| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 |  | 
| 52 | #include "brains/SimInfo.hpp" | 
| 53 | #include "math/Vector3.hpp" | 
| 54 | #include "primitives/Molecule.hpp" | 
| 55 | #include "UseTheForce/fCutoffPolicy.h" | 
| 56 | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 57 | #include "UseTheForce/doForces_interface.h" | 
| 58 | #include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 59 | #include "UseTheForce/notifyCutoffs_interface.h" | 
| 60 | #include "utils/MemoryUtils.hpp" | 
| 61 | #include "utils/simError.h" | 
| 62 | #include "selection/SelectionManager.hpp" | 
| 63 |  | 
| 64 | #ifdef IS_MPI | 
| 65 | #include "UseTheForce/mpiComponentPlan.h" | 
| 66 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 67 | #endif | 
| 68 |  | 
| 69 | namespace oopse { | 
| 70 |  | 
| 71 | SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, | 
| 72 | ForceField* ff, Globals* simParams) : | 
| 73 | stamps_(stamps), forceField_(ff), simParams_(simParams), | 
| 74 | ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 75 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 76 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 77 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0), | 
| 78 | nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0), | 
| 79 | sman_(NULL), fortranInitialized_(false) { | 
| 80 |  | 
| 81 |  | 
| 82 | std::vector<std::pair<MoleculeStamp*, int> >::iterator i; | 
| 83 | MoleculeStamp* molStamp; | 
| 84 | int nMolWithSameStamp; | 
| 85 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 86 | int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 87 | CutoffGroupStamp* cgStamp; | 
| 88 | RigidBodyStamp* rbStamp; | 
| 89 | int nRigidAtoms = 0; | 
| 90 |  | 
| 91 | for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { | 
| 92 | molStamp = i->first; | 
| 93 | nMolWithSameStamp = i->second; | 
| 94 |  | 
| 95 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 96 |  | 
| 97 | //calculate atoms in molecules | 
| 98 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 99 |  | 
| 100 |  | 
| 101 | //calculate atoms in cutoff groups | 
| 102 | int nAtomsInGroups = 0; | 
| 103 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 104 |  | 
| 105 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 106 | cgStamp = molStamp->getCutoffGroup(j); | 
| 107 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 108 | } | 
| 109 |  | 
| 110 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 111 |  | 
| 112 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 113 |  | 
| 114 | //calculate atoms in rigid bodies | 
| 115 | int nAtomsInRigidBodies = 0; | 
| 116 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 117 |  | 
| 118 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 119 | rbStamp = molStamp->getRigidBody(j); | 
| 120 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 121 | } | 
| 122 |  | 
| 123 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 124 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 125 |  | 
| 126 | } | 
| 127 |  | 
| 128 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 129 | //group therefore the total number of cutoff groups in the system is | 
| 130 | //equal to the total number of atoms minus number of atoms belong to | 
| 131 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 132 | //groups defined in meta-data file | 
| 133 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 134 |  | 
| 135 | //every free atom (atom does not belong to rigid bodies) is an | 
| 136 | //integrable object therefore the total number of integrable objects | 
| 137 | //in the system is equal to the total number of atoms minus number of | 
| 138 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 139 | //of rigid bodies defined in meta-data file | 
| 140 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 141 | + nGlobalRigidBodies_; | 
| 142 |  | 
| 143 | nGlobalMols_ = molStampIds_.size(); | 
| 144 |  | 
| 145 | #ifdef IS_MPI | 
| 146 | molToProcMap_.resize(nGlobalMols_); | 
| 147 | #endif | 
| 148 |  | 
| 149 | } | 
| 150 |  | 
| 151 | SimInfo::~SimInfo() { | 
| 152 | std::map<int, Molecule*>::iterator i; | 
| 153 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 154 | delete i->second; | 
| 155 | } | 
| 156 | molecules_.clear(); | 
| 157 |  | 
| 158 | delete stamps_; | 
| 159 | delete sman_; | 
| 160 | delete simParams_; | 
| 161 | delete forceField_; | 
| 162 | } | 
| 163 |  | 
| 164 | int SimInfo::getNGlobalConstraints() { | 
| 165 | int nGlobalConstraints; | 
| 166 | #ifdef IS_MPI | 
| 167 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 168 | MPI_COMM_WORLD); | 
| 169 | #else | 
| 170 | nGlobalConstraints =  nConstraints_; | 
| 171 | #endif | 
| 172 | return nGlobalConstraints; | 
