| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 49 |  |  | 
| 50 |  | #include <algorithm> | 
| 51 |  | #include <set> | 
| 52 | + | #include <map> | 
| 53 |  |  | 
| 54 |  | #include "brains/SimInfo.hpp" | 
| 55 |  | #include "math/Vector3.hpp" | 
| 56 |  | #include "primitives/Molecule.hpp" | 
| 57 | < | #include "UseTheForce/fCutoffPolicy.h" | 
| 56 | < | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 57 | < | #include "UseTheForce/doForces_interface.h" | 
| 58 | < | #include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 59 | < | #include "UseTheForce/notifyCutoffs_interface.h" | 
| 57 | > | #include "primitives/StuntDouble.hpp" | 
| 58 |  | #include "utils/MemoryUtils.hpp" | 
| 59 |  | #include "utils/simError.h" | 
| 60 |  | #include "selection/SelectionManager.hpp" | 
| 61 | < |  | 
| 61 | > | #include "io/ForceFieldOptions.hpp" | 
| 62 | > | #include "brains/ForceField.hpp" | 
| 63 | > | #include "nonbonded/SwitchingFunction.hpp" | 
| 64 |  | #ifdef IS_MPI | 
| 65 | < | #include "UseTheForce/mpiComponentPlan.h" | 
| 66 | < | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 67 | < | #endif | 
| 65 | > | #include <mpi.h> | 
| 66 | > | #endif | 
| 67 |  |  | 
| 68 | < | namespace oopse { | 
| 69 | < |  | 
| 70 | < | SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, | 
| 71 | < | ForceField* ff, Globals* simParams) : | 
| 72 | < | stamps_(stamps), forceField_(ff), simParams_(simParams), | 
| 73 | < | ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 68 | > | using namespace std; | 
| 69 | > | namespace OpenMD { | 
| 70 | > |  | 
| 71 | > | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 72 | > | forceField_(ff), simParams_(simParams), | 
| 73 | > | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 |  | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 76 | < | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0), | 
| 77 | < | nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0), | 
| 78 | < | sman_(NULL), fortranInitialized_(false) { | 
| 79 | < |  | 
| 81 | < |  | 
| 82 | < | std::vector<std::pair<MoleculeStamp*, int> >::iterator i; | 
| 83 | < | MoleculeStamp* molStamp; | 
| 84 | < | int nMolWithSameStamp; | 
| 85 | < | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 86 | < | int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 87 | < | CutoffGroupStamp* cgStamp; | 
| 88 | < | RigidBodyStamp* rbStamp; | 
| 89 | < | int nRigidAtoms = 0; | 
| 75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), | 
| 76 | > | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 77 | > | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), | 
| 79 | > | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 80 |  |  | 
| 81 | < | for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { | 
| 82 | < | molStamp = i->first; | 
| 83 | < | nMolWithSameStamp = i->second; | 
| 84 | < |  | 
| 85 | < | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 86 | < |  | 
| 87 | < | //calculate atoms in molecules | 
| 88 | < | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 89 | < |  | 
| 90 | < |  | 
| 91 | < | //calculate atoms in cutoff groups | 
| 92 | < | int nAtomsInGroups = 0; | 
| 93 | < | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 94 | < |  | 
| 95 | < | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 96 | < | cgStamp = molStamp->getCutoffGroup(j); | 
| 97 | < | nAtomsInGroups += cgStamp->getNMembers(); | 
| 98 | < | } | 
| 99 | < |  | 
| 100 | < | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 101 | < |  | 
| 102 | < | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 103 | < |  | 
| 104 | < | //calculate atoms in rigid bodies | 
| 105 | < | int nAtomsInRigidBodies = 0; | 
