| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 |  | 
| 52 | #include "brains/SimInfo.hpp" | 
| 53 | #include "math/Vector3.hpp" | 
| 54 | #include "primitives/Molecule.hpp" | 
| 55 | #include "UseTheForce/fCutoffPolicy.h" | 
| 56 | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 57 | #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" | 
| 58 | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" | 
| 59 | #include "UseTheForce/doForces_interface.h" | 
| 60 | #include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 61 | #include "UseTheForce/notifyCutoffs_interface.h" | 
| 62 | #include "UseTheForce/DarkSide/switcheroo_interface.h" | 
| 63 | #include "utils/MemoryUtils.hpp" | 
| 64 | #include "utils/simError.h" | 
| 65 | #include "selection/SelectionManager.hpp" | 
| 66 |  | 
| 67 | #ifdef IS_MPI | 
| 68 | #include "UseTheForce/mpiComponentPlan.h" | 
| 69 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 70 | #endif | 
| 71 |  | 
| 72 | namespace oopse { | 
| 73 |  | 
| 74 | SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, | 
| 75 | ForceField* ff, Globals* simParams) : | 
| 76 | stamps_(stamps), forceField_(ff), simParams_(simParams), | 
| 77 | ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 78 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 79 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 80 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0), | 
| 81 | nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0), | 
| 82 | sman_(NULL), fortranInitialized_(false) { | 
| 83 |  | 
| 84 |  | 
| 85 | std::vector<std::pair<MoleculeStamp*, int> >::iterator i; | 
| 86 | MoleculeStamp* molStamp; | 
| 87 | int nMolWithSameStamp; | 
| 88 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 89 | int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 90 | CutoffGroupStamp* cgStamp; | 
| 91 | RigidBodyStamp* rbStamp; | 
| 92 | int nRigidAtoms = 0; | 
| 93 |  | 
| 94 | for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { | 
| 95 | molStamp = i->first; | 
| 96 | nMolWithSameStamp = i->second; | 
| 97 |  | 
| 98 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 99 |  | 
| 100 | //calculate atoms in molecules | 
| 101 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 102 |  | 
| 103 |  | 
| 104 | //calculate atoms in cutoff groups | 
| 105 | int nAtomsInGroups = 0; | 
| 106 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 107 |  | 
| 108 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 109 | cgStamp = molStamp->getCutoffGroup(j); | 
| 110 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 111 | } | 
| 112 |  | 
| 113 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 114 |  | 
| 115 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 116 |  | 
| 117 | //calculate atoms in rigid bodies | 
| 118 | int nAtomsInRigidBodies = 0; | 
| 119 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 120 |  | 
| 121 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 122 | rbStamp = molStamp->getRigidBody(j); | 
| 123 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 124 | } | 
| 125 |  | 
| 126 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 127 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 128 |  | 
| 129 | } | 
| 130 |  | 
| 131 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 132 | //group therefore the total number of cutoff groups in the system is | 
| 133 | //equal to the total number of atoms minus number of atoms belong to | 
| 134 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 135 | //groups defined in meta-data file | 
| 136 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 137 |  | 
| 138 | //every free atom (atom does not belong to rigid bodies) is an | 
| 139 | //integrable object therefore the total number of integrable objects | 
| 140 | //in the system is equal to the total number of atoms minus number of | 
| 141 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 142 | //of rigid bodies defined in meta-data file | 
| 143 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 144 | + nGlobalRigidBodies_; | 
| 145 |  | 
| 146 | nGlobalMols_ = molStampIds_.size(); | 
| 147 |  | 
| 148 | #ifdef IS_MPI | 
| 149 | molToProcMap_.resize(nGlobalMols_); | 
| 150 | #endif | 
| 151 |  | 
| 152 | } | 
| 153 |  | 
| 154 | SimInfo::~SimInfo() { | 
| 155 | std::map<int, Molecule*>::iterator i; | 
| 156 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 157 | delete i->second; | 
| 158 | } | 
| 159 | molecules_.clear(); | 
| 160 |  | 
| 161 | delete stamps_; | 
| 162 | delete sman_; | 
| 163 | delete simParams_; | 
| 164 | delete forceField_; | 
| 165 | } | 
| 166 |  | 
| 167 | int SimInfo::getNGlobalConstraints() { | 
| 168 | int nGlobalConstraints; | 
| 169 | #ifdef IS_MPI | 
| 170 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 171 | MPI_COMM_WORLD); | 
| 172 | #else | 
| 173 | nGlobalConstraints =  nConstraints_; | 
| 174 | #endif | 
| 175 | return nGlobalConstraints; | 
| 176 | } | 
| 177 |  | 
| 178 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 179 | MoleculeIterator i; | 