| 173 | } | 
| 174 |  | 
| 175 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 176 | MoleculeIterator i; | 
| 177 |  | 
| 178 | i = molecules_.find(mol->getGlobalIndex()); | 
| 179 | if (i == molecules_.end() ) { | 
| 180 |  | 
| 181 | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 182 |  | 
| 183 | nAtoms_ += mol->getNAtoms(); | 
| 184 | nBonds_ += mol->getNBonds(); | 
| 185 | nBends_ += mol->getNBends(); | 
| 186 | nTorsions_ += mol->getNTorsions(); | 
| 187 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 188 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 189 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 190 | nConstraints_ += mol->getNConstraintPairs(); | 
| 191 |  | 
| 192 | addExcludePairs(mol); | 
| 193 |  | 
| 194 | return true; | 
| 195 | } else { | 
| 196 | return false; | 
| 197 | } | 
| 198 | } | 
| 199 |  | 
| 200 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 201 | MoleculeIterator i; | 
| 202 | i = molecules_.find(mol->getGlobalIndex()); | 
| 203 |  | 
| 204 | if (i != molecules_.end() ) { | 
| 205 |  | 
| 206 | assert(mol == i->second); | 
| 207 |  | 
| 208 | nAtoms_ -= mol->getNAtoms(); | 
| 209 | nBonds_ -= mol->getNBonds(); | 
| 210 | nBends_ -= mol->getNBends(); | 
| 211 | nTorsions_ -= mol->getNTorsions(); | 
| 212 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 213 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 214 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 215 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 216 |  | 
| 217 | removeExcludePairs(mol); | 
| 218 | molecules_.erase(mol->getGlobalIndex()); | 
| 219 |  | 
| 220 | delete mol; | 
| 221 |  | 
| 222 | return true; | 
| 223 | } else { | 
| 224 | return false; | 
| 225 | } | 
| 226 |  | 
| 227 |  | 
| 228 | } | 
| 229 |  | 
| 230 |  | 
| 231 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 232 | i = molecules_.begin(); | 
| 233 | return i == molecules_.end() ? NULL : i->second; | 
| 234 | } | 
| 235 |  | 
| 236 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 237 | ++i; | 
| 238 | return i == molecules_.end() ? NULL : i->second; | 
| 239 | } | 
| 240 |  | 
| 241 |  | 
| 242 | void SimInfo::calcNdf() { | 
| 243 | int ndf_local; | 
| 244 | MoleculeIterator i; | 
| 245 | std::vector<StuntDouble*>::iterator j; | 
| 246 | Molecule* mol; | 
| 247 | StuntDouble* integrableObject; | 
| 248 |  | 
| 249 | ndf_local = 0; | 
| 250 |  | 
| 251 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 252 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 253 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 254 |  | 
| 255 | ndf_local += 3; | 
| 256 |  | 
| 257 | if (integrableObject->isDirectional()) { | 
| 258 | if (integrableObject->isLinear()) { | 
| 259 | ndf_local += 2; | 
| 260 | } else { | 
| 261 | ndf_local += 3; | 
| 262 | } | 
| 263 | } | 
| 264 |  | 
| 265 | }//end for (integrableObject) | 
| 266 | }// end for (mol) | 
| 267 |  | 
| 268 | // n_constraints is local, so subtract them on each processor | 
| 269 | ndf_local -= nConstraints_; | 
| 270 |  | 
| 271 | #ifdef IS_MPI | 
| 272 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 273 | #else | 
| 274 | ndf_ = ndf_local; | 
| 275 | #endif | 
| 276 |  | 
| 277 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 278 | // entire system: | 
| 279 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 280 |  | 
| 281 | } | 
| 282 |  | 
| 283 | void SimInfo::calcNdfRaw() { | 
| 284 | int ndfRaw_local; | 
| 285 |  | 
| 286 | MoleculeIterator i; | 
| 287 | std::vector<StuntDouble*>::iterator j; | 
| 288 | Molecule* mol; | 
| 289 | StuntDouble* integrableObject; | 
| 290 |  | 
| 291 | // Raw degrees of freedom that we have to set | 
| 292 | ndfRaw_local = 0; | 
| 293 |  | 
| 294 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 295 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 296 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 297 |  | 
| 298 | ndfRaw_local += 3; | 
| 299 |  | 
| 300 | if (integrableObject->isDirectional()) { | 
| 301 | if (integrableObject->isLinear()) { | 
| 302 | ndfRaw_local += 2; | 
| 303 | } else { | 
| 304 | ndfRaw_local += 3; | 
| 305 | } | 
| 306 | } | 
| 307 |  | 
| 308 | } | 
| 309 | } | 
| 310 |  | 
| 311 | #ifdef IS_MPI | 
| 312 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 313 | #else | 
| 314 | ndfRaw_ = ndfRaw_local; | 
| 315 | #endif | 
| 316 | } | 
| 317 |  | 
| 318 | void SimInfo::calcNdfTrans() { | 
| 319 | int ndfTrans_local; | 
| 320 |  | 
| 321 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 322 |  | 
| 323 |  | 
| 324 | #ifdef IS_MPI | 
| 325 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 326 | #else | 
| 327 | ndfTrans_ = ndfTrans_local; | 
| 328 | #endif | 
| 329 |  | 
