| 1 | < | #include <stdlib.h> | 
| 2 | < | #include <string.h> | 
| 3 | < | #include <math.h> | 
| 1 | > | /* | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | > | * | 
| 4 | > | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | > | * non-exclusive, royalty free, license to use, modify and | 
| 6 | > | * redistribute this software in source and binary code form, provided | 
| 7 | > | * that the following conditions are met: | 
| 8 | > | * | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 | > | *    notice, this list of conditions and the following disclaimer. | 
| 11 | > | * | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | > | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | > | *    documentation and/or other materials provided with the | 
| 15 | > | *    distribution. | 
| 16 | > | * | 
| 17 | > | * This software is provided "AS IS," without a warranty of any | 
| 18 | > | * kind. All express or implied conditions, representations and | 
| 19 | > | * warranties, including any implied warranty of merchantability, | 
| 20 | > | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | > | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | > | * be liable for any damages suffered by licensee as a result of | 
| 23 | > | * using, modifying or distributing the software or its | 
| 24 | > | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | > | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | > | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | > | * damages, however caused and regardless of the theory of liability, | 
| 28 | > | * arising out of the use of or inability to use software, even if the | 
| 29 | > | * University of Notre Dame has been advised of the possibility of | 
| 30 | > | * such damages. | 
| 31 | > | * | 
| 32 | > | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | > | * research, please cite the appropriate papers when you publish your | 
| 34 | > | * work.  Good starting points are: | 
| 35 | > | * | 
| 36 | > | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | > | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | > | */ | 
| 42 | > |  | 
| 43 | > | /** | 
| 44 | > | * @file SimInfo.cpp | 
| 45 | > | * @author    tlin | 
| 46 | > | * @date  11/02/2004 | 
| 47 | > | * @version 1.0 | 
| 48 | > | */ | 
| 49 |  |  | 
| 50 | < | #include <iostream> | 
| 51 | < | using namespace std; | 
| 50 | > | #include <algorithm> | 
| 51 | > | #include <set> | 
| 52 | > | #include <map> | 
| 53 |  |  | 
| 54 |  | #include "brains/SimInfo.hpp" | 
| 55 | < | #define __C | 
| 56 | < | #include "brains/fSimulation.h" | 
| 55 | > | #include "math/Vector3.hpp" | 
| 56 | > | #include "primitives/Molecule.hpp" | 
| 57 | > | #include "primitives/StuntDouble.hpp" | 
| 58 | > | #include "utils/MemoryUtils.hpp" | 
| 59 |  | #include "utils/simError.h" | 
| 60 | < | #include "UseTheForce/DarkSide/simulation_interface.h" | 
| 61 | < | #include "UseTheForce/notifyCutoffs_interface.h" | 
| 62 | < |  | 
| 63 | < | //#include "UseTheForce/fortranWrappers.hpp" | 
| 16 | < |  | 
| 17 | < | #include "math/MatVec3.h" | 
| 18 | < |  | 
| 60 | > | #include "selection/SelectionManager.hpp" | 
| 61 | > | #include "io/ForceFieldOptions.hpp" | 
| 62 | > | #include "brains/ForceField.hpp" | 
| 63 | > | #include "nonbonded/SwitchingFunction.hpp" | 
| 64 |  | #ifdef IS_MPI | 
| 65 | < | #include "brains/mpiSimulation.hpp" | 
| 65 | > | #include <mpi.h> | 
| 66 |  | #endif | 
| 67 |  |  | 
| 68 | < | inline double roundMe( double x ){ | 
| 69 | < | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 70 | < | } | 
| 71 | < |  | 
| 72 | < | inline double min( double a, double b ){ | 
| 73 | < | return (a < b ) ? a : b; | 
| 74 | < | } | 
| 68 | > | using namespace std; | 
| 69 | > | namespace OpenMD { | 
| 70 | > |  | 
| 71 | > | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 72 | > | forceField_(ff), simParams_(simParams), | 
| 73 | > | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 | > | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), | 
| 76 | > | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 77 | > | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), | 
| 79 | > | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 80 | > |  | 
| 81 | > | MoleculeStamp* molStamp; | 
| 82 | > | int nMolWithSameStamp; | 
| 83 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 84 | > | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 85 | > | CutoffGroupStamp* cgStamp; | 
| 86 | > | RigidBodyStamp* rbStamp; | 
| 87 | > | int nRigidAtoms = 0; | 
| 88 | > |  | 
| 89 | > | vector<Component*> components = simParams->getComponents(); | 
| 90 | > |  | 
| 91 | > | for (vector<Component*>::iterator i = components.begin(); | 
| 92 | > | i !=components.end(); ++i) { | 
| 93 | > | molStamp = (*i)->getMoleculeStamp(); | 
| 94 | > | if ( (*i)->haveRegion() ) { | 
| 95 | > | molStamp->setRegion( (*i)->getRegion() ); | 
| 96 | > | } else { | 
| 97 | > | // set the region to a disallowed value: | 
| 98 | > | molStamp->setRegion( -1 ); | 
| 99 | > | } | 
| 100 |  |  | 
| 101 | < | SimInfo* currentInfo; | 
| 101 | > | nMolWithSameStamp = (*i)->getNMol(); | 
| 102 | > |  | 
| 103 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 104 | > |  | 
| 105 | > | //calculate atoms in molecules | 
| 106 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 107 | > |  | 
| 108 | > | //calculate atoms in cutoff groups | 
| 109 | > | int nAtomsInGroups = 0; | 
| 110 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 111 | > |  | 
| 112 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 113 | > | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 114 | > | nAtomsInGroups += cgStamp->getNMembers(); | 
| 115 | > | } | 
| 116 | > |  | 
| 117 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 118 | > |  | 
| 119 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 120 | > |  | 
| 121 | > | //calculate atoms in rigid bodies | 
| 122 | > | int nAtomsInRigidBodies = 0; | 
| 123 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 124 | > |  | 
| 125 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 126 | > | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 127 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 128 | > | } | 
| 129 | > |  | 
| 130 | > | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 131 | > | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 132 | > |  | 
| 133 | > | } | 
| 134 | > |  | 
| 135 | > | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 136 | > | //group therefore the total number of cutoff groups in the system is | 
| 137 | > | //equal to the total number of atoms minus number of atoms belong to | 
| 138 | > | //cutoff group defined in meta-data file plus the number of cutoff | 
| 139 | > | //groups defined in meta-data file | 
| 140 |  |  | 
| 141 | < | SimInfo::SimInfo(){ | 
| 141 | > | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 142 | > |  | 
| 143 | > | //every free atom (atom does not belong to rigid bodies) is an | 
| 144 | > | //integrable object therefore the total number of integrable objects | 
| 145 | > | //in the system is equal to the total number of atoms minus number of | 
| 146 | > | //atoms belong to rigid body defined in meta-data file plus the number | 
| 147 | > | //of rigid bodies defined in meta-data file | 
| 148 | > | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 149 | > | + nGlobalRigidBodies_; | 
| 150 | > |  | 