| 106 | < | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 107 | < |  | 
| 118 | < | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 119 | < | rbStamp = molStamp->getRigidBody(j); | 
| 120 | < | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 121 | < | } | 
| 122 | < |  | 
| 123 | < | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 124 | < | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 125 | < |  | 
| 81 | > | MoleculeStamp* molStamp; | 
| 82 | > | int nMolWithSameStamp; | 
| 83 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 84 | > | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 85 | > | CutoffGroupStamp* cgStamp; | 
| 86 | > | RigidBodyStamp* rbStamp; | 
| 87 | > | int nRigidAtoms = 0; | 
| 88 | > |  | 
| 89 | > | vector<Component*> components = simParams->getComponents(); | 
| 90 | > |  | 
| 91 | > | for (vector<Component*>::iterator i = components.begin(); | 
| 92 | > | i !=components.end(); ++i) { | 
| 93 | > | molStamp = (*i)->getMoleculeStamp(); | 
| 94 | > | nMolWithSameStamp = (*i)->getNMol(); | 
| 95 | > |  | 
| 96 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 97 | > |  | 
| 98 | > | //calculate atoms in molecules | 
| 99 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 100 | > |  | 
| 101 | > | //calculate atoms in cutoff groups | 
| 102 | > | int nAtomsInGroups = 0; | 
| 103 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 104 | > |  | 
| 105 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 106 | > | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 107 | > | nAtomsInGroups += cgStamp->getNMembers(); | 
| 108 |  | } | 
| 109 | < |  | 
| 110 | < | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 111 | < | //group therefore the total number of cutoff groups in the system is | 
| 112 | < | //equal to the total number of atoms minus number of atoms belong to | 
| 113 | < | //cutoff group defined in meta-data file plus the number of cutoff | 
| 114 | < | //groups defined in meta-data file | 
| 115 | < | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 116 | < |  | 
| 117 | < | //every free atom (atom does not belong to rigid bodies) is an | 
| 118 | < | //integrable object therefore the total number of integrable objects | 
| 119 | < | //in the system is equal to the total number of atoms minus number of | 
| 120 | < | //atoms belong to rigid body defined in meta-data file plus the number | 
| 121 | < | //of rigid bodies defined in meta-data file | 
| 122 | < | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 123 | < | + nGlobalRigidBodies_; | 
| 124 | < |  | 
| 125 | < | nGlobalMols_ = molStampIds_.size(); | 
| 144 | < |  | 
| 145 | < | #ifdef IS_MPI | 
| 146 | < | molToProcMap_.resize(nGlobalMols_); | 
| 147 | < | #endif | 
| 148 | < |  | 
| 109 | > |  | 
| 110 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 111 | > |  | 
| 112 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 113 | > |  | 
| 114 | > | //calculate atoms in rigid bodies | 
| 115 | > | int nAtomsInRigidBodies = 0; | 
| 116 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 117 | > |  | 
| 118 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 119 | > | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 120 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 121 | > | } | 
| 122 | > |  | 
| 123 | > | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 124 | > | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 125 | > |  | 
| 126 |  | } | 
| 127 | + |  | 
| 128 | + | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 129 | + | //group therefore the total number of cutoff groups in the system is | 
| 130 | + | //equal to the total number of atoms minus number of atoms belong to | 
