| 1 | #include <stdlib.h> | 
| 2 | #include <string.h> | 
| 3 | #include <math.h> | 
| 4 |  | 
| 5 | #include <iostream> | 
| 6 | using namespace std; | 
| 7 |  | 
| 8 | #include "SimInfo.hpp" | 
| 9 | #define __C | 
| 10 | #include "fSimulation.h" | 
| 11 | #include "simError.h" | 
| 12 |  | 
| 13 | #include "fortranWrappers.hpp" | 
| 14 |  | 
| 15 | #include "MatVec3.h" | 
| 16 |  | 
| 17 | #ifdef IS_MPI | 
| 18 | #include "mpiSimulation.hpp" | 
| 19 | #endif | 
| 20 |  | 
| 21 | inline double roundMe( double x ){ | 
| 22 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 23 | } | 
| 24 |  | 
| 25 | inline double min( double a, double b ){ | 
| 26 | return (a < b ) ? a : b; | 
| 27 | } | 
| 28 |  | 
| 29 | SimInfo* currentInfo; | 
| 30 |  | 
| 31 | SimInfo::SimInfo(){ | 
| 32 |  | 
| 33 | n_constraints = 0; | 
| 34 | nZconstraints = 0; | 
| 35 | n_oriented = 0; | 
| 36 | n_dipoles = 0; | 
| 37 | ndf = 0; | 
| 38 | ndfRaw = 0; | 
| 39 | nZconstraints = 0; | 
| 40 | the_integrator = NULL; | 
| 41 | setTemp = 0; | 
| 42 | thermalTime = 0.0; | 
| 43 | currentTime = 0.0; | 
| 44 | rCut = 0.0; | 
| 45 | rSw = 0.0; | 
| 46 |  | 
| 47 | haveRcut = 0; | 
| 48 | haveRsw = 0; | 
| 49 | boxIsInit = 0; | 
| 50 |  | 
| 51 | resetTime = 1e99; | 
| 52 |  | 
| 53 | orthoRhombic = 0; | 
| 54 | orthoTolerance = 1E-6; | 
| 55 | useInitXSstate = true; | 
| 56 |  | 
| 57 | usePBC = 0; | 
| 58 | useLJ = 0; | 
| 59 | useSticky = 0; | 
| 60 | useCharges = 0; | 
| 61 | useDipoles = 0; | 
| 62 | useReactionField = 0; | 
| 63 | useGB = 0; | 
| 64 | useEAM = 0; | 
| 65 | useSolidThermInt = 0; | 
| 66 | useLiquidThermInt = 0; | 
| 67 |  | 
| 68 | haveCutoffGroups = false; | 
| 69 |  | 
| 70 | excludes = Exclude::Instance(); | 
| 71 |  | 
| 72 | myConfiguration = new SimState(); | 
| 73 |  | 
| 74 | has_minimizer = false; | 
| 75 | the_minimizer =NULL; | 
| 76 |  | 
| 77 | ngroup = 0; | 
| 78 |  | 
| 79 | wrapMeSimInfo( this ); | 
| 80 | } | 
| 81 |  | 
| 82 |  | 
| 83 | SimInfo::~SimInfo(){ | 
| 84 |  | 
| 85 | delete myConfiguration; | 
| 86 |  | 
| 87 | map<string, GenericData*>::iterator i; | 
| 88 |  | 
| 89 | for(i = properties.begin(); i != properties.end(); i++) | 
| 90 | delete (*i).second; | 
| 91 |  | 
| 92 | } | 
| 93 |  | 
| 94 | void SimInfo::setBox(double newBox[3]) { | 
| 95 |  | 
| 96 | int i, j; | 
| 97 | double tempMat[3][3]; | 
| 98 |  | 
| 99 | for(i=0; i<3; i++) | 
| 100 | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; | 
| 101 |  | 
| 102 | tempMat[0][0] = newBox[0]; | 
| 103 | tempMat[1][1] = newBox[1]; | 
| 104 | tempMat[2][2] = newBox[2]; | 
| 105 |  | 
| 106 | setBoxM( tempMat ); | 
| 107 |  | 
| 108 | } | 
| 109 |  | 
| 110 | void SimInfo::setBoxM( double theBox[3][3] ){ | 
| 111 |  | 
| 112 | int i, j; | 
| 113 | double FortranHmat[9]; // to preserve compatibility with Fortran the | 
| 114 | // ordering in the array is as follows: | 
| 115 | // [ 0 3 6 ] | 
| 116 | // [ 1 4 7 ] | 
| 117 | // [ 2 5 8 ] | 
| 118 | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | 
| 119 |  | 
| 120 | if( !boxIsInit ) boxIsInit = 1; | 
| 121 |  | 