| 151 | > | nGlobalMols_ = molStampIds_.size(); | 
| 152 | > | molToProcMap_.resize(nGlobalMols_); | 
| 153 | > | } | 
| 154 | > |  | 
| 155 | > | SimInfo::~SimInfo() { | 
| 156 | > | map<int, Molecule*>::iterator i; | 
| 157 | > | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 158 | > | delete i->second; | 
| 159 | > | } | 
| 160 | > | molecules_.clear(); | 
| 161 | > |  | 
| 162 | > | delete sman_; | 
| 163 | > | delete simParams_; | 
| 164 | > | delete forceField_; | 
| 165 | > | } | 
| 166 |  |  | 
| 35 | – | n_constraints = 0; | 
| 36 | – | nZconstraints = 0; | 
| 37 | – | n_oriented = 0; | 
| 38 | – | n_dipoles = 0; | 
| 39 | – | ndf = 0; | 
| 40 | – | ndfRaw = 0; | 
| 41 | – | nZconstraints = 0; | 
| 42 | – | the_integrator = NULL; | 
| 43 | – | setTemp = 0; | 
| 44 | – | thermalTime = 0.0; | 
| 45 | – | currentTime = 0.0; | 
| 46 | – | rCut = 0.0; | 
| 47 | – | rSw = 0.0; | 
| 167 |  |  | 
| 168 | < | haveRcut = 0; | 
| 169 | < | haveRsw = 0; | 
| 170 | < | boxIsInit = 0; | 
| 168 | > | bool SimInfo::addMolecule(Molecule* mol) { | 
| 169 | > | MoleculeIterator i; | 
| 170 | > |  | 
| 171 | > | i = molecules_.find(mol->getGlobalIndex()); | 
| 172 | > | if (i == molecules_.end() ) { | 
| 173 | > |  | 
| 174 | > | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 175 | > |  | 
| 176 | > | nAtoms_ += mol->getNAtoms(); | 
| 177 | > | nBonds_ += mol->getNBonds(); | 
| 178 | > | nBends_ += mol->getNBends(); | 
| 179 | > | nTorsions_ += mol->getNTorsions(); | 
| 180 | > | nInversions_ += mol->getNInversions(); | 
| 181 | > | nRigidBodies_ += mol->getNRigidBodies(); | 
| 182 | > | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 183 | > | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 184 | > | nConstraints_ += mol->getNConstraintPairs(); | 
| 185 | > |  | 
| 186 | > | addInteractionPairs(mol); | 
| 187 | > |  | 
| 188 | > | return true; | 
| 189 | > | } else { | 
| 190 | > | return false; | 
| 191 | > | } | 
| 192 | > | } | 
| 193 |  |  | 
| 194 | < | resetTime = 1e99; | 
| 194 | > | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 195 | > | MoleculeIterator i; | 
| 196 | > | i = molecules_.find(mol->getGlobalIndex()); | 
| 197 |  |  | 
| 198 | < | orthoRhombic = 0; | 
| 56 | < | orthoTolerance = 1E-6; | 
| 57 | < | useInitXSstate = true; | 
| 198 | > | if (i != molecules_.end() ) { | 
| 199 |  |  | 
| 200 | < | usePBC = 0; | 
| 201 | < | useLJ = 0; | 
| 202 | < | useSticky = 0; | 
| 203 | < | useCharges = 0; | 
| 204 | < | useDipoles = 0; | 
| 205 | < | useReactionField = 0; | 
| 206 | < | useGB = 0; | 
| 207 | < | useEAM = 0; | 
| 208 | < | useSolidThermInt = 0; | 
| 209 | < | useLiquidThermInt = 0; | 
| 200 | > | assert(mol == i->second); | 
| 201 | > |  | 
| 202 | > | nAtoms_ -= mol->getNAtoms(); | 
| 203 | > | nBonds_ -= mol->getNBonds(); | 
| 204 | > | nBends_ -= mol->getNBends(); | 
| 205 | > | nTorsions_ -= mol->getNTorsions(); | 
| 206 | > | nInversions_ -= mol->getNInversions(); | 
| 207 | > | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 208 | > | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 209 | > | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 210 | > | nConstraints_ -= mol->getNConstraintPairs(); | 
| 211 |  |  | 
| 212 | < | haveCutoffGroups = false; | 
| 212 | > | removeInteractionPairs(mol); | 
| 213 | > | molecules_.erase(mol->getGlobalIndex()); | 
| 214 |  |  | 
| 215 | < | excludes = Exclude::Instance(); | 
| 215 | > | delete mol; | 
| 216 | > |  | 
| 217 | > | return true; | 
| 218 | > | } else { | 
| 219 | > | return false; | 
| 220 | > | } | 
| 221 | > | } | 
| 222 |  |  | 
| 223 | < | myConfiguration = new SimState(); | 
| 223 | > |  | 
| 224 | > | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 225 | > | i = molecules_.begin(); | 
| 226 | > | return i == molecules_.end() ? NULL : i->second; | 
| 227 | > | } | 
| 228 |  |  | 
| 229 | < | has_minimizer = false; | 
| 230 | < | the_minimizer =NULL; | 
| 229 | > | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 230 | > | ++i; | 
| 231 | > | return i == molecules_.end() ? NULL : i->second; | 
| 232 | > | } | 
| 233 |  |  | 
| 79 | – | ngroup = 0; | 
| 234 |  |  | 
| 235 | < | } | 
| 235 | > | void SimInfo::calcNdf() { | 
| 236 | > | int ndf_local, nfq_local; | 
| 237 | > | MoleculeIterator i; | 
| 238 | > | vector<StuntDouble*>::iterator j; | 
| 239 | > | vector<Atom*>::iterator k; | 
| 240 |  |  | 
| 241 | + | Molecule* mol; | 
| 242 | + | StuntDouble* sd; | 
| 243 | + | Atom* atom; | 
| 244 |  |  | 
| 245 | < | SimInfo::~SimInfo(){ | 
| 245 | > | ndf_local = 0; | 
| 246 | > | nfq_local = 0; | 
| 247 | > |  | 
| 248 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 249 |  |  | 
| 250 | < | delete myConfiguration; | 
| 250 | > | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 251 | > | sd = mol->nextIntegrableObject(j)) { | 
| 252 |  |  | 
| 253 | < | map<string, GenericData*>::iterator i; | 
| 89 | < |  | 
| 90 | < | for(i = properties.begin(); i != properties.end(); i++) | 
| 91 | < | delete (*i).second; | 
| 253 | > | ndf_local += 3; | 
| 254 |  |  | 
| 255 | < | } | 
| 255 | > | if (sd->isDirectional()) { | 
| 256 | > | if (sd->isLinear()) { | 
| 257 | > | ndf_local += 2; | 
| 258 | > | } else { | 
| 259 | > | ndf_local += 3; | 
| 260 | > | } | 
| 261 | > | } | 
| 262 | > | } | 
| 263 |  |  | 
| 264 | < | void SimInfo::setBox(double newBox[3]) { | 
| 265 | < |  | 
| 266 | < | int i, j; | 
| 267 | < | double tempMat[3][3]; | 
| 264 | > | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | 
| 265 | > | atom = mol->nextFluctuatingCharge(k)) { | 
| 266 | > | if (atom->isFluctuatingCharge()) { | 
| 267 | > | nfq_local++; | 
| 268 | > | } | 
| 269 | > | } | 
| 270 | > | } | 
| 271 | > |  | 
| 272 | > | ndfLocal_ = ndf_local; | 
| 273 |  |  | 
| 274 | < | for(i=0; i<3; i++) | 
| 275 | < | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; | 
| 274 | > | // n_constraints is local, so subtract them on each processor | 
| 275 | > | ndf_local -= nConstraints_; | 
| 276 |  |  | 
| 277 | < | tempMat[0][0] = newBox[0]; | 
| 278 | < | tempMat[1][1] = newBox[1]; | 
| 279 | < | tempMat[2][2] = newBox[2]; | 
| 277 | > | #ifdef IS_MPI | 
| 278 | > | MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); | 
| 279 | > | MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, | 
| 280 | > | MPI::INT, MPI::SUM); | 
| 281 | > | #else | 
| 282 | > | ndf_ = ndf_local; | 
| 283 | > | nGlobalFluctuatingCharges_ = nfq_local; | 
| 284 | > | #endif | 
| 285 |  |  | 
| 286 | < | setBoxM( tempMat ); | 
| 286 | > | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 287 | > | // entire system: | 
| 288 | > | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 289 |  |  | 
| 290 | < | } | 
| 290 | > | } | 
| 291 |  |  | 
| 292 | < | void SimInfo::setBoxM( double theBox[3][3] ){ | 
| 292 | > | int SimInfo::getFdf() { | 
| 293 | > | #ifdef IS_MPI | 
| 294 | > | MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); | 
| 295 | > | #else | 
| 296 | > | fdf_ = fdf_local; | 
| 297 | > | #endif | 
| 298 | > | return fdf_; | 
| 299 | > | } | 
| 300 |  |  | 
| 301 | < | int i, j; | 
| 302 | < | double FortranHmat[9]; // to preserve compatibility with Fortran the | 
| 303 | < | // ordering in the array is as follows: | 
| 304 | < | // [ 0 3 6 ] | 
| 305 | < | // [ 1 4 7 ] | 
| 306 | < | // [ 2 5 8 ] | 
| 307 | < | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | 
| 308 | < |  | 
| 309 | < | if( !boxIsInit ) boxIsInit = 1; | 
| 310 | < |  | 