| 131 | + | //cutoff group defined in meta-data file plus the number of cutoff | 
| 132 | + | //groups defined in meta-data file | 
| 133 |  |  | 
| 134 | + | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 135 | + |  | 
| 136 | + | //every free atom (atom does not belong to rigid bodies) is an | 
| 137 | + | //integrable object therefore the total number of integrable objects | 
| 138 | + | //in the system is equal to the total number of atoms minus number of | 
| 139 | + | //atoms belong to rigid body defined in meta-data file plus the number | 
| 140 | + | //of rigid bodies defined in meta-data file | 
| 141 | + | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 142 | + | + nGlobalRigidBodies_; | 
| 143 | + |  | 
| 144 | + | nGlobalMols_ = molStampIds_.size(); | 
| 145 | + | molToProcMap_.resize(nGlobalMols_); | 
| 146 | + | } | 
| 147 | + |  | 
| 148 |  | SimInfo::~SimInfo() { | 
| 149 | < | std::map<int, Molecule*>::iterator i; | 
| 149 | > | map<int, Molecule*>::iterator i; | 
| 150 |  | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 151 |  | delete i->second; | 
| 152 |  | } | 
| 153 |  | molecules_.clear(); | 
| 154 |  |  | 
| 158 | – | delete stamps_; | 
| 155 |  | delete sman_; | 
| 156 |  | delete simParams_; | 
| 157 |  | delete forceField_; | 
| 158 |  | } | 
| 159 |  |  | 
| 164 | – | int SimInfo::getNGlobalConstraints() { | 
| 165 | – | int nGlobalConstraints; | 
| 166 | – | #ifdef IS_MPI | 
| 167 | – | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 168 | – | MPI_COMM_WORLD); | 
| 169 | – | #else | 
| 170 | – | nGlobalConstraints =  nConstraints_; | 
| 171 | – | #endif | 
| 172 | – | return nGlobalConstraints; | 
| 173 | – | } | 
| 160 |  |  | 
| 161 |  | bool SimInfo::addMolecule(Molecule* mol) { | 
| 162 |  | MoleculeIterator i; | 
| 163 | < |  | 
| 163 | > |  | 
| 164 |  | i = molecules_.find(mol->getGlobalIndex()); | 
| 165 |  | if (i == molecules_.end() ) { | 
| 166 | < |  | 
| 167 | < | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 168 | < |  | 
| 166 | > |  | 
| 167 | > | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 168 | > |  | 
| 169 |  | nAtoms_ += mol->getNAtoms(); | 
| 170 |  | nBonds_ += mol->getNBonds(); | 
| 171 |  | nBends_ += mol->getNBends(); | 
| 172 |  | nTorsions_ += mol->getNTorsions(); | 
| 173 | + | nInversions_ += mol->getNInversions(); | 
| 174 |  | nRigidBodies_ += mol->getNRigidBodies(); | 
| 175 |  | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 176 |  | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 177 |  | nConstraints_ += mol->getNConstraintPairs(); | 
| 178 | < |  | 
| 179 | < | addExcludePairs(mol); | 
| 180 | < |  | 
| 178 | > |  | 
| 179 | > | addInteractionPairs(mol); | 
| 180 | > |  | 
| 181 |  | return true; | 
| 182 |  | } else { | 
| 183 |  | return false; | 
| 184 |  | } | 
| 185 |  | } | 
| 186 | < |  | 
| 186 | > |  | 
| 187 |  | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 188 |  | MoleculeIterator i; | 
| 189 |  | i = molecules_.find(mol->getGlobalIndex()); | 
| 196 |  | nBonds_ -= mol->getNBonds(); | 
| 197 |  | nBends_ -= mol->getNBends(); | 
| 198 |  | nTorsions_ -= mol->getNTorsions(); | 
| 199 | + | nInversions_ -= mol->getNInversions(); | 
| 200 |  | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 201 |  | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 202 |  | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 203 |  | nConstraints_ -= mol->getNConstraintPairs(); | 
| 204 |  |  | 
| 205 | < | removeExcludePairs(mol); | 
| 205 | > | removeInteractionPairs(mol); | 
| 206 |  | molecules_.erase(mol->getGlobalIndex()); | 
| 207 |  |  | 
| 208 |  | delete mol; | 
| 211 |  | } else { | 
| 212 |  | return false; | 
| 213 |  | } | 
| 226 | – |  | 
| 227 | – |  | 
| 214 |  | } | 