| 122 | for(i=0; i < 3; i++) | 
| 123 | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | 
| 124 |  | 
| 125 | calcBoxL(); | 
| 126 | calcHmatInv(); | 
| 127 |  | 
| 128 | for(i=0; i < 3; i++) { | 
| 129 | for (j=0; j < 3; j++) { | 
| 130 | FortranHmat[3*j + i] = Hmat[i][j]; | 
| 131 | FortranHmatInv[3*j + i] = HmatInv[i][j]; | 
| 132 | } | 
| 133 | } | 
| 134 |  | 
| 135 | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); | 
| 136 |  | 
| 137 | } | 
| 138 |  | 
| 139 |  | 
| 140 | void SimInfo::getBoxM (double theBox[3][3]) { | 
| 141 |  | 
| 142 | int i, j; | 
| 143 | for(i=0; i<3; i++) | 
| 144 | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; | 
| 145 | } | 
| 146 |  | 
| 147 |  | 
| 148 | void SimInfo::scaleBox(double scale) { | 
| 149 | double theBox[3][3]; | 
| 150 | int i, j; | 
| 151 |  | 
| 152 | // cerr << "Scaling box by " << scale << "\n"; | 
| 153 |  | 
| 154 | for(i=0; i<3; i++) | 
| 155 | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; | 
| 156 |  | 
| 157 | setBoxM(theBox); | 
| 158 |  | 
| 159 | } | 
| 160 |  | 
| 161 | void SimInfo::calcHmatInv( void ) { | 
| 162 |  | 
| 163 | int oldOrtho; | 
| 164 | int i,j; | 
| 165 | double smallDiag; | 
| 166 | double tol; | 
| 167 | double sanity[3][3]; | 
| 168 |  | 
| 169 | invertMat3( Hmat, HmatInv ); | 
| 170 |  | 
| 171 | // check to see if Hmat is orthorhombic | 
| 172 |  | 
| 173 | oldOrtho = orthoRhombic; | 
| 174 |  | 
| 175 | smallDiag = fabs(Hmat[0][0]); | 
| 176 | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); | 
| 177 | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); | 
| 178 | tol = smallDiag * orthoTolerance; | 
| 179 |  | 
| 180 | orthoRhombic = 1; | 
| 181 |  | 
| 182 | for (i = 0; i < 3; i++ ) { | 
| 183 | for (j = 0 ; j < 3; j++) { | 
| 184 | if (i != j) { | 
| 185 | if (orthoRhombic) { | 
| 186 | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; | 
| 187 | } | 
| 188 | } | 
| 189 | } | 
| 190 | } | 
| 191 |  | 
| 192 | if( oldOrtho != orthoRhombic ){ | 
| 193 |  | 
| 194 | if( orthoRhombic ) { | 
| 195 | sprintf( painCave.errMsg, | 
| 196 | "OOPSE is switching from the default Non-Orthorhombic\n" | 
| 197 | "\tto the faster Orthorhombic periodic boundary computations.\n" | 
| 198 | "\tThis is usually a good thing, but if you wan't the\n" | 
| 199 | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" | 
| 200 | "\tvariable ( currently set to %G ) smaller.\n", | 
| 201 | orthoTolerance); | 
| 202 | painCave.severity = OOPSE_INFO; | 
| 203 | simError(); | 
| 204 | } | 
| 205 | else { | 
| 206 | sprintf( painCave.errMsg, | 
| 207 | "OOPSE is switching from the faster Orthorhombic to the more\n" | 
| 208 | "\tflexible Non-Orthorhombic periodic boundary computations.\n" | 
| 209 | "\tThis is usually because the box has deformed under\n" | 
| 210 | "\tNPTf integration. If you wan't to live on the edge with\n" | 
| 211 | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" | 
| 212 | "\tvariable ( currently set to %G ) larger.\n", | 
| 213 | orthoTolerance); | 
| 214 | painCave.severity = OOPSE_WARNING; | 
| 215 | simError(); | 