| 330 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 331 |  | 
| 332 | } | 
| 333 |  | 
| 334 | void SimInfo::addExcludePairs(Molecule* mol) { | 
| 335 | std::vector<Bond*>::iterator bondIter; | 
| 336 | std::vector<Bend*>::iterator bendIter; | 
| 337 | std::vector<Torsion*>::iterator torsionIter; | 
| 338 | Bond* bond; | 
| 339 | Bend* bend; | 
| 340 | Torsion* torsion; | 
| 341 | int a; | 
| 342 | int b; | 
| 343 | int c; | 
| 344 | int d; | 
| 345 |  | 
| 346 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 347 | a = bond->getAtomA()->getGlobalIndex(); | 
| 348 | b = bond->getAtomB()->getGlobalIndex(); | 
| 349 | exclude_.addPair(a, b); | 
| 350 | } | 
| 351 |  | 
| 352 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 353 | a = bend->getAtomA()->getGlobalIndex(); | 
| 354 | b = bend->getAtomB()->getGlobalIndex(); | 
| 355 | c = bend->getAtomC()->getGlobalIndex(); | 
| 356 |  | 
| 357 | exclude_.addPair(a, b); | 
| 358 | exclude_.addPair(a, c); | 
| 359 | exclude_.addPair(b, c); | 
| 360 | } | 
| 361 |  | 
| 362 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 363 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 364 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 365 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 366 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 367 |  | 
| 368 | exclude_.addPair(a, b); | 
| 369 | exclude_.addPair(a, c); | 
| 370 | exclude_.addPair(a, d); | 
| 371 | exclude_.addPair(b, c); | 
| 372 | exclude_.addPair(b, d); | 
| 373 | exclude_.addPair(c, d); | 
| 374 | } | 
| 375 |  | 
| 376 | Molecule::RigidBodyIterator rbIter; | 
| 377 | RigidBody* rb; | 
| 378 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 379 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 380 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 381 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 382 | a = atoms[i]->getGlobalIndex(); | 
| 383 | b = atoms[j]->getGlobalIndex(); | 
| 384 | exclude_.addPair(a, b); | 
| 385 | } | 
| 386 | } | 
| 387 | } | 
| 388 |  | 
| 389 | } | 
| 390 |  | 
| 391 | void SimInfo::removeExcludePairs(Molecule* mol) { | 
| 392 | std::vector<Bond*>::iterator bondIter; | 
| 393 | std::vector<Bend*>::iterator bendIter; | 
| 394 | std::vector<Torsion*>::iterator torsionIter; | 
| 395 | Bond* bond; | 
| 396 | Bend* bend; | 
| 397 | Torsion* torsion; | 
| 398 | int a; | 
| 399 | int b; | 
| 400 | int c; | 
| 401 | int d; | 
| 402 |  | 
| 403 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 404 | a = bond->getAtomA()->getGlobalIndex(); | 
| 405 | b = bond->getAtomB()->getGlobalIndex(); | 
| 406 | exclude_.removePair(a, b); | 
| 407 | } | 
| 408 |  | 
| 409 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 410 | a = bend->getAtomA()->getGlobalIndex(); | 
| 411 | b = bend->getAtomB()->getGlobalIndex(); | 
| 412 | c = bend->getAtomC()->getGlobalIndex(); | 
| 413 |  | 
| 414 | exclude_.removePair(a, b); | 
| 415 | exclude_.removePair(a, c); | 
| 416 | exclude_.removePair(b, c); | 
| 417 | } | 
| 418 |  | 
| 419 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 420 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 421 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 422 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 423 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 424 |  | 
| 425 | exclude_.removePair(a, b); | 
| 426 | exclude_.removePair(a, c); | 
| 427 | exclude_.removePair(a, d); | 
| 428 | exclude_.removePair(b, c); | 
| 429 | exclude_.removePair(b, d); | 
| 430 | exclude_.removePair(c, d); | 
| 431 | } | 
| 432 |  | 
| 433 | Molecule::RigidBodyIterator rbIter; | 
| 434 | RigidBody* rb; | 
| 435 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 436 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 437 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 438 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 439 | a = atoms[i]->getGlobalIndex(); | 
| 440 | b = atoms[j]->getGlobalIndex(); | 
| 441 | exclude_.removePair(a, b); | 
| 442 | } | 
| 443 | } | 
| 444 | } | 
| 445 |  | 
| 446 | } | 
| 447 |  | 
| 448 |  | 
| 449 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 450 | int curStampId; | 
| 451 |  | 
| 452 | //index from 0 | 
| 453 | curStampId = moleculeStamps_.size(); | 
| 454 |  | 
| 455 | moleculeStamps_.push_back(molStamp); | 
| 456 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 457 | } | 
| 458 |  | 
| 459 | void SimInfo::update() { | 
| 460 |  | 
| 461 | setupSimType(); | 
| 462 |  | 
| 463 | #ifdef IS_MPI | 
| 464 | setupFortranParallel(); | 
| 465 | #endif | 
| 466 |  | 
| 467 | setupFortranSim(); | 
| 468 |  | 
| 469 | //setup fortran force field | 
| 470 | /** @deprecate */ | 
| 471 | int isError = 0; | 
| 472 |  | 
| 473 | setupElectrostaticSummationMethod( isError ); | 