| 311 | < | for(i=0; i < 3; i++) | 
| 312 | < | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | 
| 313 | < |  | 
| 314 | < | calcBoxL(); | 
| 127 | < | calcHmatInv(); | 
| 128 | < |  | 
| 129 | < | for(i=0; i < 3; i++) { | 
| 130 | < | for (j=0; j < 3; j++) { | 
| 131 | < | FortranHmat[3*j + i] = Hmat[i][j]; | 
| 132 | < | FortranHmatInv[3*j + i] = HmatInv[i][j]; | 
| 301 | > | unsigned int SimInfo::getNLocalCutoffGroups(){ | 
| 302 | > | int nLocalCutoffAtoms = 0; | 
| 303 | > | Molecule* mol; | 
| 304 | > | MoleculeIterator mi; | 
| 305 | > | CutoffGroup* cg; | 
| 306 | > | Molecule::CutoffGroupIterator ci; | 
| 307 | > |  | 
| 308 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 309 | > |  | 
| 310 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 311 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 312 | > | nLocalCutoffAtoms += cg->getNumAtom(); | 
| 313 | > |  | 
| 314 | > | } | 
| 315 |  | } | 
| 316 | + |  | 
| 317 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; | 
| 318 |  | } | 
| 319 | + |  | 
| 320 | + | void SimInfo::calcNdfRaw() { | 
| 321 | + | int ndfRaw_local; | 
| 322 |  |  | 
| 323 | < | setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic); | 
| 324 | < |  | 
| 325 | < | } | 
| 326 | < |  | 
| 323 | > | MoleculeIterator i; | 
| 324 | > | vector<StuntDouble*>::iterator j; | 
| 325 | > | Molecule* mol; | 
| 326 | > | StuntDouble* sd; | 
| 327 |  |  | 
| 328 | < | void SimInfo::getBoxM (double theBox[3][3]) { | 
| 329 | < |  | 
| 330 | < | int i, j; | 
| 331 | < | for(i=0; i<3; i++) | 
| 145 | < | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; | 
| 146 | < | } | 
| 328 | > | // Raw degrees of freedom that we have to set | 
| 329 | > | ndfRaw_local = 0; | 
| 330 | > |  | 
| 331 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 332 |  |  | 
| 333 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 334 | + | sd = mol->nextIntegrableObject(j)) { | 
| 335 |  |  | 
| 336 | < | void SimInfo::scaleBox(double scale) { | 
| 150 | < | double theBox[3][3]; | 
| 151 | < | int i, j; | 
| 336 | > | ndfRaw_local += 3; | 
| 337 |  |  | 
| 338 | < | // cerr << "Scaling box by " << scale << "\n"; | 
| 339 | < |  | 
| 340 | < | for(i=0; i<3; i++) | 
| 341 | < | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; | 
| 342 | < |  | 
| 343 | < | setBoxM(theBox); | 
| 344 | < |  | 
| 345 | < | } | 
| 161 | < |  | 
| 162 | < | void SimInfo::calcHmatInv( void ) { | 
| 163 | < |  | 
| 164 | < | int oldOrtho; | 
| 165 | < | int i,j; | 
| 166 | < | double smallDiag; | 
| 167 | < | double tol; | 
| 168 | < | double sanity[3][3]; | 
| 169 | < |  | 
| 170 | < | invertMat3( Hmat, HmatInv ); | 
| 171 | < |  | 
| 172 | < | // check to see if Hmat is orthorhombic | 
| 173 | < |  | 
| 174 | < | oldOrtho = orthoRhombic; | 
| 175 | < |  | 
| 176 | < | smallDiag = fabs(Hmat[0][0]); | 
| 177 | < | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); | 
| 178 | < | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); | 
| 179 | < | tol = smallDiag * orthoTolerance; | 
| 180 | < |  | 
| 181 | < | orthoRhombic = 1; | 
| 182 | < |  | 
| 183 | < | for (i = 0; i < 3; i++ ) { | 
| 184 | < | for (j = 0 ; j < 3; j++) { | 
| 185 | < | if (i != j) { | 
| 186 | < | if (orthoRhombic) { | 
| 187 | < | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; | 
| 188 | < | } | 
| 338 | > | if (sd->isDirectional()) { | 
| 339 | > | if (sd->isLinear()) { | 
| 340 | > | ndfRaw_local += 2; | 
| 341 | > | } else { | 
| 342 | > | ndfRaw_local += 3; | 
| 343 | > | } | 
| 344 | > | } | 
| 345 | > |  | 
| 346 |  | } | 
| 347 |  | } | 
| 191 | – | } | 
| 192 | – |  | 
| 193 | – | if( oldOrtho != orthoRhombic ){ | 
| 348 |  |  | 
| 349 | < | if( orthoRhombic ) { | 
| 350 | < | sprintf( painCave.errMsg, | 
| 351 | < | "OOPSE is switching from the default Non-Orthorhombic\n" | 
| 352 | < | "\tto the faster Orthorhombic periodic boundary computations.\n" | 
| 353 | < | "\tThis is usually a good thing, but if you wan't the\n" | 
| 200 | < | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" | 
| 201 | < | "\tvariable ( currently set to %G ) smaller.\n", | 
| 202 | < | orthoTolerance); | 
| 203 | < | painCave.severity = OOPSE_INFO; | 
| 204 | < | simError(); | 
| 205 | < | } | 
| 206 | < | else { | 
| 207 | < | sprintf( painCave.errMsg, | 
| 208 | < | "OOPSE is switching from the faster Orthorhombic to the more\n" | 
| 209 | < | "\tflexible Non-Orthorhombic periodic boundary computations.\n" | 
| 210 | < | "\tThis is usually because the box has deformed under\n" | 
| 211 | < | "\tNPTf integration. If you wan't to live on the edge with\n" | 
| 212 | < | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" | 
| 213 | < | "\tvariable ( currently set to %G ) larger.\n", | 
| 214 | < | orthoTolerance); | 
| 215 | < | painCave.severity = OOPSE_WARNING; | 
| 216 | < | simError(); | 
| 217 | < | } | 
| 349 | > | #ifdef IS_MPI | 
| 350 | > | MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); | 
| 351 | > | #else | 
| 352 | > | ndfRaw_ = ndfRaw_local; | 
| 353 | > | #endif | 
| 354 |  | } | 
| 219 | – | } | 
| 355 |  |  | 
| 356 | < | void SimInfo::calcBoxL( void ){ | 
| 356 | > | void SimInfo::calcNdfTrans() { | 
| 357 | > | int ndfTrans_local; | 
| 358 |  |  | 
| 359 | < | double dx, dy, dz, dsq; | 
| 359 | > | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 360 |  |  | 
| 225 | – | // boxVol = Determinant of Hmat | 
| 361 |  |  | 
| 362 | < | boxVol = matDet3( Hmat ); | 
| 362 | > | #ifdef IS_MPI | 
| 363 | > | MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, | 
| 364 | > | MPI::INT, MPI::SUM); | 
| 365 | > | #else | 
| 366 | > | ndfTrans_ = ndfTrans_local; | 
| 367 | > | #endif | 
| 368 |  |  | 
| 369 | < | // boxLx | 
| 370 | < |  | 
| 371 | < | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | 
| 232 | < | dsq = dx*dx + dy*dy + dz*dz; | 
| 233 | < | boxL[0] = sqrt( dsq ); | 
| 234 | < | //maxCutoff = 0.5 * boxL[0]; | 
| 369 | > | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 370 | > |  | 
| 371 | > | } | 
| 372 |  |  | 
| 373 | < | // boxLy | 
| 374 | < |  | 
| 375 | < | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | 
| 376 | < | dsq = dx*dx + dy*dy + dz*dz; | 
| 377 | < | boxL[1] = sqrt( dsq ); | 
| 378 | < | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; | 
| 373 | > | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 374 | > | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 375 | > | vector<Bond*>::iterator bondIter; | 
| 376 | > | vector<Bend*>::iterator bendIter; | 
| 377 | > | vector<Torsion*>::iterator torsionIter; | 
| 378 | > | vector<Inversion*>::iterator inversionIter; | 
| 379 | > | Bond* bond; | 
| 380 | > | Bend* bend; | 
| 381 | > | Torsion* torsion; | 
| 382 | > | Inversion* inversion; | 
| 383 | > | int a; | 
| 384 | > | int b; | 
| 385 | > | int c; | 
| 386 | > | int d; | 
| 387 |  |  | 
| 388 | + | // atomGroups can be used to add special interaction maps between | 
| 389 | + | // groups of atoms that are in two separate rigid bodies. | 
| 390 | + | // However, most site-site interactions between two rigid bodies | 
| 391 | + | // are probably not special, just the ones between the physically | 
| 392 | + | // bonded atoms.  Interactions *within* a single rigid body should | 
| 393 | + | // always be excluded.  These are done at the bottom of this | 
| 394 | + | // function. | 
| 395 |  |  | 
| 396 | < | // boxLz | 
| 397 | < |  | 
| 398 | < | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | 