| 216 | } | 
| 217 | } | 
| 218 | } | 
| 219 |  | 
| 220 | void SimInfo::calcBoxL( void ){ | 
| 221 |  | 
| 222 | double dx, dy, dz, dsq; | 
| 223 |  | 
| 224 | // boxVol = Determinant of Hmat | 
| 225 |  | 
| 226 | boxVol = matDet3( Hmat ); | 
| 227 |  | 
| 228 | // boxLx | 
| 229 |  | 
| 230 | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | 
| 231 | dsq = dx*dx + dy*dy + dz*dz; | 
| 232 | boxL[0] = sqrt( dsq ); | 
| 233 | //maxCutoff = 0.5 * boxL[0]; | 
| 234 |  | 
| 235 | // boxLy | 
| 236 |  | 
| 237 | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | 
| 238 | dsq = dx*dx + dy*dy + dz*dz; | 
| 239 | boxL[1] = sqrt( dsq ); | 
| 240 | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; | 
| 241 |  | 
| 242 |  | 
| 243 | // boxLz | 
| 244 |  | 
| 245 | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | 
| 246 | dsq = dx*dx + dy*dy + dz*dz; | 
| 247 | boxL[2] = sqrt( dsq ); | 
| 248 | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; | 
| 249 |  | 
| 250 | //calculate the max cutoff | 
| 251 | maxCutoff =  calcMaxCutOff(); | 
| 252 |  | 
| 253 | checkCutOffs(); | 
| 254 |  | 
| 255 | } | 
| 256 |  | 
| 257 |  | 
| 258 | double SimInfo::calcMaxCutOff(){ | 
| 259 |  | 
| 260 | double ri[3], rj[3], rk[3]; | 
| 261 | double rij[3], rjk[3], rki[3]; | 
| 262 | double minDist; | 
| 263 |  | 
| 264 | ri[0] = Hmat[0][0]; | 
| 265 | ri[1] = Hmat[1][0]; | 
| 266 | ri[2] = Hmat[2][0]; | 
| 267 |  | 
| 268 | rj[0] = Hmat[0][1]; | 
| 269 | rj[1] = Hmat[1][1]; | 
| 270 | rj[2] = Hmat[2][1]; | 
| 271 |  | 
| 272 | rk[0] = Hmat[0][2]; | 
| 273 | rk[1] = Hmat[1][2]; | 
| 274 | rk[2] = Hmat[2][2]; | 
| 275 |  | 
| 276 | crossProduct3(ri, rj, rij); | 
| 277 | distXY = dotProduct3(rk,rij) / norm3(rij); | 
| 278 |  | 
| 279 | crossProduct3(rj,rk, rjk); | 
| 280 | distYZ = dotProduct3(ri,rjk) / norm3(rjk); | 
| 281 |  | 
| 282 | crossProduct3(rk,ri, rki); | 
| 283 | distZX = dotProduct3(rj,rki) / norm3(rki); | 
| 284 |  | 
| 285 | minDist = min(min(distXY, distYZ), distZX); | 
| 286 | return minDist/2; | 
| 287 |  | 
| 288 | } | 
| 289 |  | 
| 290 | void SimInfo::wrapVector( double thePos[3] ){ | 
| 291 |  | 
| 292 | int i; | 
| 293 | double scaled[3]; | 
| 294 |  | 
| 295 | if( !orthoRhombic ){ | 
| 296 | // calc the scaled coordinates. | 
| 297 |  | 
| 298 |  | 
| 299 | matVecMul3(HmatInv, thePos, scaled); | 
| 300 |  | 
| 301 | for(i=0; i<3; i++) | 
| 302 | scaled[i] -= roundMe(scaled[i]); | 
| 303 |  | 
| 304 | // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 305 |  | 
| 306 | matVecMul3(Hmat, scaled, thePos); | 
| 307 |  | 
| 308 | } | 
| 309 | else{ | 
| 310 | // calc the scaled coordinates. | 
| 311 |  | 
| 312 | for(i=0; i<3; i++) | 
| 313 | scaled[i] = thePos[i]*HmatInv[i][i]; | 
| 314 |  | 
| 315 | // wrap the scaled coordinates | 
| 316 |  | 
| 317 | for(i=0; i<3; i++) | 
| 318 | scaled[i] -= roundMe(scaled[i]); | 
| 319 |  | 
| 320 | // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 321 |  | 
| 322 | for(i=0; i<3; i++) | 
| 323 | thePos[i] = scaled[i]*Hmat[i][i]; | 
| 324 | } | 
| 325 |  | 
| 326 | } | 
| 327 |  | 