| 180 |  | 
| 181 | i = molecules_.find(mol->getGlobalIndex()); | 
| 182 | if (i == molecules_.end() ) { | 
| 183 |  | 
| 184 | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 185 |  | 
| 186 | nAtoms_ += mol->getNAtoms(); | 
| 187 | nBonds_ += mol->getNBonds(); | 
| 188 | nBends_ += mol->getNBends(); | 
| 189 | nTorsions_ += mol->getNTorsions(); | 
| 190 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 191 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 192 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 193 | nConstraints_ += mol->getNConstraintPairs(); | 
| 194 |  | 
| 195 | addExcludePairs(mol); | 
| 196 |  | 
| 197 | return true; | 
| 198 | } else { | 
| 199 | return false; | 
| 200 | } | 
| 201 | } | 
| 202 |  | 
| 203 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 204 | MoleculeIterator i; | 
| 205 | i = molecules_.find(mol->getGlobalIndex()); | 
| 206 |  | 
| 207 | if (i != molecules_.end() ) { | 
| 208 |  | 
| 209 | assert(mol == i->second); | 
| 210 |  | 
| 211 | nAtoms_ -= mol->getNAtoms(); | 
| 212 | nBonds_ -= mol->getNBonds(); | 
| 213 | nBends_ -= mol->getNBends(); | 
| 214 | nTorsions_ -= mol->getNTorsions(); | 
| 215 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 216 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 217 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 218 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 219 |  | 
| 220 | removeExcludePairs(mol); | 
| 221 | molecules_.erase(mol->getGlobalIndex()); | 
| 222 |  | 
| 223 | delete mol; | 
| 224 |  | 
| 225 | return true; | 
| 226 | } else { | 
| 227 | return false; | 
| 228 | } | 
| 229 |  | 
| 230 |  | 
| 231 | } | 
| 232 |  | 
| 233 |  | 
| 234 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 235 | i = molecules_.begin(); | 
| 236 | return i == molecules_.end() ? NULL : i->second; | 
| 237 | } | 
| 238 |  | 
| 239 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 240 | ++i; | 
| 241 | return i == molecules_.end() ? NULL : i->second; | 
| 242 | } | 
| 243 |  | 
| 244 |  | 
| 245 | void SimInfo::calcNdf() { | 
| 246 | int ndf_local; | 
| 247 | MoleculeIterator i; | 
| 248 | std::vector<StuntDouble*>::iterator j; | 
| 249 | Molecule* mol; | 
| 250 | StuntDouble* integrableObject; | 
| 251 |  | 
| 252 | ndf_local = 0; | 
| 253 |  | 
| 254 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 255 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 256 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 257 |  | 
| 258 | ndf_local += 3; | 
| 259 |  | 
| 260 | if (integrableObject->isDirectional()) { | 
| 261 | if (integrableObject->isLinear()) { | 
| 262 | ndf_local += 2; | 
| 263 | } else { | 
| 264 | ndf_local += 3; | 
| 265 | } | 
| 266 | } | 
| 267 |  | 
| 268 | }//end for (integrableObject) | 
| 269 | }// end for (mol) | 
| 270 |  | 
| 271 | // n_constraints is local, so subtract them on each processor | 
| 272 | ndf_local -= nConstraints_; | 
| 273 |  | 
| 274 | #ifdef IS_MPI | 
| 275 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 276 | #else | 
| 277 | ndf_ = ndf_local; | 
| 278 | #endif | 
| 279 |  | 
| 280 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 281 | // entire system: | 
| 282 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 283 |  | 
| 284 | } | 
| 285 |  | 
| 286 | void SimInfo::calcNdfRaw() { | 
| 287 | int ndfRaw_local; | 
| 288 |  | 
| 289 | MoleculeIterator i; | 
| 290 | std::vector<StuntDouble*>::iterator j; | 
| 291 | Molecule* mol; | 
| 292 | StuntDouble* integrableObject; | 
| 293 |  | 
| 294 | // Raw degrees of freedom that we have to set | 
| 295 | ndfRaw_local = 0; | 
| 296 |  | 
| 297 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 298 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 299 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 300 |  | 
| 301 | ndfRaw_local += 3; | 
| 302 |  | 
| 303 | if (integrableObject->isDirectional()) { | 
| 304 | if (integrableObject->isLinear()) { | 
| 305 | ndfRaw_local += 2; | 
| 306 | } else { | 
| 307 | ndfRaw_local += 3; | 
| 308 | } | 
| 309 | } | 
| 310 |  | 
| 311 | } | 
| 312 | } | 
| 313 |  | 
| 314 | #ifdef IS_MPI | 
| 315 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 316 | #else | 
| 317 | ndfRaw_ = ndfRaw_local; | 
| 318 | #endif | 
| 319 | } | 
| 320 |  | 
| 321 | void SimInfo::calcNdfTrans() { | 
| 322 | int ndfTrans_local; | 
| 323 |  | 
| 324 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 325 |  | 
| 326 |  | 
| 327 | #ifdef IS_MPI | 
| 328 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 329 | #else | 
| 330 | ndfTrans_ = ndfTrans_local; | 
| 331 | #endif | 
| 332 |  | 
| 333 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 334 |  | 
| 335 | } | 
| 336 |  | 
| 337 | void SimInfo::addExcludePairs(Molecule* mol) { | 
| 338 | std::vector<Bond*>::iterator bondIter; | 
| 339 | std::vector<Bend*>::iterator bendIter; | 
| 340 | std::vector<Torsion*>::iterator torsionIter; | 
| 341 | Bond* bond; | 
| 342 | Bend* bend; | 
| 343 | Torsion* torsion; | 