| 474 |  | 
| 475 | if(isError){ | 
| 476 | sprintf( painCave.errMsg, | 
| 477 | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 478 | painCave.isFatal = 1; | 
| 479 | simError(); | 
| 480 | } | 
| 481 |  | 
| 482 |  | 
| 483 | setupCutoff(); | 
| 484 |  | 
| 485 | calcNdf(); | 
| 486 | calcNdfRaw(); | 
| 487 | calcNdfTrans(); | 
| 488 |  | 
| 489 | fortranInitialized_ = true; | 
| 490 | } | 
| 491 |  | 
| 492 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 493 | SimInfo::MoleculeIterator mi; | 
| 494 | Molecule* mol; | 
| 495 | Molecule::AtomIterator ai; | 
| 496 | Atom* atom; | 
| 497 | std::set<AtomType*> atomTypes; | 
| 498 |  | 
| 499 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 500 |  | 
| 501 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 502 | atomTypes.insert(atom->getAtomType()); | 
| 503 | } | 
| 504 |  | 
| 505 | } | 
| 506 |  | 
| 507 | return atomTypes; | 
| 508 | } | 
| 509 |  | 
| 510 | void SimInfo::setupSimType() { | 
| 511 | std::set<AtomType*>::iterator i; | 
| 512 | std::set<AtomType*> atomTypes; | 
| 513 | atomTypes = getUniqueAtomTypes(); | 
| 514 |  | 
| 515 | int useLennardJones = 0; | 
| 516 | int useElectrostatic = 0; | 
| 517 | int useEAM = 0; | 
| 518 | int useCharge = 0; | 
| 519 | int useDirectional = 0; | 
| 520 | int useDipole = 0; | 
| 521 | int useGayBerne = 0; | 
| 522 | int useSticky = 0; | 
| 523 | int useStickyPower = 0; | 
| 524 | int useShape = 0; | 
| 525 | int useFLARB = 0; //it is not in AtomType yet | 
| 526 | int useDirectionalAtom = 0; | 
| 527 | int useElectrostatics = 0; | 
| 528 | //usePBC and useRF are from simParams | 
| 529 | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 530 | int useRF; | 
| 531 | std::string myMethod; | 
| 532 |  | 
| 533 | // set the useRF logical | 
| 534 | useRF = 0; | 
| 535 |  | 
| 536 |  | 
| 537 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 538 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 539 | toUpper(myMethod); | 
| 540 | if (myMethod == "REACTION_FIELD") { | 
| 541 | useRF=1; | 
| 542 | } | 
| 543 | } | 
| 544 |  | 
| 545 | //loop over all of the atom types | 
| 546 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 547 | useLennardJones |= (*i)->isLennardJones(); | 
| 548 | useElectrostatic |= (*i)->isElectrostatic(); | 
| 549 | useEAM |= (*i)->isEAM(); | 
| 550 | useCharge |= (*i)->isCharge(); | 
| 551 | useDirectional |= (*i)->isDirectional(); | 
| 552 | useDipole |= (*i)->isDipole(); | 
| 553 | useGayBerne |= (*i)->isGayBerne(); | 
| 554 | useSticky |= (*i)->isSticky(); | 
| 555 | useStickyPower |= (*i)->isStickyPower(); | 
| 556 | useShape |= (*i)->isShape(); | 
| 557 | } | 
| 558 |  | 
| 559 | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 560 | useDirectionalAtom = 1; | 
| 561 | } | 
| 562 |  | 
| 563 | if (useCharge || useDipole) { | 
| 564 | useElectrostatics = 1; | 
| 565 | } | 
| 566 |  | 
| 567 | #ifdef IS_MPI | 
| 568 | int temp; | 
| 569 |  | 
| 570 | temp = usePBC; | 
| 571 | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 572 |  | 
| 573 | temp = useDirectionalAtom; | 
| 574 | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 575 |  | 
| 576 | temp = useLennardJones; | 
| 577 | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 578 |  | 
| 579 | temp = useElectrostatics; | 
| 580 | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 581 |  | 
| 582 | temp = useCharge; | 
| 583 | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 584 |  | 
| 585 | temp = useDipole; | 
| 586 | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 587 |  | 
| 588 | temp = useSticky; | 
| 589 | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 590 |  | 
| 591 | temp = useStickyPower; | 
| 592 | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 593 |  | 
| 594 | temp = useGayBerne; | 
| 595 | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 596 |  | 
| 597 | temp = useEAM; | 
| 598 | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 599 |  | 
| 600 | temp = useShape; | 
| 601 | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 602 |  | 
| 603 | temp = useFLARB; | 
| 604 | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 605 |  | 
| 606 | temp = useRF; | 
| 607 | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 608 |  | 
| 609 | #endif | 
| 610 |  | 
| 611 | fInfo_.SIM_uses_PBC = usePBC; | 
| 612 | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 613 | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 614 | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 615 | fInfo_.SIM_uses_Charges = useCharge; | 
| 616 | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 617 | fInfo_.SIM_uses_Sticky = useSticky; | 