| 328 |  | 
| 329 | int SimInfo::getNDF(){ | 
| 330 | int ndf_local; | 
| 331 |  | 
| 332 | ndf_local = 0; | 
| 333 |  | 
| 334 | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 335 | ndf_local += 3; | 
| 336 | if (integrableObjects[i]->isDirectional()) { | 
| 337 | if (integrableObjects[i]->isLinear()) | 
| 338 | ndf_local += 2; | 
| 339 | else | 
| 340 | ndf_local += 3; | 
| 341 | } | 
| 342 | } | 
| 343 |  | 
| 344 | // n_constraints is local, so subtract them on each processor: | 
| 345 |  | 
| 346 | ndf_local -= n_constraints; | 
| 347 |  | 
| 348 | #ifdef IS_MPI | 
| 349 | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 350 | #else | 
| 351 | ndf = ndf_local; | 
| 352 | #endif | 
| 353 |  | 
| 354 | // nZconstraints is global, as are the 3 COM translations for the | 
| 355 | // entire system: | 
| 356 |  | 
| 357 | ndf = ndf - 3 - nZconstraints; | 
| 358 |  | 
| 359 | return ndf; | 
| 360 | } | 
| 361 |  | 
| 362 | int SimInfo::getNDFraw() { | 
| 363 | int ndfRaw_local; | 
| 364 |  | 
| 365 | // Raw degrees of freedom that we have to set | 
| 366 | ndfRaw_local = 0; | 
| 367 |  | 
| 368 | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 369 | ndfRaw_local += 3; | 
| 370 | if (integrableObjects[i]->isDirectional()) { | 
| 371 | if (integrableObjects[i]->isLinear()) | 
| 372 | ndfRaw_local += 2; | 
| 373 | else | 
| 374 | ndfRaw_local += 3; | 
| 375 | } | 
| 376 | } | 
| 377 |  | 
| 378 | #ifdef IS_MPI | 
| 379 | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 380 | #else | 
| 381 | ndfRaw = ndfRaw_local; | 
| 382 | #endif | 
| 383 |  | 
| 384 | return ndfRaw; | 
| 385 | } | 
| 386 |  | 
| 387 | int SimInfo::getNDFtranslational() { | 
| 388 | int ndfTrans_local; | 
| 389 |  | 
| 390 | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; | 
| 391 |  | 
| 392 |  | 
| 393 | #ifdef IS_MPI | 
| 394 | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 395 | #else | 
| 396 | ndfTrans = ndfTrans_local; | 
| 397 | #endif | 
| 398 |  | 
| 399 | ndfTrans = ndfTrans - 3 - nZconstraints; | 
| 400 |  | 
| 401 | return ndfTrans; | 
| 402 | } | 
| 403 |  | 
| 404 | int SimInfo::getTotIntegrableObjects() { | 
| 405 | int nObjs_local; | 
| 406 | int nObjs; | 
| 407 |  | 
| 408 | nObjs_local =  integrableObjects.size(); | 
| 409 |  | 
| 410 |  | 
| 411 | #ifdef IS_MPI | 
| 412 | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 413 | #else | 
| 414 | nObjs = nObjs_local; | 
| 415 | #endif | 
| 416 |  | 
| 417 |  | 
| 418 | return nObjs; | 
| 419 | } | 
| 420 |  | 
| 421 | void SimInfo::refreshSim(){ | 
| 422 |  | 
| 423 | simtype fInfo; | 
| 424 | int isError; | 
| 425 | int n_global; | 
| 426 | int* excl; | 
| 427 |  | 
| 428 | fInfo.dielect = 0.0; | 
| 429 |  | 
| 430 | if( useDipoles ){ | 
| 431 | if( useReactionField )fInfo.dielect = dielectric; | 
| 432 | } | 
| 433 |  | 
| 434 | fInfo.SIM_uses_PBC = usePBC; | 
| 435 | //fInfo.SIM_uses_LJ = 0; | 
| 436 | fInfo.SIM_uses_LJ = useLJ; | 
| 437 | fInfo.SIM_uses_sticky = useSticky; | 
| 438 | //fInfo.SIM_uses_sticky = 0; | 
| 439 | fInfo.SIM_uses_charges = useCharges; | 