| 215 |  |  | 
| 216 |  |  | 
| 226 |  |  | 
| 227 |  |  | 
| 228 |  | void SimInfo::calcNdf() { | 
| 229 | < | int ndf_local; | 
| 229 | > | int ndf_local, nfq_local; | 
| 230 |  | MoleculeIterator i; | 
| 231 | < | std::vector<StuntDouble*>::iterator j; | 
| 231 | > | vector<StuntDouble*>::iterator j; | 
| 232 | > | vector<Atom*>::iterator k; | 
| 233 | > |  | 
| 234 |  | Molecule* mol; | 
| 235 | < | StuntDouble* integrableObject; | 
| 235 | > | StuntDouble* sd; | 
| 236 | > | Atom* atom; | 
| 237 |  |  | 
| 238 |  | ndf_local = 0; | 
| 239 | + | nfq_local = 0; | 
| 240 |  |  | 
| 241 |  | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 252 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 253 | – | integrableObject = mol->nextIntegrableObject(j)) { | 
| 242 |  |  | 
| 243 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 244 | + | sd = mol->nextIntegrableObject(j)) { | 
| 245 | + |  | 
| 246 |  | ndf_local += 3; | 
| 247 |  |  | 
| 248 | < | if (integrableObject->isDirectional()) { | 
| 249 | < | if (integrableObject->isLinear()) { | 
| 248 | > | if (sd->isDirectional()) { | 
| 249 | > | if (sd->isLinear()) { | 
| 250 |  | ndf_local += 2; | 
| 251 |  | } else { | 
| 252 |  | ndf_local += 3; | 
| 253 |  | } | 
| 254 |  | } | 
| 255 | < |  | 
| 256 | < | }//end for (integrableObject) | 
| 257 | < | }// end for (mol) | 
| 255 | > | } | 
| 256 | > |  | 
| 257 | > | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | 
| 258 | > | atom = mol->nextFluctuatingCharge(k)) { | 
| 259 | > | if (atom->isFluctuatingCharge()) { | 
| 260 | > | nfq_local++; | 
| 261 | > | } | 
| 262 | > | } | 
| 263 | > | } | 
| 264 |  |  | 
| 265 | + | ndfLocal_ = ndf_local; | 
| 266 | + |  | 
| 267 |  | // n_constraints is local, so subtract them on each processor | 
| 268 |  | ndf_local -= nConstraints_; | 
| 269 |  |  | 
| 270 |  | #ifdef IS_MPI | 
| 271 |  | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 272 | + | MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); | 
| 273 |  | #else | 
| 274 |  | ndf_ = ndf_local; | 
| 275 | + | nGlobalFluctuatingCharges_ = nfq_local; | 
| 276 |  | #endif | 
| 277 |  |  | 
| 278 |  | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 281 |  |  | 
| 282 |  | } | 
| 283 |  |  | 
| 284 | + | int SimInfo::getFdf() { | 
| 285 | + | #ifdef IS_MPI | 
| 286 | + | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 287 | + | #else | 
| 288 | + | fdf_ = fdf_local; | 
| 289 | + | #endif | 
| 290 | + | return fdf_; | 
| 291 | + | } | 
| 292 | + |  | 
| 293 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ | 
| 294 | + | int nLocalCutoffAtoms = 0; | 
| 295 | + | Molecule* mol; | 
| 296 | + | MoleculeIterator mi; | 
| 297 | + | CutoffGroup* cg; | 
| 298 | + | Molecule::CutoffGroupIterator ci; | 
| 299 | + |  | 
| 300 | + | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 301 | + |  | 
| 302 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 303 | + | cg = mol->nextCutoffGroup(ci)) { | 
| 304 | + | nLocalCutoffAtoms += cg->getNumAtom(); | 
| 305 | + |  | 
| 306 | + | } | 
| 307 | + | } | 
| 308 | + |  | 
| 309 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; | 
| 310 | + | } | 
| 311 | + |  | 
| 312 |  | void SimInfo::calcNdfRaw() { | 
| 313 |  | int ndfRaw_local; | 
| 314 |  |  | 
| 315 |  | MoleculeIterator i; | 
| 316 | < | std::vector<StuntDouble*>::iterator j; | 
| 316 | > | vector<StuntDouble*>::iterator j; | 
| 317 |  | Molecule* mol; | 
| 318 | < | StuntDouble* integrableObject; | 
| 318 | > | StuntDouble* sd; | 
| 319 |  |  | 
| 320 |  | // Raw degrees of freedom that we have to set | 
| 321 |  | ndfRaw_local = 0; | 
| 322 |  |  | 
| 323 |  | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 295 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 296 | – | integrableObject = mol->nextIntegrableObject(j)) { | 