| 618 | fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 619 | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 620 | fInfo_.SIM_uses_EAM = useEAM; | 
| 621 | fInfo_.SIM_uses_Shapes = useShape; | 
| 622 | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 623 | fInfo_.SIM_uses_RF = useRF; | 
| 624 |  | 
| 625 | if( myMethod == "REACTION_FIELD") { | 
| 626 |  | 
| 627 | if (simParams_->haveDielectric()) { | 
| 628 | fInfo_.dielect = simParams_->getDielectric(); | 
| 629 | } else { | 
| 630 | sprintf(painCave.errMsg, | 
| 631 | "SimSetup Error: No Dielectric constant was set.\n" | 
| 632 | "\tYou are trying to use Reaction Field without" | 
| 633 | "\tsetting a dielectric constant!\n"); | 
| 634 | painCave.isFatal = 1; | 
| 635 | simError(); | 
| 636 | } | 
| 637 | } | 
| 638 | } | 
| 639 |  | 
| 640 | void SimInfo::setupFortranSim() { | 
| 641 | int isError; | 
| 642 | int nExclude; | 
| 643 | std::vector<int> fortranGlobalGroupMembership; | 
| 644 |  | 
| 645 | nExclude = exclude_.getSize(); | 
| 646 | isError = 0; | 
| 647 |  | 
| 648 | //globalGroupMembership_ is filled by SimCreator | 
| 649 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 650 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 651 | } | 
| 652 |  | 
| 653 | //calculate mass ratio of cutoff group | 
| 654 | std::vector<double> mfact; | 
| 655 | SimInfo::MoleculeIterator mi; | 
| 656 | Molecule* mol; | 
| 657 | Molecule::CutoffGroupIterator ci; | 
| 658 | CutoffGroup* cg; | 
| 659 | Molecule::AtomIterator ai; | 
| 660 | Atom* atom; | 
| 661 | double totalMass; | 
| 662 |  | 
| 663 | //to avoid memory reallocation, reserve enough space for mfact | 
| 664 | mfact.reserve(getNCutoffGroups()); | 
| 665 |  | 
| 666 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 667 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 668 |  | 
| 669 | totalMass = cg->getMass(); | 
| 670 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 671 | // Check for massless groups - set mfact to 1 if true | 
| 672 | if (totalMass != 0) | 
| 673 | mfact.push_back(atom->getMass()/totalMass); | 
| 674 | else | 
| 675 | mfact.push_back( 1.0 ); | 
| 676 | } | 
| 677 |  | 
| 678 | } | 
| 679 | } | 
| 680 |  | 
| 681 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 682 | std::vector<int> identArray; | 
| 683 |  | 
| 684 | //to avoid memory reallocation, reserve enough space identArray | 
| 685 | identArray.reserve(getNAtoms()); | 
| 686 |  | 
| 687 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 688 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 689 | identArray.push_back(atom->getIdent()); | 
| 690 | } | 
| 691 | } | 
| 692 |  | 
| 693 | //fill molMembershipArray | 
| 694 | //molMembershipArray is filled by SimCreator | 
| 695 | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 696 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 697 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 698 | } | 
| 699 |  | 
| 700 | //setup fortran simulation | 
| 701 | int nGlobalExcludes = 0; | 
| 702 | int* globalExcludes = NULL; | 
| 703 | int* excludeList = exclude_.getExcludeList(); | 
| 704 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , | 
| 705 | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], | 
| 706 | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); | 
| 707 |  | 
| 708 | if( isError ){ | 
| 709 |  | 
| 710 | sprintf( painCave.errMsg, | 
| 711 | "There was an error setting the simulation information in fortran.\n" ); | 
| 712 | painCave.isFatal = 1; | 
| 713 | painCave.severity = OOPSE_ERROR; | 
| 714 | simError(); | 
| 715 | } | 
| 716 |  | 
| 717 | #ifdef IS_MPI | 
| 718 | sprintf( checkPointMsg, | 
| 719 | "succesfully sent the simulation information to fortran.\n"); | 
| 720 | MPIcheckPoint(); | 
| 721 | #endif // is_mpi | 
| 722 | } | 
| 723 |  | 
| 724 |  | 
| 725 | #ifdef IS_MPI | 
| 726 | void SimInfo::setupFortranParallel() { | 
| 727 |  | 
| 728 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 729 | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 730 | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 731 | SimInfo::MoleculeIterator mi; | 
| 732 | Molecule::AtomIterator ai; | 
| 733 | Molecule::CutoffGroupIterator ci; | 
| 734 | Molecule* mol; | 
| 735 | Atom* atom; | 
| 736 | CutoffGroup* cg; | 
| 737 | mpiSimData parallelData; | 
| 738 | int isError; | 
| 739 |  | 
| 740 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 741 |  | 
| 742 | //local index(index in DataStorge) of atom is important | 
| 743 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 744 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 745 | } | 
| 746 |  | 
| 747 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 748 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 749 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 750 | } | 
