |
> |
thisq = mol->getCom()-com; |
| 1030 |
> |
thisv = mol->getComVel()-comVel; |
| 1031 |
> |
thisMass = mol->getMass(); |
| 1032 |
> |
// Compute moment of intertia coefficients. |
| 1033 |
> |
xx += thisq[0]*thisq[0]*thisMass; |
| 1034 |
> |
yy += thisq[1]*thisq[1]*thisMass; |
| 1035 |
> |
zz += thisq[2]*thisq[2]*thisMass; |
| 1036 |
> |
|
| 1037 |
> |
// compute products of intertia |
| 1038 |
> |
xy += thisq[0]*thisq[1]*thisMass; |
| 1039 |
> |
xz += thisq[0]*thisq[2]*thisMass; |
| 1040 |
> |
yz += thisq[1]*thisq[2]*thisMass; |
| 1041 |
> |
|
| 1042 |
> |
angularMomentum += cross( thisq, thisv ) * thisMass; |
| 1043 |
> |
|
| 1044 |
> |
} |
| 1045 |
> |
|
| 1046 |
> |
|
| 1047 |
> |
inertiaTensor(0,0) = yy + zz; |
| 1048 |
> |
inertiaTensor(0,1) = -xy; |
| 1049 |
> |
inertiaTensor(0,2) = -xz; |
| 1050 |
> |
inertiaTensor(1,0) = -xy; |
| 1051 |
> |
inertiaTensor(1,1) = xx + zz; |
| 1052 |
> |
inertiaTensor(1,2) = -yz; |
| 1053 |
> |
inertiaTensor(2,0) = -xz; |
| 1054 |
> |
inertiaTensor(2,1) = -yz; |
| 1055 |
> |
inertiaTensor(2,2) = xx + yy; |
| 1056 |
> |
|
| 1057 |
> |
#ifdef IS_MPI |
| 1058 |
> |
Mat3x3d tmpI(inertiaTensor); |
| 1059 |
> |
Vector3d tmpAngMom; |
| 1060 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 1061 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 1062 |
> |
#endif |
| 1063 |
> |
|
| 1064 |
> |
return; |
| 1065 |
> |
} |
| 1066 |
> |
|
| 1067 |
> |
//Returns the angular momentum of the system |
| 1068 |
> |
Vector3d SimInfo::getAngularMomentum(){ |
| 1069 |
> |
|
| 1070 |
> |
Vector3d com(0.0); |
| 1071 |
> |
Vector3d comVel(0.0); |
| 1072 |
> |
Vector3d angularMomentum(0.0); |
| 1073 |
> |
|
| 1074 |
> |
getComAll(com,comVel); |
| 1075 |
> |
|
| 1076 |
> |
SimInfo::MoleculeIterator i; |
| 1077 |
> |
Molecule* mol; |
| 1078 |
> |
|
| 1079 |
> |
Vector3d thisr(0.0); |
| 1080 |
> |
Vector3d thisp(0.0); |
| 1081 |
> |
|
| 1082 |
> |
double thisMass; |
| 1083 |
> |
|
| 1084 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 1085 |
> |
thisMass = mol->getMass(); |
| 1086 |
> |
thisr = mol->getCom()-com; |
| 1087 |
> |
thisp = (mol->getComVel()-comVel)*thisMass; |
| 1088 |
> |
|
| 1089 |
> |
angularMomentum += cross( thisr, thisp ); |
| 1090 |
> |
|
| 1091 |
> |
} |
| 1092 |
> |
|
| 1093 |
> |
#ifdef IS_MPI |
| 1094 |
> |
Vector3d tmpAngMom; |
| 1095 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
| 1096 |
> |
#endif |
| 1097 |
> |
|
| 1098 |
> |
return angularMomentum; |
| 1099 |
> |
} |
| 1100 |
> |
|
| 1101 |
> |
|
| 1102 |
> |
}//end namespace oopse |
| 1103 |
> |
|