| 399 | < | dsq = dx*dx + dy*dy + dz*dz; | 
| 400 | < | boxL[2] = sqrt( dsq ); | 
| 401 | < | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; | 
| 396 | > | map<int, set<int> > atomGroups; | 
| 397 | > | Molecule::RigidBodyIterator rbIter; | 
| 398 | > | RigidBody* rb; | 
| 399 | > | Molecule::IntegrableObjectIterator ii; | 
| 400 | > | StuntDouble* sd; | 
| 401 | > |  | 
| 402 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 403 | > | sd = mol->nextIntegrableObject(ii)) { | 
| 404 | > |  | 
| 405 | > | if (sd->isRigidBody()) { | 
| 406 | > | rb = static_cast<RigidBody*>(sd); | 
| 407 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 408 | > | set<int> rigidAtoms; | 
| 409 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 410 | > | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 411 | > | } | 
| 412 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 413 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 414 | > | } | 
| 415 | > | } else { | 
| 416 | > | set<int> oneAtomSet; | 
| 417 | > | oneAtomSet.insert(sd->getGlobalIndex()); | 
| 418 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); | 
| 419 | > | } | 
| 420 | > | } | 
| 421 | > |  | 
| 422 | > | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 423 | > | bond = mol->nextBond(bondIter)) { | 
| 424 |  |  | 
| 425 | < | //calculate the max cutoff | 
| 426 | < | maxCutoff =  calcMaxCutOff(); | 
| 253 | < |  | 
| 254 | < | checkCutOffs(); | 
| 425 | > | a = bond->getAtomA()->getGlobalIndex(); | 
| 426 | > | b = bond->getAtomB()->getGlobalIndex(); | 
| 427 |  |  | 
| 428 | < | } | 
| 428 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 429 | > | oneTwoInteractions_.addPair(a, b); | 
| 430 | > | } else { | 
| 431 | > | excludedInteractions_.addPair(a, b); | 
| 432 | > | } | 
| 433 | > | } | 
| 434 |  |  | 
| 435 | + | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 436 | + | bend = mol->nextBend(bendIter)) { | 
| 437 |  |  | 
| 438 | < | double SimInfo::calcMaxCutOff(){ | 
| 438 | > | a = bend->getAtomA()->getGlobalIndex(); | 
| 439 | > | b = bend->getAtomB()->getGlobalIndex(); | 
| 440 | > | c = bend->getAtomC()->getGlobalIndex(); | 
| 441 | > |  | 
| 442 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 443 | > | oneTwoInteractions_.addPair(a, b); | 
| 444 | > | oneTwoInteractions_.addPair(b, c); | 
| 445 | > | } else { | 
| 446 | > | excludedInteractions_.addPair(a, b); | 
| 447 | > | excludedInteractions_.addPair(b, c); | 
| 448 | > | } | 
| 449 |  |  | 
| 450 | < | double ri[3], rj[3], rk[3]; | 
| 451 | < | double rij[3], rjk[3], rki[3]; | 
| 452 | < | double minDist; | 
| 450 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 451 | > | oneThreeInteractions_.addPair(a, c); | 
| 452 | > | } else { | 
| 453 | > | excludedInteractions_.addPair(a, c); | 
| 454 | > | } | 
| 455 | > | } | 
| 456 |  |  | 
| 457 | < | ri[0] = Hmat[0][0]; | 
| 458 | < | ri[1] = Hmat[1][0]; | 
| 267 | < | ri[2] = Hmat[2][0]; | 
| 457 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 458 | > | torsion = mol->nextTorsion(torsionIter)) { | 
| 459 |  |  | 
| 460 | < | rj[0] = Hmat[0][1]; | 
| 461 | < | rj[1] = Hmat[1][1]; | 
| 462 | < | rj[2] = Hmat[2][1]; | 
| 460 | > | a = torsion->getAtomA()->getGlobalIndex(); | 
| 461 | > | b = torsion->getAtomB()->getGlobalIndex(); | 
| 462 | > | c = torsion->getAtomC()->getGlobalIndex(); | 
| 463 | > | d = torsion->getAtomD()->getGlobalIndex(); | 
| 464 |  |  | 
| 465 | < | rk[0] = Hmat[0][2]; | 
| 466 | < | rk[1] = Hmat[1][2]; | 
| 467 | < | rk[2] = Hmat[2][2]; | 
| 468 | < |  | 
| 469 | < | crossProduct3(ri, rj, rij); | 
| 470 | < | distXY = dotProduct3(rk,rij) / norm3(rij); | 
| 465 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 466 | > | oneTwoInteractions_.addPair(a, b); | 
| 467 | > | oneTwoInteractions_.addPair(b, c); | 
| 468 | > | oneTwoInteractions_.addPair(c, d); | 
| 469 | > | } else { | 
| 470 | > | excludedInteractions_.addPair(a, b); | 
| 471 | > | excludedInteractions_.addPair(b, c); | 
| 472 | > | excludedInteractions_.addPair(c, d); | 
| 473 | > | } | 
| 474 |  |  | 
| 475 | < | crossProduct3(rj,rk, rjk); | 
| 476 | < | distYZ = dotProduct3(ri,rjk) / norm3(rjk); | 
| 475 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 476 | > | oneThreeInteractions_.addPair(a, c); | 
| 477 | > | oneThreeInteractions_.addPair(b, d); | 
| 478 | > | } else { | 
| 479 | > | excludedInteractions_.addPair(a, c); | 
| 480 | > | excludedInteractions_.addPair(b, d); | 
| 481 | > | } | 
| 482 |  |  | 
| 483 | < | crossProduct3(rk,ri, rki); | 
| 484 | < | distZX = dotProduct3(rj,rki) / norm3(rki); | 
| 483 | > | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 484 | > | oneFourInteractions_.addPair(a, d); | 
| 485 | > | } else { | 
| 486 | > | excludedInteractions_.addPair(a, d); | 
| 487 | > | } | 
| 488 | > | } | 
| 489 |  |  | 
| 490 | < | minDist = min(min(distXY, distYZ), distZX); | 
| 491 | < | return minDist/2; | 
| 288 | < |  | 
| 289 | < | } | 
| 490 | > | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 491 | > | inversion = mol->nextInversion(inversionIter)) { | 
| 492 |  |  | 
| 493 | < | void SimInfo::wrapVector( double thePos[3] ){ | 
| 493 | > | a = inversion->getAtomA()->getGlobalIndex(); | 
| 494 | > | b = inversion->getAtomB()->getGlobalIndex(); | 
| 495 | > | c = inversion->getAtomC()->getGlobalIndex(); | 
| 496 | > | d = inversion->getAtomD()->getGlobalIndex(); | 
| 497 |  |  | 
| 498 | < | int i; | 
| 499 | < | double scaled[3]; | 
| 498 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 499 | > | oneTwoInteractions_.addPair(a, b); | 
| 500 | > | oneTwoInteractions_.addPair(a, c); | 
| 501 | > | oneTwoInteractions_.addPair(a, d); | 
| 502 | > | } else { | 
| 503 | > | excludedInteractions_.addPair(a, b); | 
| 504 | > | excludedInteractions_.addPair(a, c); | 
| 505 | > | excludedInteractions_.addPair(a, d); | 
| 506 | > | } | 
| 507 |  |  | 
| 508 | < | if( !orthoRhombic ){ | 
| 509 | < | // calc the scaled coordinates. | 
| 510 | < |  | 
| 508 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 509 | > | oneThreeInteractions_.addPair(b, c); | 
| 510 | > | oneThreeInteractions_.addPair(b, d); | 
| 511 | > | oneThreeInteractions_.addPair(c, d); | 
| 512 | > | } else { | 
| 513 | > | excludedInteractions_.addPair(b, c); | 
| 514 | > | excludedInteractions_.addPair(b, d); | 
| 515 | > | excludedInteractions_.addPair(c, d); | 
| 516 | > | } | 
| 517 | > | } | 
| 518 |  |  | 
| 519 | < | matVecMul3(HmatInv, thePos, scaled); | 
| 520 | < |  | 
| 521 | < | for(i=0; i<3; i++) | 
| 522 | < | scaled[i] -= roundMe(scaled[i]); | 
| 523 | < |  | 
| 524 | < | // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 525 | < |  | 
| 526 | < | matVecMul3(Hmat, scaled, thePos); | 
| 519 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 520 | > | rb = mol->nextRigidBody(rbIter)) { | 
| 521 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 522 | > | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 523 | > | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 524 | > | a = atoms[i]->getGlobalIndex(); | 
| 525 | > | b = atoms[j]->getGlobalIndex(); | 
| 526 | > | excludedInteractions_.addPair(a, b); | 
| 527 | > | } | 
| 528 | > | } | 
| 529 | > | } | 
| 530 |  |  | 
| 531 |  | } | 
| 310 | – | else{ | 
| 311 | – | // calc the scaled coordinates. | 
| 312 | – |  | 
| 313 | – | for(i=0; i<3; i++) | 
| 314 | – | scaled[i] = thePos[i]*HmatInv[i][i]; | 
| 315 | – |  | 
| 316 | – | // wrap the scaled coordinates | 