| 344 | int a; | 
| 345 | int b; | 
| 346 | int c; | 
| 347 | int d; | 
| 348 |  | 
| 349 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 350 | a = bond->getAtomA()->getGlobalIndex(); | 
| 351 | b = bond->getAtomB()->getGlobalIndex(); | 
| 352 | exclude_.addPair(a, b); | 
| 353 | } | 
| 354 |  | 
| 355 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 356 | a = bend->getAtomA()->getGlobalIndex(); | 
| 357 | b = bend->getAtomB()->getGlobalIndex(); | 
| 358 | c = bend->getAtomC()->getGlobalIndex(); | 
| 359 |  | 
| 360 | exclude_.addPair(a, b); | 
| 361 | exclude_.addPair(a, c); | 
| 362 | exclude_.addPair(b, c); | 
| 363 | } | 
| 364 |  | 
| 365 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 366 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 367 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 368 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 369 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 370 |  | 
| 371 | exclude_.addPair(a, b); | 
| 372 | exclude_.addPair(a, c); | 
| 373 | exclude_.addPair(a, d); | 
| 374 | exclude_.addPair(b, c); | 
| 375 | exclude_.addPair(b, d); | 
| 376 | exclude_.addPair(c, d); | 
| 377 | } | 
| 378 |  | 
| 379 | Molecule::RigidBodyIterator rbIter; | 
| 380 | RigidBody* rb; | 
| 381 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 382 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 383 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 384 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 385 | a = atoms[i]->getGlobalIndex(); | 
| 386 | b = atoms[j]->getGlobalIndex(); | 
| 387 | exclude_.addPair(a, b); | 
| 388 | } | 
| 389 | } | 
| 390 | } | 
| 391 |  | 
| 392 | } | 
| 393 |  | 
| 394 | void SimInfo::removeExcludePairs(Molecule* mol) { | 
| 395 | std::vector<Bond*>::iterator bondIter; | 
| 396 | std::vector<Bend*>::iterator bendIter; | 
| 397 | std::vector<Torsion*>::iterator torsionIter; | 
| 398 | Bond* bond; | 
| 399 | Bend* bend; | 
| 400 | Torsion* torsion; | 
| 401 | int a; | 
| 402 | int b; | 
| 403 | int c; | 
| 404 | int d; | 
| 405 |  | 
| 406 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 407 | a = bond->getAtomA()->getGlobalIndex(); | 
| 408 | b = bond->getAtomB()->getGlobalIndex(); | 
| 409 | exclude_.removePair(a, b); | 
| 410 | } | 
| 411 |  | 
| 412 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 413 | a = bend->getAtomA()->getGlobalIndex(); | 
| 414 | b = bend->getAtomB()->getGlobalIndex(); | 
| 415 | c = bend->getAtomC()->getGlobalIndex(); | 
| 416 |  | 
| 417 | exclude_.removePair(a, b); | 
| 418 | exclude_.removePair(a, c); | 
| 419 | exclude_.removePair(b, c); | 
| 420 | } | 
| 421 |  | 
| 422 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 423 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 424 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 425 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 426 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 427 |  | 
| 428 | exclude_.removePair(a, b); | 
| 429 | exclude_.removePair(a, c); | 
| 430 | exclude_.removePair(a, d); | 
| 431 | exclude_.removePair(b, c); | 
| 432 | exclude_.removePair(b, d); | 
| 433 | exclude_.removePair(c, d); | 
| 434 | } | 
| 435 |  | 
| 436 | Molecule::RigidBodyIterator rbIter; | 
| 437 | RigidBody* rb; | 
| 438 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 439 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 440 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 441 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 442 | a = atoms[i]->getGlobalIndex(); | 
| 443 | b = atoms[j]->getGlobalIndex(); | 
| 444 | exclude_.removePair(a, b); | 
| 445 | } | 
| 446 | } | 
| 447 | } | 
| 448 |  | 
| 449 | } | 
| 450 |  | 
| 451 |  | 
| 452 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 453 | int curStampId; | 
| 454 |  | 
| 455 | //index from 0 | 
| 456 | curStampId = moleculeStamps_.size(); | 
| 457 |  | 
| 458 | moleculeStamps_.push_back(molStamp); | 
| 459 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 460 | } | 
| 461 |  | 
| 462 | void SimInfo::update() { | 
| 463 |  | 
| 464 | setupSimType(); | 
| 465 |  | 
| 466 | #ifdef IS_MPI | 
| 467 | setupFortranParallel(); | 
| 468 | #endif | 
| 469 |  | 
| 470 | setupFortranSim(); | 
| 471 |  | 
| 472 | //setup fortran force field | 
| 473 | /** @deprecate */ | 
| 474 | int isError = 0; | 
| 475 |  | 
| 476 | setupElectrostaticSummationMethod( isError ); | 
| 477 | setupSwitchingFunction(); | 
| 478 |  | 
| 479 | if(isError){ | 
| 480 | sprintf( painCave.errMsg, | 
| 481 | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 482 | painCave.isFatal = 1; | 
| 483 | simError(); | 
| 484 | } | 
| 485 |  | 
| 486 |  | 
| 487 | setupCutoff(); | 
| 488 |  | 
| 489 | calcNdf(); | 
| 490 | calcNdfRaw(); | 
| 491 | calcNdfTrans(); | 
| 492 |  | 
| 493 | fortranInitialized_ = true; | 
| 494 | } | 
| 495 |  | 
| 496 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 497 | SimInfo::MoleculeIterator mi; | 
| 498 | Molecule* mol; | 
| 499 | Molecule::AtomIterator ai; | 