| 751 |  | 
| 752 | } | 
| 753 |  | 
| 754 | //fill up mpiSimData struct | 
| 755 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 756 | parallelData.nMolLocal = getNMolecules(); | 
| 757 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 758 | parallelData.nAtomsLocal = getNAtoms(); | 
| 759 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 760 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 761 | parallelData.myNode = worldRank; | 
| 762 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 763 |  | 
| 764 | //pass mpiSimData struct and index arrays to fortran | 
| 765 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 766 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 767 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 768 |  | 
| 769 | if (isError) { | 
| 770 | sprintf(painCave.errMsg, | 
| 771 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 772 | painCave.isFatal = 1; | 
| 773 | simError(); | 
| 774 | } | 
| 775 |  | 
| 776 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 777 | MPIcheckPoint(); | 
| 778 |  | 
| 779 |  | 
| 780 | } | 
| 781 |  | 
| 782 | #endif | 
| 783 |  | 
| 784 | double SimInfo::calcMaxCutoffRadius() { | 
| 785 |  | 
| 786 |  | 
| 787 | std::set<AtomType*> atomTypes; | 
| 788 | std::set<AtomType*>::iterator i; | 
| 789 | std::vector<double> cutoffRadius; | 
| 790 |  | 
| 791 | //get the unique atom types | 
| 792 | atomTypes = getUniqueAtomTypes(); | 
| 793 |  | 
| 794 | //query the max cutoff radius among these atom types | 
| 795 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 796 | cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); | 
| 797 | } | 
| 798 |  | 
| 799 | double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); | 
| 800 | #ifdef IS_MPI | 
| 801 | //pick the max cutoff radius among the processors | 
| 802 | #endif | 
| 803 |  | 
| 804 | return maxCutoffRadius; | 
| 805 | } | 
| 806 |  | 
| 807 | void SimInfo::getCutoff(double& rcut, double& rsw) { | 
| 808 |  | 
| 809 | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 810 |  | 
| 811 | if (!simParams_->haveCutoffRadius()){ | 
| 812 | sprintf(painCave.errMsg, | 
| 813 | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 814 | "\tOOPSE will use a default value of 15.0 angstroms" | 
| 815 | "\tfor the cutoffRadius.\n"); | 
| 816 | painCave.isFatal = 0; | 
| 817 | simError(); | 
| 818 | rcut = 15.0; | 
| 819 | } else{ | 
| 820 | rcut = simParams_->getCutoffRadius(); | 
| 821 | } | 
| 822 |  | 
| 823 | if (!simParams_->haveSwitchingRadius()){ | 
| 824 | sprintf(painCave.errMsg, | 
| 825 | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 826 | "\tOOPSE will use a default value of\n" | 
| 827 | "\t0.95 * cutoffRadius for the switchingRadius\n"); | 
| 828 | painCave.isFatal = 0; | 
| 829 | simError(); | 
| 830 | rsw = 0.95 * rcut; | 
| 831 | } else{ | 
| 832 | rsw = simParams_->getSwitchingRadius(); | 
| 833 | } | 
| 834 |  | 
| 835 | } else { | 
| 836 | // if charge, dipole or reaction field is not used and the cutofff radius is not specified in | 
| 837 | //meta-data file, the maximum cutoff radius calculated from forcefiled will be used | 
| 838 |  | 
| 839 | if (simParams_->haveCutoffRadius()) { | 
| 840 | rcut = simParams_->getCutoffRadius(); | 
| 841 | } else { | 
| 842 | //set cutoff radius to the maximum cutoff radius based on atom types in the whole system | 
| 843 | rcut = calcMaxCutoffRadius(); | 
| 844 | } | 
| 845 |  | 
| 846 | if (simParams_->haveSwitchingRadius()) { | 
| 847 | rsw  = simParams_->getSwitchingRadius(); | 
| 848 | } else { | 
| 849 | rsw = rcut; | 
| 850 | } | 
| 851 |  | 
| 852 | } | 
| 853 | } | 
| 854 |  | 
| 855 | void SimInfo::setupCutoff() { | 
| 856 | getCutoff(rcut_, rsw_); | 
| 857 | double rnblist = rcut_ + 1; // skin of neighbor list | 
| 858 |  | 
| 859 | //Pass these cutoff radius etc. to fortran. This function should be called once and only once | 
| 860 |  | 
| 861 | int cp =  TRADITIONAL_CUTOFF_POLICY; | 
| 862 | if (simParams_->haveCutoffPolicy()) { | 
| 863 | std::string myPolicy = simParams_->getCutoffPolicy(); | 
| 864 | toUpper(myPolicy); | 
| 865 | if (myPolicy == "MIX") { | 
| 866 | cp = MIX_CUTOFF_POLICY; | 
| 867 | } else { | 
| 868 | if (myPolicy == "MAX") { | 
| 869 | cp = MAX_CUTOFF_POLICY; | 
| 870 | } else { | 
| 871 | if (myPolicy == "TRADITIONAL") { | 
| 872 | cp = TRADITIONAL_CUTOFF_POLICY; | 
| 873 | } else { | 
| 874 | // throw error | 
| 875 | sprintf( painCave.errMsg, | 
| 876 | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 877 | painCave.isFatal = 1; | 
| 878 | simError(); | 
| 879 | } | 
| 880 | } | 
| 881 | } | 
| 882 | } | 
| 883 |  | 
| 884 |  | 
| 885 | if (simParams_->haveSkinThickness()) { | 
| 886 | double skinThickness = simParams_->getSkinThickness(); | 