| 317 | – |  | 
| 318 | – | for(i=0; i<3; i++) | 
| 319 | – | scaled[i] -= roundMe(scaled[i]); | 
| 320 | – |  | 
| 321 | – | // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 322 | – |  | 
| 323 | – | for(i=0; i<3; i++) | 
| 324 | – | thePos[i] = scaled[i]*Hmat[i][i]; | 
| 325 | – | } | 
| 326 | – |  | 
| 327 | – | } | 
| 532 |  |  | 
| 533 | + | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 534 | + | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 535 | + | vector<Bond*>::iterator bondIter; | 
| 536 | + | vector<Bend*>::iterator bendIter; | 
| 537 | + | vector<Torsion*>::iterator torsionIter; | 
| 538 | + | vector<Inversion*>::iterator inversionIter; | 
| 539 | + | Bond* bond; | 
| 540 | + | Bend* bend; | 
| 541 | + | Torsion* torsion; | 
| 542 | + | Inversion* inversion; | 
| 543 | + | int a; | 
| 544 | + | int b; | 
| 545 | + | int c; | 
| 546 | + | int d; | 
| 547 |  |  | 
| 548 | < | int SimInfo::getNDF(){ | 
| 549 | < | int ndf_local; | 
| 550 | < |  | 
| 551 | < | ndf_local = 0; | 
| 552 | < |  | 
| 553 | < | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 554 | < | ndf_local += 3; | 
| 555 | < | if (integrableObjects[i]->isDirectional()) { | 
| 556 | < | if (integrableObjects[i]->isLinear()) | 
| 557 | < | ndf_local += 2; | 
| 558 | < | else | 
| 559 | < | ndf_local += 3; | 
| 548 | > | map<int, set<int> > atomGroups; | 
| 549 | > | Molecule::RigidBodyIterator rbIter; | 
| 550 | > | RigidBody* rb; | 
| 551 | > | Molecule::IntegrableObjectIterator ii; | 
| 552 | > | StuntDouble* sd; | 
| 553 | > |  | 
| 554 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 555 | > | sd = mol->nextIntegrableObject(ii)) { | 
| 556 | > |  | 
| 557 | > | if (sd->isRigidBody()) { | 
| 558 | > | rb = static_cast<RigidBody*>(sd); | 
| 559 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 560 | > | set<int> rigidAtoms; | 
| 561 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 562 | > | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 563 | > | } | 
| 564 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 565 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 566 | > | } | 
| 567 | > | } else { | 
| 568 | > | set<int> oneAtomSet; | 
| 569 | > | oneAtomSet.insert(sd->getGlobalIndex()); | 
| 570 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); | 
| 571 | > | } | 
| 572 | > | } | 
| 573 | > |  | 
| 574 | > | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 575 | > | bond = mol->nextBond(bondIter)) { | 
| 576 | > |  | 
| 577 | > | a = bond->getAtomA()->getGlobalIndex(); | 
| 578 | > | b = bond->getAtomB()->getGlobalIndex(); | 
| 579 | > |  | 
| 580 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 581 | > | oneTwoInteractions_.removePair(a, b); | 
| 582 | > | } else { | 
| 583 | > | excludedInteractions_.removePair(a, b); | 
| 584 | > | } | 
| 585 |  | } | 
| 343 | – | } | 
| 586 |  |  | 
| 587 | < | // n_constraints is local, so subtract them on each processor: | 
| 587 | > | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 588 | > | bend = mol->nextBend(bendIter)) { | 
| 589 |  |  | 
| 590 | < | ndf_local -= n_constraints; | 
| 590 | > | a = bend->getAtomA()->getGlobalIndex(); | 
| 591 | > | b = bend->getAtomB()->getGlobalIndex(); | 
| 592 | > | c = bend->getAtomC()->getGlobalIndex(); | 
| 593 | > |  | 
| 594 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 595 | > | oneTwoInteractions_.removePair(a, b); | 
| 596 | > | oneTwoInteractions_.removePair(b, c); | 
| 597 | > | } else { | 
| 598 | > | excludedInteractions_.removePair(a, b); | 
| 599 | > | excludedInteractions_.removePair(b, c); | 
| 600 | > | } | 
| 601 |  |  | 
| 602 | < | #ifdef IS_MPI | 
| 603 | < | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 604 | < | #else | 
| 605 | < | ndf = ndf_local; | 
| 606 | < | #endif | 
| 602 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 603 | > | oneThreeInteractions_.removePair(a, c); | 
| 604 | > | } else { | 
| 605 | > | excludedInteractions_.removePair(a, c); | 
| 606 | > | } | 
| 607 | > | } | 
| 608 |  |  | 
| 609 | < | // nZconstraints is global, as are the 3 COM translations for the | 
| 610 | < | // entire system: | 
| 609 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 610 | > | torsion = mol->nextTorsion(torsionIter)) { | 
| 611 |  |  | 
| 612 | < | ndf = ndf - 3 - nZconstraints; | 
| 612 | > | a = torsion->getAtomA()->getGlobalIndex(); | 
| 613 | > | b = torsion->getAtomB()->getGlobalIndex(); | 
| 614 | > | c = torsion->getAtomC()->getGlobalIndex(); | 
| 615 | > | d = torsion->getAtomD()->getGlobalIndex(); | 
| 616 | > |  | 
| 617 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 618 | > | oneTwoInteractions_.removePair(a, b); | 
| 619 | > | oneTwoInteractions_.removePair(b, c); | 
| 620 | > | oneTwoInteractions_.removePair(c, d); | 
| 621 | > | } else { | 
| 622 | > | excludedInteractions_.removePair(a, b); | 
| 623 | > | excludedInteractions_.removePair(b, c); | 
| 624 | > | excludedInteractions_.removePair(c, d); | 
| 625 | > | } | 
| 626 |  |  | 
| 627 | < | return ndf; | 
| 628 | < | } | 
| 627 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 628 | > | oneThreeInteractions_.removePair(a, c); | 
| 629 | > | oneThreeInteractions_.removePair(b, d); | 
| 630 | > | } else { | 
| 631 | > | excludedInteractions_.removePair(a, c); | 
| 632 | > | excludedInteractions_.removePair(b, d); | 
| 633 | > | } | 
| 634 |  |  | 
| 635 | < | int SimInfo::getNDFraw() { | 
| 636 | < | int ndfRaw_local; | 
| 635 | > | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 636 | > | oneFourInteractions_.removePair(a, d); | 
| 637 | > | } else { | 
| 638 | > | excludedInteractions_.removePair(a, d); | 
| 639 | > | } | 
| 640 | > | } | 
| 641 |  |  | 
| 642 | < | // Raw degrees of freedom that we have to set | 
| 643 | < | ndfRaw_local = 0; | 
| 642 | > | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 643 | > | inversion = mol->nextInversion(inversionIter)) { | 
| 644 |  |  | 
| 645 | < | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 646 | < | ndfRaw_local += 3; | 
| 647 | < | if (integrableObjects[i]->isDirectional()) { | 
| 648 | < | if (integrableObjects[i]->isLinear()) | 
| 649 | < | ndfRaw_local += 2; | 
| 650 | < | else | 
| 651 | < | ndfRaw_local += 3; | 
| 645 | > | a = inversion->getAtomA()->getGlobalIndex(); | 
| 646 | > | b = inversion->getAtomB()->getGlobalIndex(); | 
| 647 | > | c = inversion->getAtomC()->getGlobalIndex(); | 
| 648 | > | d = inversion->getAtomD()->getGlobalIndex(); | 
| 649 | > |  | 
| 650 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 651 | > | oneTwoInteractions_.removePair(a, b); | 
| 652 | > | oneTwoInteractions_.removePair(a, c); | 
| 653 | > | oneTwoInteractions_.removePair(a, d); | 
| 654 | > | } else { | 
| 655 | > | excludedInteractions_.removePair(a, b); | 
| 656 | > | excludedInteractions_.removePair(a, c); | 
| 657 | > | excludedInteractions_.removePair(a, d); | 
| 658 | > | } | 
| 659 | > |  | 
| 660 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 661 | > | oneThreeInteractions_.removePair(b, c); | 
| 662 | > | oneThreeInteractions_.removePair(b, d); | 
| 663 | > | oneThreeInteractions_.removePair(c, d); | 
| 664 | > | } else { | 
| 665 | > | excludedInteractions_.removePair(b, c); | 
| 666 | > | excludedInteractions_.removePair(b, d); | 
| 667 | > | excludedInteractions_.removePair(c, d); | 
| 668 | > | } | 
| 669 |  | } | 
| 670 | + |  | 