| 500 | Atom* atom; | 
| 501 | std::set<AtomType*> atomTypes; | 
| 502 |  | 
| 503 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 504 |  | 
| 505 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 506 | atomTypes.insert(atom->getAtomType()); | 
| 507 | } | 
| 508 |  | 
| 509 | } | 
| 510 |  | 
| 511 | return atomTypes; | 
| 512 | } | 
| 513 |  | 
| 514 | void SimInfo::setupSimType() { | 
| 515 | std::set<AtomType*>::iterator i; | 
| 516 | std::set<AtomType*> atomTypes; | 
| 517 | atomTypes = getUniqueAtomTypes(); | 
| 518 |  | 
| 519 | int useLennardJones = 0; | 
| 520 | int useElectrostatic = 0; | 
| 521 | int useEAM = 0; | 
| 522 | int useCharge = 0; | 
| 523 | int useDirectional = 0; | 
| 524 | int useDipole = 0; | 
| 525 | int useGayBerne = 0; | 
| 526 | int useSticky = 0; | 
| 527 | int useStickyPower = 0; | 
| 528 | int useShape = 0; | 
| 529 | int useFLARB = 0; //it is not in AtomType yet | 
| 530 | int useDirectionalAtom = 0; | 
| 531 | int useElectrostatics = 0; | 
| 532 | //usePBC and useRF are from simParams | 
| 533 | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 534 | int useRF; | 
| 535 | int useSF; | 
| 536 | std::string myMethod; | 
| 537 |  | 
| 538 | // set the useRF logical | 
| 539 | useRF = 0; | 
| 540 | useSF = 0; | 
| 541 |  | 
| 542 |  | 
| 543 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 544 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 545 | toUpper(myMethod); | 
| 546 | if (myMethod == "REACTION_FIELD") { | 
| 547 | useRF=1; | 
| 548 | } else { | 
| 549 | if (myMethod == "SHIFTED_FORCE") { | 
| 550 | useSF = 1; | 
| 551 | } | 
| 552 | } | 
| 553 | } | 
| 554 |  | 
| 555 | //loop over all of the atom types | 
| 556 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 557 | useLennardJones |= (*i)->isLennardJones(); | 
| 558 | useElectrostatic |= (*i)->isElectrostatic(); | 
| 559 | useEAM |= (*i)->isEAM(); | 
| 560 | useCharge |= (*i)->isCharge(); | 
| 561 | useDirectional |= (*i)->isDirectional(); | 
| 562 | useDipole |= (*i)->isDipole(); | 
| 563 | useGayBerne |= (*i)->isGayBerne(); | 
| 564 | useSticky |= (*i)->isSticky(); | 
| 565 | useStickyPower |= (*i)->isStickyPower(); | 
| 566 | useShape |= (*i)->isShape(); | 
| 567 | } | 
| 568 |  | 
| 569 | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 570 | useDirectionalAtom = 1; | 
| 571 | } | 
| 572 |  | 
| 573 | if (useCharge || useDipole) { | 
| 574 | useElectrostatics = 1; | 
| 575 | } | 
| 576 |  | 
| 577 | #ifdef IS_MPI | 
| 578 | int temp; | 
| 579 |  | 
| 580 | temp = usePBC; | 
| 581 | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 582 |  | 
| 583 | temp = useDirectionalAtom; | 
| 584 | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 585 |  | 
| 586 | temp = useLennardJones; | 
| 587 | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 588 |  | 
| 589 | temp = useElectrostatics; | 
| 590 | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 591 |  | 
| 592 | temp = useCharge; | 
| 593 | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 594 |  | 
| 595 | temp = useDipole; | 
| 596 | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 597 |  | 
| 598 | temp = useSticky; | 
| 599 | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 600 |  | 
| 601 | temp = useStickyPower; | 
| 602 | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 603 |  | 
| 604 | temp = useGayBerne; | 
| 605 | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 606 |  | 
| 607 | temp = useEAM; | 
| 608 | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 609 |  | 
| 610 | temp = useShape; | 
| 611 | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 612 |  | 
| 613 | temp = useFLARB; | 
| 614 | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 615 |  | 
| 616 | temp = useRF; | 
| 617 | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 618 |  | 
| 619 | temp = useSF; | 
| 620 | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 621 |  | 
| 622 | #endif | 
| 623 |  | 
| 624 | fInfo_.SIM_uses_PBC = usePBC; | 
| 625 | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 626 | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 627 | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 628 | fInfo_.SIM_uses_Charges = useCharge; | 
| 629 | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 630 | fInfo_.SIM_uses_Sticky = useSticky; | 
| 631 | fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 632 | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 633 | fInfo_.SIM_uses_EAM = useEAM; | 
| 634 | fInfo_.SIM_uses_Shapes = useShape; | 
| 635 | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 636 | fInfo_.SIM_uses_RF = useRF; | 
| 637 | fInfo_.SIM_uses_SF = useSF; | 
| 638 |  | 
| 639 | if( myMethod == "REACTION_FIELD") { | 
| 640 |  | 
| 641 | if (simParams_->haveDielectric()) { | 
| 642 | fInfo_.dielect = simParams_->getDielectric(); | 
| 643 | } else { | 
| 644 | sprintf(painCave.errMsg, | 
| 645 | "SimSetup Error: No Dielectric constant was set.\n" | 
| 646 | "\tYou are trying to use Reaction Field without" | 