| 887 | } | 
| 888 |  | 
| 889 | notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); | 
| 890 | // also send cutoff notification to electrostatics | 
| 891 | setElectrostaticCutoffRadius(&rcut_, &rsw_); | 
| 892 | } | 
| 893 |  | 
| 894 | void SimInfo::setupElectrostaticSummationMethod( int isError ) { | 
| 895 |  | 
| 896 | int errorOut; | 
| 897 | int esm =  NONE; | 
| 898 | double alphaVal; | 
| 899 | double dielectric; | 
| 900 |  | 
| 901 | errorOut = isError; | 
| 902 | alphaVal = simParams_->getDampingAlpha(); | 
| 903 | dielectric = simParams_->getDielectric(); | 
| 904 |  | 
| 905 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 906 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 907 | toUpper(myMethod); | 
| 908 | if (myMethod == "NONE") { | 
| 909 | esm = NONE; | 
| 910 | } else { | 
| 911 | if (myMethod == "UNDAMPED_WOLF") { | 
| 912 | esm = UNDAMPED_WOLF; | 
| 913 | } else { | 
| 914 | if (myMethod == "DAMPED_WOLF") { | 
| 915 | esm = DAMPED_WOLF; | 
| 916 | if (!simParams_->haveDampingAlpha()) { | 
| 917 | //throw error | 
| 918 | sprintf( painCave.errMsg, | 
| 919 | "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal); | 
| 920 | painCave.isFatal = 0; | 
| 921 | simError(); | 
| 922 | } | 
| 923 | } else { | 
| 924 | if (myMethod == "REACTION_FIELD") { | 
| 925 | esm = REACTION_FIELD; | 
| 926 | } else { | 
| 927 | // throw error | 
| 928 | sprintf( painCave.errMsg, | 
| 929 | "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() ); | 
| 930 | painCave.isFatal = 1; | 
| 931 | simError(); | 
| 932 | } | 
| 933 | } | 
| 934 | } | 
| 935 | } | 
| 936 | } | 
| 937 | // let's pass some summation method variables to fortran | 
| 938 | setElectrostaticSummationMethod( &esm ); | 
| 939 | setDampedWolfAlpha( &alphaVal ); | 
| 940 | setReactionFieldDielectric( &dielectric ); | 
| 941 | initFortranFF( &esm, &errorOut ); | 
| 942 | } | 
| 943 |  | 
| 944 | void SimInfo::addProperty(GenericData* genData) { | 
| 945 | properties_.addProperty(genData); | 
| 946 | } | 
| 947 |  | 
| 948 | void SimInfo::removeProperty(const std::string& propName) { | 
| 949 | properties_.removeProperty(propName); | 
| 950 | } | 
| 951 |  | 
| 952 | void SimInfo::clearProperties() { | 
| 953 | properties_.clearProperties(); | 
| 954 | } | 
| 955 |  | 
| 956 | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 957 | return properties_.getPropertyNames(); | 
| 958 | } | 
| 959 |  | 
| 960 | std::vector<GenericData*> SimInfo::getProperties() { | 
| 961 | return properties_.getProperties(); | 
| 962 | } | 
| 963 |  | 
| 964 | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 965 | return properties_.getPropertyByName(propName); | 
| 966 | } | 
| 967 |  | 
| 968 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 969 | if (sman_ == sman) { | 
| 970 | return; | 
| 971 | } | 
| 972 | delete sman_; | 
| 973 | sman_ = sman; | 
| 974 |  | 
| 975 | Molecule* mol; | 
| 976 | RigidBody* rb; | 
| 977 | Atom* atom; | 
| 978 | SimInfo::MoleculeIterator mi; | 
| 979 | Molecule::RigidBodyIterator rbIter; | 
| 980 | Molecule::AtomIterator atomIter;; | 
| 981 |  | 
| 982 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 983 |  | 
| 984 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 985 | atom->setSnapshotManager(sman_); | 
| 986 | } | 
| 987 |  | 
| 988 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 989 | rb->setSnapshotManager(sman_); | 
| 990 | } | 
| 991 | } | 
| 992 |  | 
| 993 | } | 
| 994 |  | 
| 995 | Vector3d SimInfo::getComVel(){ | 
| 996 | SimInfo::MoleculeIterator i; | 
| 997 | Molecule* mol; | 
| 998 |  | 
| 999 | Vector3d comVel(0.0); | 
| 1000 | double totalMass = 0.0; | 
| 1001 |  | 
| 1002 |  | 
| 1003 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1004 | double mass = mol->getMass(); | 
| 1005 | totalMass += mass; | 
| 1006 | comVel += mass * mol->getComVel(); | 
| 1007 | } | 
| 1008 |  | 
| 1009 | #ifdef IS_MPI | 
| 1010 | double tmpMass = totalMass; | 
| 1011 | Vector3d tmpComVel(comVel); | 
| 1012 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1013 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1014 | #endif | 
| 1015 |  | 
| 1016 | comVel /= totalMass; | 
| 1017 |  | 
| 1018 | return comVel; | 
| 1019 | } | 
| 1020 |  | 
| 1021 | Vector3d SimInfo::getCom(){ | 
| 1022 | SimInfo::MoleculeIterator i; | 
| 1023 | Molecule* mol; | 
| 1024 |  | 
| 1025 | Vector3d com(0.0); | 
| 1026 | double totalMass = 0.0; | 
| 1027 |  | 
| 1028 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1029 | double mass = mol->getMass(); | 
| 1030 | totalMass += mass; | 
| 1031 | com += mass * mol->getCom(); | 
| 1032 | } | 
| 1033 |  | 
| 1034 | #ifdef IS_MPI | 
| 1035 | double tmpMass = totalMass; | 
| 1036 | Vector3d tmpCom(com); | 