| 440 | fInfo.SIM_uses_dipoles = useDipoles; | 
| 441 | //fInfo.SIM_uses_dipoles = 0; | 
| 442 | fInfo.SIM_uses_RF = useReactionField; | 
| 443 | //fInfo.SIM_uses_RF = 0; | 
| 444 | fInfo.SIM_uses_GB = useGB; | 
| 445 | fInfo.SIM_uses_EAM = useEAM; | 
| 446 |  | 
| 447 | n_exclude = excludes->getSize(); | 
| 448 | excl = excludes->getFortranArray(); | 
| 449 |  | 
| 450 | #ifdef IS_MPI | 
| 451 | n_global = mpiSim->getNAtomsGlobal(); | 
| 452 | #else | 
| 453 | n_global = n_atoms; | 
| 454 | #endif | 
| 455 |  | 
| 456 | isError = 0; | 
| 457 |  | 
| 458 | getFortranGroupArrays(this, FglobalGroupMembership, mfact); | 
| 459 | //it may not be a good idea to pass the address of first element in vector | 
| 460 | //since c++ standard does not require vector to be stored continuously in meomory | 
| 461 | //Most of the compilers will organize the memory of vector continuously | 
| 462 | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, | 
| 463 | &nGlobalExcludes, globalExcludes, molMembershipArray, | 
| 464 | &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); | 
| 465 |  | 
| 466 | if( isError ){ | 
| 467 |  | 
| 468 | sprintf( painCave.errMsg, | 
| 469 | "There was an error setting the simulation information in fortran.\n" ); | 
| 470 | painCave.isFatal = 1; | 
| 471 | painCave.severity = OOPSE_ERROR; | 
| 472 | simError(); | 
| 473 | } | 
| 474 |  | 
| 475 | #ifdef IS_MPI | 
| 476 | sprintf( checkPointMsg, | 
| 477 | "succesfully sent the simulation information to fortran.\n"); | 
| 478 | MPIcheckPoint(); | 
| 479 | #endif // is_mpi | 
| 480 |  | 
| 481 | this->ndf = this->getNDF(); | 
| 482 | this->ndfRaw = this->getNDFraw(); | 
| 483 | this->ndfTrans = this->getNDFtranslational(); | 
| 484 | } | 
| 485 |  | 
| 486 | void SimInfo::setDefaultRcut( double theRcut ){ | 
| 487 |  | 
| 488 | haveRcut = 1; | 
| 489 | rCut = theRcut; | 
| 490 | rList = rCut + 1.0; | 
| 491 |  | 
| 492 | notifyFortranCutOffs( &rCut, &rSw, &rList ); | 
| 493 | } | 
| 494 |  | 
| 495 | void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ | 
| 496 |  | 
| 497 | rSw = theRsw; | 
| 498 | setDefaultRcut( theRcut ); | 
| 499 | } | 
| 500 |  | 
| 501 |  | 
| 502 | void SimInfo::checkCutOffs( void ){ | 
| 503 |  | 
| 504 | if( boxIsInit ){ | 
| 505 |  | 
| 506 | //we need to check cutOffs against the box | 
| 507 |  | 
| 508 | if( rCut > maxCutoff ){ | 
| 509 | sprintf( painCave.errMsg, | 
| 510 | "cutoffRadius is too large for the current periodic box.\n" | 
| 511 | "\tCurrent Value of cutoffRadius = %G at time %G\n " | 
| 512 | "\tThis is larger than half of at least one of the\n" | 
| 513 | "\tperiodic box vectors.  Right now, the Box matrix is:\n" | 
| 514 | "\n" | 
| 515 | "\t[ %G %G %G ]\n" | 
| 516 | "\t[ %G %G %G ]\n" | 
| 517 | "\t[ %G %G %G ]\n", | 
| 518 | rCut, currentTime, | 
| 519 | Hmat[0][0], Hmat[0][1], Hmat[0][2], | 
| 520 | Hmat[1][0], Hmat[1][1], Hmat[1][2], | 
| 521 | Hmat[2][0], Hmat[2][1], Hmat[2][2]); | 
| 522 | painCave.severity = OOPSE_ERROR; | 
| 523 | painCave.isFatal = 1; | 
| 524 | simError(); | 
| 525 | } | 
| 526 | } else { | 