| 647 | "\tsetting a dielectric constant!\n"); | 
| 648 | painCave.isFatal = 1; | 
| 649 | simError(); | 
| 650 | } | 
| 651 | } | 
| 652 |  | 
| 653 | } | 
| 654 |  | 
| 655 | void SimInfo::setupFortranSim() { | 
| 656 | int isError; | 
| 657 | int nExclude; | 
| 658 | std::vector<int> fortranGlobalGroupMembership; | 
| 659 |  | 
| 660 | nExclude = exclude_.getSize(); | 
| 661 | isError = 0; | 
| 662 |  | 
| 663 | //globalGroupMembership_ is filled by SimCreator | 
| 664 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 665 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 666 | } | 
| 667 |  | 
| 668 | //calculate mass ratio of cutoff group | 
| 669 | std::vector<double> mfact; | 
| 670 | SimInfo::MoleculeIterator mi; | 
| 671 | Molecule* mol; | 
| 672 | Molecule::CutoffGroupIterator ci; | 
| 673 | CutoffGroup* cg; | 
| 674 | Molecule::AtomIterator ai; | 
| 675 | Atom* atom; | 
| 676 | double totalMass; | 
| 677 |  | 
| 678 | //to avoid memory reallocation, reserve enough space for mfact | 
| 679 | mfact.reserve(getNCutoffGroups()); | 
| 680 |  | 
| 681 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 682 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 683 |  | 
| 684 | totalMass = cg->getMass(); | 
| 685 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 686 | // Check for massless groups - set mfact to 1 if true | 
| 687 | if (totalMass != 0) | 
| 688 | mfact.push_back(atom->getMass()/totalMass); | 
| 689 | else | 
| 690 | mfact.push_back( 1.0 ); | 
| 691 | } | 
| 692 |  | 
| 693 | } | 
| 694 | } | 
| 695 |  | 
| 696 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 697 | std::vector<int> identArray; | 
| 698 |  | 
| 699 | //to avoid memory reallocation, reserve enough space identArray | 
| 700 | identArray.reserve(getNAtoms()); | 
| 701 |  | 
| 702 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 703 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 704 | identArray.push_back(atom->getIdent()); | 
| 705 | } | 
| 706 | } | 
| 707 |  | 
| 708 | //fill molMembershipArray | 
| 709 | //molMembershipArray is filled by SimCreator | 
| 710 | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 711 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 712 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 713 | } | 
| 714 |  | 
| 715 | //setup fortran simulation | 
| 716 | int nGlobalExcludes = 0; | 
| 717 | int* globalExcludes = NULL; | 
| 718 | int* excludeList = exclude_.getExcludeList(); | 
| 719 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , | 
| 720 | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], | 
| 721 | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); | 
| 722 |  | 
| 723 | if( isError ){ | 
| 724 |  | 
| 725 | sprintf( painCave.errMsg, | 
| 726 | "There was an error setting the simulation information in fortran.\n" ); | 
| 727 | painCave.isFatal = 1; | 
| 728 | painCave.severity = OOPSE_ERROR; | 
| 729 | simError(); | 
| 730 | } | 
| 731 |  | 
| 732 | #ifdef IS_MPI | 
| 733 | sprintf( checkPointMsg, | 
| 734 | "succesfully sent the simulation information to fortran.\n"); | 
| 735 | MPIcheckPoint(); | 
| 736 | #endif // is_mpi | 
| 737 | } | 
| 738 |  | 
| 739 |  | 
| 740 | #ifdef IS_MPI | 
| 741 | void SimInfo::setupFortranParallel() { | 
| 742 |  | 
| 743 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 744 | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 745 | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 746 | SimInfo::MoleculeIterator mi; | 
| 747 | Molecule::AtomIterator ai; | 
| 748 | Molecule::CutoffGroupIterator ci; | 
| 749 | Molecule* mol; | 
| 750 | Atom* atom; | 
| 751 | CutoffGroup* cg; | 
| 752 | mpiSimData parallelData; | 
| 753 | int isError; | 
| 754 |  | 
| 755 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 756 |  | 
| 757 | //local index(index in DataStorge) of atom is important | 
| 758 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 759 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 760 | } | 
| 761 |  | 
| 762 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 763 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 764 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 765 | } | 
| 766 |  | 
| 767 | } | 
| 768 |  | 
| 769 | //fill up mpiSimData struct | 
| 770 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 771 | parallelData.nMolLocal = getNMolecules(); | 
| 772 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 773 | parallelData.nAtomsLocal = getNAtoms(); | 
| 774 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 775 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 776 | parallelData.myNode = worldRank; | 
| 777 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 778 |  | 
| 779 | //pass mpiSimData struct and index arrays to fortran | 
| 780 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 781 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 782 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 783 |  | 
| 784 | if (isError) { | 
| 785 | sprintf(painCave.errMsg, | 