| 1037 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1038 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1039 | #endif | 
| 1040 |  | 
| 1041 | com /= totalMass; | 
| 1042 |  | 
| 1043 | return com; | 
| 1044 |  | 
| 1045 | } | 
| 1046 |  | 
| 1047 | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1048 |  | 
| 1049 | return o; | 
| 1050 | } | 
| 1051 |  | 
| 1052 |  | 
| 1053 | /* | 
| 1054 | Returns center of mass and center of mass velocity in one function call. | 
| 1055 | */ | 
| 1056 |  | 
| 1057 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1058 | SimInfo::MoleculeIterator i; | 
| 1059 | Molecule* mol; | 
| 1060 |  | 
| 1061 |  | 
| 1062 | double totalMass = 0.0; | 
| 1063 |  | 
| 1064 |  | 
| 1065 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1066 | double mass = mol->getMass(); | 
| 1067 | totalMass += mass; | 
| 1068 | com += mass * mol->getCom(); | 
| 1069 | comVel += mass * mol->getComVel(); | 
| 1070 | } | 
| 1071 |  | 
| 1072 | #ifdef IS_MPI | 
| 1073 | double tmpMass = totalMass; | 
| 1074 | Vector3d tmpCom(com); | 
| 1075 | Vector3d tmpComVel(comVel); | 
| 1076 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1077 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1078 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1079 | #endif | 
| 1080 |  | 
| 1081 | com /= totalMass; | 
| 1082 | comVel /= totalMass; | 
| 1083 | } | 
| 1084 |  | 
| 1085 | /* | 
| 1086 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1087 |  | 
| 1088 |  | 
| 1089 | [  Ixx -Ixy  -Ixz ] | 
| 1090 | J =| -Iyx  Iyy  -Iyz | | 
| 1091 | [ -Izx -Iyz   Izz ] | 
| 1092 | */ | 
| 1093 |  | 
| 1094 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1095 |  | 
| 1096 |  | 
| 1097 | double xx = 0.0; | 
| 1098 | double yy = 0.0; | 
| 1099 | double zz = 0.0; | 
| 1100 | double xy = 0.0; | 
| 1101 | double xz = 0.0; | 
| 1102 | double yz = 0.0; | 
| 1103 | Vector3d com(0.0); | 
| 1104 | Vector3d comVel(0.0); | 
| 1105 |  | 
| 1106 | getComAll(com, comVel); | 
| 1107 |  | 
| 1108 | SimInfo::MoleculeIterator i; | 
| 1109 | Molecule* mol; | 
| 1110 |  | 
| 1111 | Vector3d thisq(0.0); | 
| 1112 | Vector3d thisv(0.0); | 
| 1113 |  | 
| 1114 | double thisMass = 0.0; | 
| 1115 |  | 
| 1116 |  | 
| 1117 |  | 
| 1118 |  | 
| 1119 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1120 |  | 
| 1121 | thisq = mol->getCom()-com; | 
| 1122 | thisv = mol->getComVel()-comVel; | 
| 1123 | thisMass = mol->getMass(); | 
| 1124 | // Compute moment of intertia coefficients. | 
| 1125 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1126 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1127 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1128 |  | 
| 1129 | // compute products of intertia | 
| 1130 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1131 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1132 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1133 |  | 
| 1134 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1135 |  | 
| 1136 | } | 
| 1137 |  | 
| 1138 |  | 
| 1139 | inertiaTensor(0,0) = yy + zz; | 
| 1140 | inertiaTensor(0,1) = -xy; | 
| 1141 | inertiaTensor(0,2) = -xz; | 
| 1142 | inertiaTensor(1,0) = -xy; | 
| 1143 | inertiaTensor(1,1) = xx + zz; | 
| 1144 | inertiaTensor(1,2) = -yz; | 
| 1145 | inertiaTensor(2,0) = -xz; | 
| 1146 | inertiaTensor(2,1) = -yz; | 
| 1147 | inertiaTensor(2,2) = xx + yy; | 
| 1148 |  | 
| 1149 | #ifdef IS_MPI | 
| 1150 | Mat3x3d tmpI(inertiaTensor); | 
| 1151 | Vector3d tmpAngMom; | 
| 1152 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1153 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1154 | #endif | 
| 1155 |  | 
| 1156 | return; | 
| 1157 | } | 
| 1158 |  | 
| 1159 | //Returns the angular momentum of the system | 
| 1160 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1161 |  | 
| 1162 | Vector3d com(0.0); | 
| 1163 | Vector3d comVel(0.0); | 
| 1164 | Vector3d angularMomentum(0.0); | 
| 1165 |  | 
| 1166 | getComAll(com,comVel); | 
| 1167 |  | 
| 1168 | SimInfo::MoleculeIterator i; | 
| 1169 | Molecule* mol; | 
| 1170 |  | 
| 1171 | Vector3d thisr(0.0); | 
| 1172 | Vector3d thisp(0.0); | 
| 1173 |  | 
| 1174 | double thisMass; | 
| 1175 |  | 
| 1176 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1177 | thisMass = mol->getMass(); | 
| 1178 | thisr = mol->getCom()-com; | 
| 1179 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1180 |  | 
| 1181 | angularMomentum += cross( thisr, thisp ); | 
| 1182 |  | 
| 1183 | } | 
| 1184 |  | 
| 1185 | #ifdef IS_MPI | 
| 1186 | Vector3d tmpAngMom; | 
| 1187 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1188 | #endif | 
| 1189 |  | 
| 1190 | return angularMomentum; | 
| 1191 | } | 
| 1192 |  | 
| 1193 |  | 
| 1194 | }//end namespace oopse | 
| 1195 |  |