| 671 | + | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 672 | + | rb = mol->nextRigidBody(rbIter)) { | 
| 673 | + | vector<Atom*> atoms = rb->getAtoms(); | 
| 674 | + | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 675 | + | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 676 | + | a = atoms[i]->getGlobalIndex(); | 
| 677 | + | b = atoms[j]->getGlobalIndex(); | 
| 678 | + | excludedInteractions_.removePair(a, b); | 
| 679 | + | } | 
| 680 | + | } | 
| 681 | + | } | 
| 682 | + |  | 
| 683 |  | } | 
| 684 | + |  | 
| 685 | + |  | 
| 686 | + | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 687 | + | int curStampId; | 
| 688 |  |  | 
| 689 | < | #ifdef IS_MPI | 
| 690 | < | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 381 | < | #else | 
| 382 | < | ndfRaw = ndfRaw_local; | 
| 383 | < | #endif | 
| 689 | > | //index from 0 | 
| 690 | > | curStampId = moleculeStamps_.size(); | 
| 691 |  |  | 
| 692 | < | return ndfRaw; | 
| 693 | < | } | 
| 692 | > | moleculeStamps_.push_back(molStamp); | 
| 693 | > | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 694 | > | } | 
| 695 |  |  | 
| 388 | – | int SimInfo::getNDFtranslational() { | 
| 389 | – | int ndfTrans_local; | 
| 696 |  |  | 
| 697 | < | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; | 
| 698 | < |  | 
| 699 | < |  | 
| 697 | > | /** | 
| 698 | > | * update | 
| 699 | > | * | 
| 700 | > | *  Performs the global checks and variable settings after the | 
| 701 | > | *  objects have been created. | 
| 702 | > | * | 
| 703 | > | */ | 
| 704 | > | void SimInfo::update() { | 
| 705 | > | setupSimVariables(); | 
| 706 | > | calcNdf(); | 
| 707 | > | calcNdfRaw(); | 
| 708 | > | calcNdfTrans(); | 
| 709 | > | } | 
| 710 | > |  | 
| 711 | > | /** | 
| 712 | > | * getSimulatedAtomTypes | 
| 713 | > | * | 
| 714 | > | * Returns an STL set of AtomType* that are actually present in this | 
| 715 | > | * simulation.  Must query all processors to assemble this information. | 
| 716 | > | * | 
| 717 | > | */ | 
| 718 | > | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 719 | > | SimInfo::MoleculeIterator mi; | 
| 720 | > | Molecule* mol; | 
| 721 | > | Molecule::AtomIterator ai; | 
| 722 | > | Atom* atom; | 
| 723 | > | set<AtomType*> atomTypes; | 
| 724 | > |  | 
| 725 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 726 | > | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 727 | > | atom = mol->nextAtom(ai)) { | 
| 728 | > | atomTypes.insert(atom->getAtomType()); | 
| 729 | > | } | 
| 730 | > | } | 
| 731 | > |  | 
| 732 |  | #ifdef IS_MPI | 
| 395 | – | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 396 | – | #else | 
| 397 | – | ndfTrans = ndfTrans_local; | 
| 398 | – | #endif | 
| 733 |  |  | 
| 734 | < | ndfTrans = ndfTrans - 3 - nZconstraints; | 
| 734 | > | // loop over the found atom types on this processor, and add their | 
| 735 | > | // numerical idents to a vector: | 
| 736 | > |  | 
| 737 | > | vector<int> foundTypes; | 
| 738 | > | set<AtomType*>::iterator i; | 
| 739 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | 
| 740 | > | foundTypes.push_back( (*i)->getIdent() ); | 
| 741 |  |  | 
| 742 | < | return ndfTrans; | 
| 743 | < | } | 
| 742 | > | // count_local holds the number of found types on this processor | 
| 743 | > | int count_local = foundTypes.size(); | 
| 744 |  |  | 
| 745 | < | int SimInfo::getTotIntegrableObjects() { | 
| 406 | < | int nObjs_local; | 
| 407 | < | int nObjs; | 
| 745 | > | int nproc = MPI::COMM_WORLD.Get_size(); | 
| 746 |  |  | 
| 747 | < | nObjs_local =  integrableObjects.size(); | 
| 747 | > | // we need arrays to hold the counts and displacement vectors for | 
| 748 | > | // all processors | 
| 749 | > | vector<int> counts(nproc, 0); | 
| 750 | > | vector<int> disps(nproc, 0); | 
| 751 |  |  | 
| 752 | + | // fill the counts array | 
| 753 | + | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 754 | + | 1, MPI::INT); | 
| 755 | + |  | 
| 756 | + | // use the processor counts to compute the displacement array | 
| 757 | + | disps[0] = 0; | 
| 758 | + | int totalCount = counts[0]; | 
| 759 | + | for (int iproc = 1; iproc < nproc; iproc++) { | 
| 760 | + | disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 761 | + | totalCount += counts[iproc]; | 
| 762 | + | } | 
| 763 |  |  | 
| 764 | < | #ifdef IS_MPI | 
| 765 | < | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 766 | < | #else | 
| 767 | < | nObjs = nObjs_local; | 
| 768 | < | #endif | 
| 764 | > | // we need a (possibly redundant) set of all found types: | 
| 765 | > | vector<int> ftGlobal(totalCount); | 
| 766 | > |  | 
| 767 | > | // now spray out the foundTypes to all the other processors: | 
| 768 | > | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | 
| 769 | > | &ftGlobal[0], &counts[0], &disps[0], | 
| 770 | > | MPI::INT); | 
| 771 |  |  | 
| 772 | + | vector<int>::iterator j; | 
| 773 |  |  | 
| 774 | < | return nObjs; | 
| 775 | < | } | 
| 774 | > | // foundIdents is a stl set, so inserting an already found ident | 
| 775 | > | // will have no effect. | 
| 776 | > | set<int> foundIdents; | 
| 777 |  |  | 
| 778 | < | void SimInfo::refreshSim(){ | 
| 778 | > | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 779 | > | foundIdents.insert((*j)); | 
| 780 | > |  | 
| 781 | > | // now iterate over the foundIdents and get the actual atom types | 
| 782 | > | // that correspond to these: | 
| 783 | > | set<int>::iterator it; | 
| 784 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 785 | > | atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 786 | > |  | 
| 787 | > | #endif | 
| 788 |  |  | 
| 789 | < | simtype fInfo; | 
| 790 | < | int isError; | 
| 426 | < | int n_global; | 
| 427 | < | int* excl; | 
| 789 | > | return atomTypes; | 
| 790 | > | } | 
| 791 |  |  | 
| 429 | – | fInfo.dielect = 0.0; | 
| 792 |  |  | 
| 793 | < | if( useDipoles ){ | 
| 794 | < | if( useReactionField )fInfo.dielect = dielectric; | 
| 793 | > | int getGlobalCountOfType(AtomType* atype) { | 
| 794 | > | /* | 
| 795 | > | set<AtomType*> atypes = getSimulatedAtomTypes(); | 
| 796 | > | map<AtomType*, int> counts_; | 
| 797 | > |  | 
| 798 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 799 | > | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 800 | > | atom = mol->nextAtom(ai)) { | 
| 801 | > | atom->getAtomType(); | 
| 802 | > | } | 
| 803 | > | } | 
| 804 | > | */ | 
| 805 | > | return 0; | 
| 806 |  | } | 
| 807 |  |  | 
| 808 | < | fInfo.SIM_uses_PBC = usePBC; | 
| 809 | < | //fInfo.SIM_uses_LJ = 0; | 
| 810 | < | fInfo.SIM_uses_LJ = useLJ; | 
| 811 | < | fInfo.SIM_uses_sticky = useSticky; | 
| 812 | < | //fInfo.SIM_uses_sticky = 0; | 
| 813 | < | fInfo.SIM_uses_charges = useCharges; | 
| 814 | < | fInfo.SIM_uses_dipoles = useDipoles; | 
| 815 | < | //fInfo.SIM_uses_dipoles = 0; | 
| 816 | < | fInfo.SIM_uses_RF = useReactionField; | 
| 817 | < | //fInfo.SIM_uses_RF = 0; | 
| 818 | < | fInfo.SIM_uses_GB = useGB; | 
| 819 | < | fInfo.SIM_uses_EAM = useEAM; | 
| 808 | > | void SimInfo::setupSimVariables() { | 
| 809 | > | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 810 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole | 
| 811 | > | // parameter is true | 
| 812 | > | calcBoxDipole_ = false; | 
| 813 | > | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 814 | > | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 815 | > | calcBoxDipole_ = true; | 
| 816 | > | } | 
| 817 | > |  | 
| 818 | > | set<AtomType*>::iterator i; | 