| 786 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 787 | painCave.isFatal = 1; | 
| 788 | simError(); | 
| 789 | } | 
| 790 |  | 
| 791 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 792 | MPIcheckPoint(); | 
| 793 |  | 
| 794 |  | 
| 795 | } | 
| 796 |  | 
| 797 | #endif | 
| 798 |  | 
| 799 | double SimInfo::calcMaxCutoffRadius() { | 
| 800 |  | 
| 801 |  | 
| 802 | std::set<AtomType*> atomTypes; | 
| 803 | std::set<AtomType*>::iterator i; | 
| 804 | std::vector<double> cutoffRadius; | 
| 805 |  | 
| 806 | //get the unique atom types | 
| 807 | atomTypes = getUniqueAtomTypes(); | 
| 808 |  | 
| 809 | //query the max cutoff radius among these atom types | 
| 810 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 811 | cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); | 
| 812 | } | 
| 813 |  | 
| 814 | double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); | 
| 815 | #ifdef IS_MPI | 
| 816 | //pick the max cutoff radius among the processors | 
| 817 | #endif | 
| 818 |  | 
| 819 | return maxCutoffRadius; | 
| 820 | } | 
| 821 |  | 
| 822 | void SimInfo::getCutoff(double& rcut, double& rsw) { | 
| 823 |  | 
| 824 | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 825 |  | 
| 826 | if (!simParams_->haveCutoffRadius()){ | 
| 827 | sprintf(painCave.errMsg, | 
| 828 | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 829 | "\tOOPSE will use a default value of 15.0 angstroms" | 
| 830 | "\tfor the cutoffRadius.\n"); | 
| 831 | painCave.isFatal = 0; | 
| 832 | simError(); | 
| 833 | rcut = 15.0; | 
| 834 | } else{ | 
| 835 | rcut = simParams_->getCutoffRadius(); | 
| 836 | } | 
| 837 |  | 
| 838 | if (!simParams_->haveSwitchingRadius()){ | 
| 839 | sprintf(painCave.errMsg, | 
| 840 | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 841 | "\tOOPSE will use a default value of\n" | 
| 842 | "\t0.85 * cutoffRadius for the switchingRadius\n"); | 
| 843 | painCave.isFatal = 0; | 
| 844 | simError(); | 
| 845 | rsw = 0.85 * rcut; | 
| 846 | } else{ | 
| 847 | rsw = simParams_->getSwitchingRadius(); | 
| 848 | } | 
| 849 |  | 
| 850 | } else { | 
| 851 | // if charge, dipole or reaction field is not used and the cutofff radius is not specified in | 
| 852 | //meta-data file, the maximum cutoff radius calculated from forcefiled will be used | 
| 853 |  | 
| 854 | if (simParams_->haveCutoffRadius()) { | 
| 855 | rcut = simParams_->getCutoffRadius(); | 
| 856 | } else { | 
| 857 | //set cutoff radius to the maximum cutoff radius based on atom types in the whole system | 
| 858 | rcut = calcMaxCutoffRadius(); | 
| 859 | } | 
| 860 |  | 
| 861 | if (simParams_->haveSwitchingRadius()) { | 
| 862 | rsw  = simParams_->getSwitchingRadius(); | 
| 863 | } else { | 
| 864 | rsw = rcut; | 
| 865 | } | 
| 866 |  | 
| 867 | } | 
| 868 | } | 
| 869 |  | 
| 870 | void SimInfo::setupCutoff() { | 
| 871 | getCutoff(rcut_, rsw_); | 
| 872 | double rnblist = rcut_ + 1; // skin of neighbor list | 
| 873 |  | 
| 874 | //Pass these cutoff radius etc. to fortran. This function should be called once and only once | 
| 875 |  | 
| 876 | int cp =  TRADITIONAL_CUTOFF_POLICY; | 
| 877 | if (simParams_->haveCutoffPolicy()) { | 
| 878 | std::string myPolicy = simParams_->getCutoffPolicy(); | 
| 879 | toUpper(myPolicy); | 
| 880 | if (myPolicy == "MIX") { | 
| 881 | cp = MIX_CUTOFF_POLICY; | 
| 882 | } else { | 
| 883 | if (myPolicy == "MAX") { | 
| 884 | cp = MAX_CUTOFF_POLICY; | 
| 885 | } else { | 
| 886 | if (myPolicy == "TRADITIONAL") { | 
| 887 | cp = TRADITIONAL_CUTOFF_POLICY; | 
| 888 | } else { | 
| 889 | // throw error | 
| 890 | sprintf( painCave.errMsg, | 
| 891 | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 892 | painCave.isFatal = 1; | 
| 893 | simError(); | 
| 894 | } | 
| 895 | } | 
| 896 | } | 
| 897 | } | 
| 898 |  | 
| 899 |  | 
| 900 | if (simParams_->haveSkinThickness()) { | 
| 901 | double skinThickness = simParams_->getSkinThickness(); | 
| 902 | } | 
| 903 |  | 
| 904 | notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); | 
| 905 | // also send cutoff notification to electrostatics | 
| 906 | setElectrostaticCutoffRadius(&rcut_, &rsw_); | 
| 907 | } | 
| 908 |  | 
| 909 | void SimInfo::setupElectrostaticSummationMethod( int isError ) { | 
| 910 |  | 
| 911 | int errorOut; | 
| 912 | int esm =  NONE; | 
| 913 | int sm = UNDAMPED; | 
| 914 | double alphaVal; | 
| 915 | double dielectric; | 
| 916 |  | 
| 917 | errorOut = isError; | 
| 918 | alphaVal = simParams_->getDampingAlpha(); | 
| 919 | dielectric = simParams_->getDielectric(); | 
| 920 |  | 
| 921 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 922 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 923 | toUpper(myMethod); | 
| 924 | if (myMethod == "NONE") { | 
| 925 | esm = NONE; | 
| 926 | } else { | 
| 927 | if (myMethod == "SWITCHING_FUNCTION") { | 
| 928 | esm = SWITCHING_FUNCTION; | 
| 929 | } else { | 
| 930 | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 931 | esm = SHIFTED_POTENTIAL; | 
| 932 | } else { | 
| 933 | if (myMethod == "SHIFTED_FORCE") { | 