| 527 | // initialize this stuff before using it, OK? | 
| 528 | sprintf( painCave.errMsg, | 
| 529 | "Trying to check cutoffs without a box.\n" | 
| 530 | "\tOOPSE should have better programmers than that.\n" ); | 
| 531 | painCave.severity = OOPSE_ERROR; | 
| 532 | painCave.isFatal = 1; | 
| 533 | simError(); | 
| 534 | } | 
| 535 |  | 
| 536 | } | 
| 537 |  | 
| 538 | void SimInfo::addProperty(GenericData* prop){ | 
| 539 |  | 
| 540 | map<string, GenericData*>::iterator result; | 
| 541 | result = properties.find(prop->getID()); | 
| 542 |  | 
| 543 | //we can't simply use  properties[prop->getID()] = prop, | 
| 544 | //it will cause memory leak if we already contain a propery which has the same name of prop | 
| 545 |  | 
| 546 | if(result != properties.end()){ | 
| 547 |  | 
| 548 | delete (*result).second; | 
| 549 | (*result).second = prop; | 
| 550 |  | 
| 551 | } | 
| 552 | else{ | 
| 553 |  | 
| 554 | properties[prop->getID()] = prop; | 
| 555 |  | 
| 556 | } | 
| 557 |  | 
| 558 | } | 
| 559 |  | 
| 560 | GenericData* SimInfo::getProperty(const string& propName){ | 
| 561 |  | 
| 562 | map<string, GenericData*>::iterator result; | 
| 563 |  | 
| 564 | //string lowerCaseName = (); | 
| 565 |  | 
| 566 | result = properties.find(propName); | 
| 567 |  | 
| 568 | if(result != properties.end()) | 
| 569 | return (*result).second; | 
| 570 | else | 
| 571 | return NULL; | 
| 572 | } | 
| 573 |  | 
| 574 |  | 
| 575 | void SimInfo::getFortranGroupArrays(SimInfo* info, | 
| 576 | vector<int>& FglobalGroupMembership, | 
| 577 | vector<double>& mfact){ | 
| 578 |  | 
| 579 | Molecule* myMols; | 
| 580 | Atom** myAtoms; | 
| 581 | int numAtom; | 
| 582 | double mtot; | 
| 583 | int numMol; | 
| 584 | int numCutoffGroups; | 
| 585 | CutoffGroup* myCutoffGroup; | 
| 586 | vector<CutoffGroup*>::iterator iterCutoff; | 
| 587 | Atom* cutoffAtom; | 
| 588 | vector<Atom*>::iterator iterAtom; | 
| 589 | int atomIndex; | 
| 590 | double totalMass; | 
| 591 |  | 
| 592 | mfact.clear(); | 
| 593 | FglobalGroupMembership.clear(); | 
| 594 |  | 
| 595 |  | 
| 596 | // Fix the silly fortran indexing problem | 
| 597 | #ifdef IS_MPI | 
| 598 | numAtom = mpiSim->getNAtomsGlobal(); | 
| 599 | #else | 
| 600 | numAtom = n_atoms; | 
| 601 | #endif | 
| 602 | for (int i = 0; i < numAtom; i++) | 
| 603 | FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); | 
| 604 |  | 
| 605 |  | 
| 606 | myMols = info->molecules; | 
| 607 | numMol = info->n_mol; | 
| 608 | for(int i  = 0; i < numMol; i++){ | 
| 609 | numCutoffGroups = myMols[i].getNCutoffGroups(); | 
| 610 | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); | 
| 611 | myCutoffGroup != NULL; | 
| 612 | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ | 
| 613 |  | 
| 614 | totalMass = myCutoffGroup->getMass(); | 
| 615 |  | 
| 616 | for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); | 
| 617 | cutoffAtom != NULL; | 
| 618 | cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ | 
| 619 | mfact.push_back(cutoffAtom->getMass()/totalMass); | 
| 620 | } | 
| 621 | } | 
| 622 | } | 
| 623 |  | 
| 624 | } |