| 819 | > | set<AtomType*> atomTypes; | 
| 820 | > | atomTypes = getSimulatedAtomTypes(); | 
| 821 | > | bool usesElectrostatic = false; | 
| 822 | > | bool usesMetallic = false; | 
| 823 | > | bool usesDirectional = false; | 
| 824 | > | bool usesFluctuatingCharges =  false; | 
| 825 | > | //loop over all of the atom types | 
| 826 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 827 | > | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 828 | > | usesMetallic |= (*i)->isMetal(); | 
| 829 | > | usesDirectional |= (*i)->isDirectional(); | 
| 830 | > | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | 
| 831 | > | } | 
| 832 |  |  | 
| 448 | – | n_exclude = excludes->getSize(); | 
| 449 | – | excl = excludes->getFortranArray(); | 
| 450 | – |  | 
| 833 |  | #ifdef IS_MPI | 
| 834 | < | n_global = mpiSim->getNAtomsGlobal(); | 
| 834 | > | bool temp; | 
| 835 | > | temp = usesDirectional; | 
| 836 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, | 
| 837 | > | MPI::LOR); | 
| 838 | > |  | 
| 839 | > | temp = usesMetallic; | 
| 840 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, | 
| 841 | > | MPI::LOR); | 
| 842 | > |  | 
| 843 | > | temp = usesElectrostatic; | 
| 844 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, | 
| 845 | > | MPI::LOR); | 
| 846 | > |  | 
| 847 | > | temp = usesFluctuatingCharges; | 
| 848 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, | 
| 849 | > | MPI::LOR); | 
| 850 |  | #else | 
| 851 | < | n_global = n_atoms; | 
| 851 | > |  | 
| 852 | > | usesDirectionalAtoms_ = usesDirectional; | 
| 853 | > | usesMetallicAtoms_ = usesMetallic; | 
| 854 | > | usesElectrostaticAtoms_ = usesElectrostatic; | 
| 855 | > | usesFluctuatingCharges_ = usesFluctuatingCharges; | 
| 856 | > |  | 
| 857 |  | #endif | 
| 858 | < |  | 
| 859 | < | isError = 0; | 
| 860 | < |  | 
| 861 | < | getFortranGroupArrays(this, FglobalGroupMembership, mfact); | 
| 862 | < | //it may not be a good idea to pass the address of first element in vector | 
| 461 | < | //since c++ standard does not require vector to be stored continuously in meomory | 
| 462 | < | //Most of the compilers will organize the memory of vector continuously | 
| 463 | < | setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, | 
| 464 | < | &nGlobalExcludes, globalExcludes, molMembershipArray, | 
| 465 | < | &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); | 
| 858 | > |  | 
| 859 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; | 
| 860 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 861 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 862 | > | } | 
| 863 |  |  | 
| 864 | < | if( isError ){ | 
| 864 | > |  | 
| 865 | > | vector<int> SimInfo::getGlobalAtomIndices() { | 
| 866 | > | SimInfo::MoleculeIterator mi; | 
| 867 | > | Molecule* mol; | 
| 868 | > | Molecule::AtomIterator ai; | 
| 869 | > | Atom* atom; | 
| 870 | > |  | 
| 871 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); | 
| 872 |  |  | 
| 873 | < | sprintf( painCave.errMsg, | 
| 874 | < | "There was an error setting the simulation information in fortran.\n" ); | 
| 875 | < | painCave.isFatal = 1; | 
| 876 | < | painCave.severity = OOPSE_ERROR; | 
| 877 | < | simError(); | 
| 873 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 874 | > |  | 
| 875 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 876 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); | 
| 877 | > | } | 
| 878 | > | } | 
| 879 | > | return GlobalAtomIndices; | 
| 880 |  | } | 
| 475 | – |  | 
| 476 | – | #ifdef IS_MPI | 
| 477 | – | sprintf( checkPointMsg, | 
| 478 | – | "succesfully sent the simulation information to fortran.\n"); | 
| 479 | – | MPIcheckPoint(); | 
| 480 | – | #endif // is_mpi | 
| 481 | – |  | 
| 482 | – | this->ndf = this->getNDF(); | 
| 483 | – | this->ndfRaw = this->getNDFraw(); | 
| 484 | – | this->ndfTrans = this->getNDFtranslational(); | 
| 485 | – | } | 
| 881 |  |  | 
| 487 | – | void SimInfo::setDefaultRcut( double theRcut ){ | 
| 488 | – |  | 
| 489 | – | haveRcut = 1; | 
| 490 | – | rCut = theRcut; | 
| 491 | – | rList = rCut + 1.0; | 
| 492 | – |  | 
| 493 | – | notifyFortranCutoffs( &rCut, &rSw, &rList ); | 
| 494 | – | } | 
| 882 |  |  | 
| 883 | < | void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ | 
| 883 | > | vector<int> SimInfo::getGlobalGroupIndices() { | 
| 884 | > | SimInfo::MoleculeIterator mi; | 
| 885 | > | Molecule* mol; | 
| 886 | > | Molecule::CutoffGroupIterator ci; | 
| 887 | > | CutoffGroup* cg; | 
| 888 |  |  | 
| 889 | < | rSw = theRsw; | 
| 890 | < | setDefaultRcut( theRcut ); | 
| 891 | < | } | 
| 889 | > | vector<int> GlobalGroupIndices; | 
| 890 | > |  | 
| 891 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 892 | > |  | 
| 893 | > | //local index of cutoff group is trivial, it only depends on the | 
| 894 | > | //order of travesing | 
| 895 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 896 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 897 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); | 
| 898 | > | } | 
| 899 | > | } | 
| 900 | > | return GlobalGroupIndices; | 
| 901 | > | } | 
| 902 |  |  | 
| 903 |  |  | 
| 904 | < | void SimInfo::checkCutOffs( void ){ | 
| 905 | < |  | 
| 906 | < | if( boxIsInit ){ | 
| 904 | > | void SimInfo::prepareTopology() { | 
| 905 | > |  | 
| 906 | > | //calculate mass ratio of cutoff group | 
| 907 | > | SimInfo::MoleculeIterator mi; | 
| 908 | > | Molecule* mol; | 
| 909 | > | Molecule::CutoffGroupIterator ci; | 
| 910 | > | CutoffGroup* cg; | 
| 911 | > | Molecule::AtomIterator ai; | 
| 912 | > | Atom* atom; | 
| 913 | > | RealType totalMass; | 
| 914 | > |  | 
| 915 | > | /** | 
| 916 | > | * The mass factor is the relative mass of an atom to the total | 
| 917 | > | * mass of the cutoff group it belongs to.  By default, all atoms | 
| 918 | > | * are their own cutoff groups, and therefore have mass factors of | 
| 919 | > | * 1.  We need some special handling for massless atoms, which | 
| 920 | > | * will be treated as carrying the entire mass of the cutoff | 
| 921 | > | * group. | 
| 922 | > | */ | 
| 923 | > | massFactors_.clear(); | 
| 924 | > | massFactors_.resize(getNAtoms(), 1.0); | 
| 925 |  |  | 
| 926 | < | //we need to check cutOffs against the box | 
| 927 | < |  | 
| 928 | < | if( rCut > maxCutoff ){ | 
| 929 | < | sprintf( painCave.errMsg, | 
| 930 | < | "cutoffRadius is too large for the current periodic box.\n" | 
| 931 | < | "\tCurrent Value of cutoffRadius = %G at time %G\n " | 
| 932 | < | "\tThis is larger than half of at least one of the\n" | 
| 933 | < | "\tperiodic box vectors.  Right now, the Box matrix is:\n" | 
| 934 | < | "\n" | 
| 935 | < | "\t[ %G %G %G ]\n" | 
| 936 | < | "\t[ %G %G %G ]\n" | 
| 937 | < | "\t[ %G %G %G ]\n", | 
| 938 | < | rCut, currentTime, | 
| 939 | < | Hmat[0][0], Hmat[0][1], Hmat[0][2], | 
| 940 | < | Hmat[1][0], Hmat[1][1], Hmat[1][2], | 
| 941 | < | Hmat[2][0], Hmat[2][1], Hmat[2][2]); | 
| 942 | < | painCave.severity = OOPSE_ERROR; | 
| 943 | < | painCave.isFatal = 1; | 
| 944 | < | simError(); | 
| 926 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 927 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 928 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 929 | > |  | 
| 930 | > | totalMass = cg->getMass(); | 
| 931 | > | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 932 | > | // Check for massless groups - set mfact to 1 if true | 
| 933 | > | if (totalMass != 0) | 