| 934 | esm = SHIFTED_FORCE; | 
| 935 | } else { | 
| 936 | if (myMethod == "REACTION_FIELD") { | 
| 937 | esm = REACTION_FIELD; | 
| 938 | } else { | 
| 939 | // throw error | 
| 940 | sprintf( painCave.errMsg, | 
| 941 | "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() ); | 
| 942 | painCave.isFatal = 1; | 
| 943 | simError(); | 
| 944 | } | 
| 945 | } | 
| 946 | } | 
| 947 | } | 
| 948 | } | 
| 949 | } | 
| 950 |  | 
| 951 | if (simParams_->haveElectrostaticScreeningMethod()) { | 
| 952 | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); | 
| 953 | toUpper(myScreen); | 
| 954 | if (myScreen == "UNDAMPED") { | 
| 955 | sm = UNDAMPED; | 
| 956 | } else { | 
| 957 | if (myScreen == "DAMPED") { | 
| 958 | sm = DAMPED; | 
| 959 | if (!simParams_->haveDampingAlpha()) { | 
| 960 | //throw error | 
| 961 | sprintf( painCave.errMsg, | 
| 962 | "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal); | 
| 963 | painCave.isFatal = 0; | 
| 964 | simError(); | 
| 965 | } | 
| 966 | } else { | 
| 967 | // throw error | 
| 968 | sprintf( painCave.errMsg, | 
| 969 | "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() ); | 
| 970 | painCave.isFatal = 1; | 
| 971 | simError(); | 
| 972 | } | 
| 973 | } | 
| 974 | } | 
| 975 |  | 
| 976 | // let's pass some summation method variables to fortran | 
| 977 | setElectrostaticSummationMethod( &esm ); | 
| 978 | setScreeningMethod( &sm ); | 
| 979 | setDampingAlpha( &alphaVal ); | 
| 980 | setReactionFieldDielectric( &dielectric ); | 
| 981 | initFortranFF( &esm, &errorOut ); | 
| 982 | } | 
| 983 |  | 
| 984 | void SimInfo::setupSwitchingFunction() { | 
| 985 | int ft = CUBIC; | 
| 986 |  | 
| 987 | if (simParams_->haveSwitchingFunctionType()) { | 
| 988 | std::string funcType = simParams_->getSwitchingFunctionType(); | 
| 989 | toUpper(funcType); | 
| 990 | if (funcType == "CUBIC") { | 
| 991 | ft = CUBIC; | 
| 992 | } else { | 
| 993 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 994 | ft = FIFTH_ORDER_POLY; | 
| 995 | } else { | 
| 996 | // throw error | 
| 997 | sprintf( painCave.errMsg, | 
| 998 | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); | 
| 999 | painCave.isFatal = 1; | 
| 1000 | simError(); | 
| 1001 | } | 
| 1002 | } | 
| 1003 | } | 
| 1004 |  | 
| 1005 | // send switching function notification to switcheroo | 
| 1006 | setFunctionType(&ft); | 
| 1007 |  | 
| 1008 | } | 
| 1009 |  | 
| 1010 | void SimInfo::addProperty(GenericData* genData) { | 
| 1011 | properties_.addProperty(genData); | 
| 1012 | } | 
| 1013 |  | 
| 1014 | void SimInfo::removeProperty(const std::string& propName) { | 
| 1015 | properties_.removeProperty(propName); | 
| 1016 | } | 
| 1017 |  | 
| 1018 | void SimInfo::clearProperties() { | 
| 1019 | properties_.clearProperties(); | 
| 1020 | } | 
| 1021 |  | 
| 1022 | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 1023 | return properties_.getPropertyNames(); | 
| 1024 | } | 
| 1025 |  | 
| 1026 | std::vector<GenericData*> SimInfo::getProperties() { | 
| 1027 | return properties_.getProperties(); | 
| 1028 | } | 
| 1029 |  | 
| 1030 | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 1031 | return properties_.getPropertyByName(propName); | 
| 1032 | } | 
| 1033 |  | 
| 1034 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1035 | if (sman_ == sman) { | 
| 1036 | return; | 
| 1037 | } | 
| 1038 | delete sman_; | 
| 1039 | sman_ = sman; | 
| 1040 |  | 
| 1041 | Molecule* mol; | 
| 1042 | RigidBody* rb; | 
| 1043 | Atom* atom; | 
| 1044 | SimInfo::MoleculeIterator mi; | 
| 1045 | Molecule::RigidBodyIterator rbIter; | 
| 1046 | Molecule::AtomIterator atomIter;; | 
| 1047 |  | 
| 1048 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1049 |  | 
| 1050 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1051 | atom->setSnapshotManager(sman_); | 
| 1052 | } | 
| 1053 |  | 
| 1054 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1055 | rb->setSnapshotManager(sman_); | 
| 1056 | } | 
| 1057 | } | 
| 1058 |  | 
| 1059 | } | 
| 1060 |  | 
| 1061 | Vector3d SimInfo::getComVel(){ | 
| 1062 | SimInfo::MoleculeIterator i; | 
| 1063 | Molecule* mol; | 
| 1064 |  | 
| 1065 | Vector3d comVel(0.0); | 
| 1066 | double totalMass = 0.0; | 
| 1067 |  | 
| 1068 |  | 
| 1069 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1070 | double mass = mol->getMass(); | 
| 1071 | totalMass += mass; | 
| 1072 | comVel += mass * mol->getComVel(); | 
| 1073 | } | 
| 1074 |  | 
| 1075 | #ifdef IS_MPI | 
| 1076 | double tmpMass = totalMass; | 
| 1077 | Vector3d tmpComVel(comVel); | 
| 1078 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1079 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1080 | #endif | 
| 1081 |  | 
| 1082 | comVel /= totalMass; | 
| 1083 |  | 
| 1084 | return comVel; | 
| 1085 | } | 
| 1086 |  | 
| 1087 | Vector3d SimInfo::getCom(){ | 
| 1088 | SimInfo::MoleculeIterator i; | 
| 1089 | Molecule* mol; | 
| 1090 |  | 
| 1091 | Vector3d com(0.0); | 
| 1092 | double totalMass = 0.0; | 
| 1093 |  | 
| 1094 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1095 | double mass = mol->getMass(); | 
| 1096 | totalMass += mass; | 
| 1097 | com += mass * mol->getCom(); | 
| 1098 | } | 
| 1099 |  | 
| 1100 | #ifdef IS_MPI | 
| 1101 | double tmpMass = totalMass; | 
| 1102 | Vector3d tmpCom(com); | 
| 1103 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1104 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1105 | #endif | 
| 1106 |  | 
| 1107 | com /= totalMass; | 
| 1108 |  | 
| 1109 | return com; | 
| 1110 |  | 
| 1111 | } | 
| 1112 |  | 
| 1113 | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1114 |  | 
| 1115 | return o; | 
| 1116 | } | 
| 1117 |  | 
| 1118 |  | 
| 1119 | /* | 
| 1120 | Returns center of mass and center of mass velocity in one function call. | 
| 1121 | */ | 
| 1122 |  | 
| 1123 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1124 | SimInfo::MoleculeIterator i; | 
| 1125 | Molecule* mol; | 
| 1126 |  | 
| 1127 |  | 
| 1128 | double totalMass = 0.0; | 
| 1129 |  | 
| 1130 |  | 
| 1131 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1132 | double mass = mol->getMass(); | 
| 1133 | totalMass += mass; | 
| 1134 | com += mass * mol->getCom(); | 
| 1135 | comVel += mass * mol->getComVel(); | 
| 1136 | } | 
| 1137 |  | 
| 1138 | #ifdef IS_MPI | 
| 1139 | double tmpMass = totalMass; | 
| 1140 | Vector3d tmpCom(com); | 
| 1141 | Vector3d tmpComVel(comVel); | 
| 1142 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1143 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1144 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1145 | #endif | 
| 1146 |  | 
| 1147 | com /= totalMass; | 
| 1148 | comVel /= totalMass; | 
| 1149 | } | 
| 1150 |  | 
| 1151 | /* | 
| 1152 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1153 |  | 
| 1154 |  | 
| 1155 | [  Ixx -Ixy  -Ixz ] | 
| 1156 | J =| -Iyx  Iyy  -Iyz | | 
| 1157 | [ -Izx -Iyz   Izz ] | 
| 1158 | */ | 
| 1159 |  | 
| 1160 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1161 |  | 
| 1162 |  | 
| 1163 | double xx = 0.0; | 
| 1164 | double yy = 0.0; | 
| 1165 | double zz = 0.0; | 
| 1166 | double xy = 0.0; | 
| 1167 | double xz = 0.0; | 
| 1168 | double yz = 0.0; | 
| 1169 | Vector3d com(0.0); | 
| 1170 | Vector3d comVel(0.0); | 
| 1171 |  | 
| 1172 | getComAll(com, comVel); | 
| 1173 |  | 
| 1174 | SimInfo::MoleculeIterator i; | 
| 1175 | Molecule* mol; | 
| 1176 |  | 
| 1177 | Vector3d thisq(0.0); | 
| 1178 | Vector3d thisv(0.0); | 
| 1179 |  | 
| 1180 | double thisMass = 0.0; | 
| 1181 |  | 
| 1182 |  | 
| 1183 |  | 
| 1184 |  | 
| 1185 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1186 |  | 
| 1187 | thisq = mol->getCom()-com; | 
| 1188 | thisv = mol->getComVel()-comVel; | 
| 1189 | thisMass = mol->getMass(); | 
| 1190 | // Compute moment of intertia coefficients. | 
| 1191 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1192 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1193 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1194 |  | 
| 1195 | // compute products of intertia | 
| 1196 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1197 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1198 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1199 |  | 
| 1200 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1201 |  | 
| 1202 | } | 
| 1203 |  | 
| 1204 |  | 
| 1205 | inertiaTensor(0,0) = yy + zz; | 
| 1206 | inertiaTensor(0,1) = -xy; | 
| 1207 | inertiaTensor(0,2) = -xz; | 
| 1208 | inertiaTensor(1,0) = -xy; | 
| 1209 | inertiaTensor(1,1) = xx + zz; | 
| 1210 | inertiaTensor(1,2) = -yz; | 
| 1211 | inertiaTensor(2,0) = -xz; | 
| 1212 | inertiaTensor(2,1) = -yz; | 
| 1213 | inertiaTensor(2,2) = xx + yy; | 
| 1214 |  | 
| 1215 | #ifdef IS_MPI | 
| 1216 | Mat3x3d tmpI(inertiaTensor); | 
| 1217 | Vector3d tmpAngMom; | 
| 1218 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1219 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1220 | #endif | 
| 1221 |  | 
| 1222 | return; | 
| 1223 | } | 
| 1224 |  | 
| 1225 | //Returns the angular momentum of the system | 
| 1226 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1227 |  | 
| 1228 | Vector3d com(0.0); | 
| 1229 | Vector3d comVel(0.0); | 
| 1230 | Vector3d angularMomentum(0.0); | 
| 1231 |  | 
| 1232 | getComAll(com,comVel); | 
| 1233 |  | 
| 1234 | SimInfo::MoleculeIterator i; | 
| 1235 | Molecule* mol; | 
| 1236 |  | 
| 1237 | Vector3d thisr(0.0); | 
| 1238 | Vector3d thisp(0.0); | 
| 1239 |  | 
| 1240 | double thisMass; | 
| 1241 |  | 
| 1242 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1243 | thisMass = mol->getMass(); | 
| 1244 | thisr = mol->getCom()-com; | 
| 1245 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1246 |  | 
| 1247 | angularMomentum += cross( thisr, thisp ); | 
| 1248 |  | 
| 1249 | } | 
| 1250 |  | 
| 1251 | #ifdef IS_MPI | 
| 1252 | Vector3d tmpAngMom; | 
| 1253 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1254 | #endif | 
| 1255 |  | 
| 1256 | return angularMomentum; | 
| 1257 | } | 
| 1258 |  | 
| 1259 |  | 
| 1260 | }//end namespace oopse | 
| 1261 |  |