| 934 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; | 
| 935 | > | else | 
| 936 | > | massFactors_[atom->getLocalIndex()] = 1.0; | 
| 937 | > | } | 
| 938 | > | } | 
| 939 | > | } | 
| 940 | > |  | 
| 941 | > | // Build the identArray_ and regions_ | 
| 942 | > |  | 
| 943 | > | identArray_.clear(); | 
| 944 | > | identArray_.reserve(getNAtoms()); | 
| 945 | > | regions_.clear(); | 
| 946 | > | regions_.reserve(getNAtoms()); | 
| 947 | > |  | 
| 948 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 949 | > | int reg = mol->getRegion(); | 
| 950 | > | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 951 | > | identArray_.push_back(atom->getIdent()); | 
| 952 | > | regions_.push_back(reg); | 
| 953 | > | } | 
| 954 |  | } | 
| 955 | < | } else { | 
| 956 | < | // initialize this stuff before using it, OK? | 
| 529 | < | sprintf( painCave.errMsg, | 
| 530 | < | "Trying to check cutoffs without a box.\n" | 
| 531 | < | "\tOOPSE should have better programmers than that.\n" ); | 
| 532 | < | painCave.severity = OOPSE_ERROR; | 
| 533 | < | painCave.isFatal = 1; | 
| 534 | < | simError(); | 
| 955 | > |  | 
| 956 | > | topologyDone_ = true; | 
| 957 |  | } | 
| 536 | – |  | 
| 537 | – | } | 
| 958 |  |  | 
| 959 | < | void SimInfo::addProperty(GenericData* prop){ | 
| 959 | > | void SimInfo::addProperty(GenericData* genData) { | 
| 960 | > | properties_.addProperty(genData); | 
| 961 | > | } | 
| 962 |  |  | 
| 963 | < | map<string, GenericData*>::iterator result; | 
| 964 | < | result = properties.find(prop->getID()); | 
| 543 | < |  | 
| 544 | < | //we can't simply use  properties[prop->getID()] = prop, | 
| 545 | < | //it will cause memory leak if we already contain a propery which has the same name of prop | 
| 546 | < |  | 
| 547 | < | if(result != properties.end()){ | 
| 548 | < |  | 
| 549 | < | delete (*result).second; | 
| 550 | < | (*result).second = prop; | 
| 551 | < |  | 
| 963 | > | void SimInfo::removeProperty(const string& propName) { | 
| 964 | > | properties_.removeProperty(propName); | 
| 965 |  | } | 
| 553 | – | else{ | 
| 966 |  |  | 
| 967 | < | properties[prop->getID()] = prop; | 
| 967 | > | void SimInfo::clearProperties() { | 
| 968 | > | properties_.clearProperties(); | 
| 969 | > | } | 
| 970 |  |  | 
| 971 | + | vector<string> SimInfo::getPropertyNames() { | 
| 972 | + | return properties_.getPropertyNames(); | 
| 973 |  | } | 
| 974 | < |  | 
| 975 | < | } | 
| 974 | > |  | 
| 975 | > | vector<GenericData*> SimInfo::getProperties() { | 
| 976 | > | return properties_.getProperties(); | 
| 977 | > | } | 
| 978 |  |  | 
| 979 | < | GenericData* SimInfo::getProperty(const string& propName){ | 
| 979 | > | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 980 | > | return properties_.getPropertyByName(propName); | 
| 981 | > | } | 
| 982 | > |  | 
| 983 | > | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 984 | > | if (sman_ == sman) { | 
| 985 | > | return; | 
| 986 | > | } | 
| 987 | > | delete sman_; | 
| 988 | > | sman_ = sman; | 
| 989 | > |  | 
| 990 | > | Molecule* mol; | 
| 991 | > | RigidBody* rb; | 
| 992 | > | Atom* atom; | 
| 993 | > | CutoffGroup* cg; | 
| 994 | > | SimInfo::MoleculeIterator mi; | 
| 995 | > | Molecule::RigidBodyIterator rbIter; | 
| 996 | > | Molecule::AtomIterator atomIter; | 
| 997 | > | Molecule::CutoffGroupIterator cgIter; | 
| 998 |  |  | 
| 999 | < | map<string, GenericData*>::iterator result; | 
| 1000 | < |  | 
| 1001 | < | //string lowerCaseName = (); | 
| 1002 | < |  | 
| 1003 | < | result = properties.find(propName); | 
| 1004 | < |  | 
| 1005 | < | if(result != properties.end()) | 
| 1006 | < | return (*result).second; | 
| 1007 | < | else | 
| 1008 | < | return NULL; | 
| 1009 | < | } | 
| 999 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1000 | > |  | 
| 1001 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; | 
| 1002 | > | atom = mol->nextAtom(atomIter)) { | 
| 1003 | > | atom->setSnapshotManager(sman_); | 
| 1004 | > | } | 
| 1005 | > |  | 
| 1006 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 1007 | > | rb = mol->nextRigidBody(rbIter)) { | 
| 1008 | > | rb->setSnapshotManager(sman_); | 
| 1009 | > | } | 
| 1010 |  |  | 
| 1011 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; | 
| 1012 | + | cg = mol->nextCutoffGroup(cgIter)) { | 
| 1013 | + | cg->setSnapshotManager(sman_); | 
| 1014 | + | } | 
| 1015 | + | } | 
| 1016 | + |  | 
| 1017 | + | } | 
| 1018 |  |  | 
| 1019 | < | void SimInfo::getFortranGroupArrays(SimInfo* info, | 
| 1020 | < | vector<int>& FglobalGroupMembership, | 
| 1021 | < | vector<double>& mfact){ | 
| 1019 | > |  | 
| 1020 | > | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1021 | > |  | 
| 1022 | > | return o; | 
| 1023 | > | } | 
| 1024 | > |  | 
| 1025 |  |  | 
| 1026 | < | Molecule* myMols; | 
| 1027 | < | Atom** myAtoms; | 
| 1028 | < | int numAtom; | 
| 1029 | < | double mtot; | 
| 1030 | < | int numMol; | 
| 1031 | < | int numCutoffGroups; | 
| 1032 | < | CutoffGroup* myCutoffGroup; | 
| 1033 | < | vector<CutoffGroup*>::iterator iterCutoff; | 
| 1034 | < | Atom* cutoffAtom; | 
| 1035 | < | vector<Atom*>::iterator iterAtom; | 
| 1036 | < | int atomIndex; | 
| 591 | < | double totalMass; | 
| 1026 | > | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1027 | > | if (index >= int(IOIndexToIntegrableObject.size())) { | 
| 1028 | > | sprintf(painCave.errMsg, | 
| 1029 | > | "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" | 
| 1030 | > | "\tindex exceeds number of known objects!\n"); | 
| 1031 | > | painCave.isFatal = 1; | 
| 1032 | > | simError(); | 
| 1033 | > | return NULL; | 
| 1034 | > | } else | 
| 1035 | > | return IOIndexToIntegrableObject.at(index); | 
| 1036 | > | } | 
| 1037 |  |  | 
| 1038 | < | mfact.clear(); | 
| 1039 | < | FglobalGroupMembership.clear(); | 
| 1040 | < |  | 
| 1038 | > | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1039 | > | IOIndexToIntegrableObject= v; | 
| 1040 | > | } | 
| 1041 |  |  | 
| 1042 | < | // Fix the silly fortran indexing problem | 
| 1042 | > | int SimInfo::getNGlobalConstraints() { | 
| 1043 | > | int nGlobalConstraints; | 
| 1044 |  | #ifdef IS_MPI | 
| 1045 | < | numAtom = mpiSim->getNAtomsGlobal(); | 
| 1045 | > | MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, | 
| 1046 | > | MPI::INT, MPI::SUM); | 
| 1047 |  | #else | 
| 1048 | < | numAtom = n_atoms; | 
| 1048 | > | nGlobalConstraints =  nConstraints_; | 
| 1049 |  | #endif | 
| 1050 | < | for (int i = 0; i < numAtom; i++) | 
| 604 | < | FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); | 
| 605 | < |  | 
| 606 | < |  | 
| 607 | < | myMols = info->molecules; | 
| 608 | < | numMol = info->n_mol; | 
| 609 | < | for(int i  = 0; i < numMol; i++){ | 
| 610 | < | numCutoffGroups = myMols[i].getNCutoffGroups(); | 
| 611 | < | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); | 
| 612 | < | myCutoffGroup != NULL; | 
| 613 | < | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ | 
| 614 | < |  | 
| 615 | < | totalMass = myCutoffGroup->getMass(); | 
| 616 | < |  | 
| 617 | < | for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); | 
| 618 | < | cutoffAtom != NULL; | 
| 619 | < | cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ | 
| 620 | < | mfact.push_back(cutoffAtom->getMass()/totalMass); | 
| 621 | < | } | 
| 622 | < | } | 
| 1050 | > | return nGlobalConstraints; | 
| 1051 |  | } | 
| 1052 |  |  | 
| 1053 | < | } | 
| 1053 | > | }//end namespace OpenMD | 
| 1054 | > |  |