| 324 |  |  | 
| 325 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 326 | + | sd = mol->nextIntegrableObject(j)) { | 
| 327 | + |  | 
| 328 |  | ndfRaw_local += 3; | 
| 329 |  |  | 
| 330 | < | if (integrableObject->isDirectional()) { | 
| 331 | < | if (integrableObject->isLinear()) { | 
| 330 | > | if (sd->isDirectional()) { | 
| 331 | > | if (sd->isLinear()) { | 
| 332 |  | ndfRaw_local += 2; | 
| 333 |  | } else { | 
| 334 |  | ndfRaw_local += 3; | 
| 361 |  |  | 
| 362 |  | } | 
| 363 |  |  | 
| 364 | < | void SimInfo::addExcludePairs(Molecule* mol) { | 
| 365 | < | std::vector<Bond*>::iterator bondIter; | 
| 366 | < | std::vector<Bend*>::iterator bendIter; | 
| 367 | < | std::vector<Torsion*>::iterator torsionIter; | 
| 364 | > | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 365 | > | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 366 | > | vector<Bond*>::iterator bondIter; | 
| 367 | > | vector<Bend*>::iterator bendIter; | 
| 368 | > | vector<Torsion*>::iterator torsionIter; | 
| 369 | > | vector<Inversion*>::iterator inversionIter; | 
| 370 |  | Bond* bond; | 
| 371 |  | Bend* bend; | 
| 372 |  | Torsion* torsion; | 
| 373 | + | Inversion* inversion; | 
| 374 |  | int a; | 
| 375 |  | int b; | 
| 376 |  | int c; | 
| 377 |  | int d; | 
| 378 | + |  | 
| 379 | + | // atomGroups can be used to add special interaction maps between | 
| 380 | + | // groups of atoms that are in two separate rigid bodies. | 
| 381 | + | // However, most site-site interactions between two rigid bodies | 
| 382 | + | // are probably not special, just the ones between the physically | 
| 383 | + | // bonded atoms.  Interactions *within* a single rigid body should | 
| 384 | + | // always be excluded.  These are done at the bottom of this | 
| 385 | + | // function. | 
| 386 | + |  | 
| 387 | + | map<int, set<int> > atomGroups; | 
| 388 | + | Molecule::RigidBodyIterator rbIter; | 
| 389 | + | RigidBody* rb; | 
| 390 | + | Molecule::IntegrableObjectIterator ii; | 
| 391 | + | StuntDouble* sd; | 
| 392 |  |  | 
| 393 | < | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 393 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 394 | > | sd = mol->nextIntegrableObject(ii)) { | 
| 395 | > |  | 
| 396 | > | if (sd->isRigidBody()) { | 
| 397 | > | rb = static_cast<RigidBody*>(sd); | 
| 398 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 399 | > | set<int> rigidAtoms; | 
| 400 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 401 | > | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 402 | > | } | 
| 403 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 404 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 405 | > | } | 
| 406 | > | } else { | 
| 407 | > | set<int> oneAtomSet; | 
| 408 | > | oneAtomSet.insert(sd->getGlobalIndex()); | 
| 409 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); | 
| 410 | > | } | 
| 411 | > | } | 
| 412 | > |  | 
| 413 | > | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 414 | > | bond = mol->nextBond(bondIter)) { | 
| 415 | > |  | 
| 416 |  | a = bond->getAtomA()->getGlobalIndex(); | 
| 417 | < | b = bond->getAtomB()->getGlobalIndex(); | 
| 418 | < | exclude_.addPair(a, b); | 
| 417 | > | b = bond->getAtomB()->getGlobalIndex(); | 
| 418 | > |  | 
| 419 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 420 | > | oneTwoInteractions_.addPair(a, b); | 
| 421 | > | } else { | 
| 422 | > | excludedInteractions_.addPair(a, b); | 
| 423 | > | } | 
| 424 |  | } | 
| 425 |  |  | 
| 426 | < | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 426 | > | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 427 | > | bend = mol->nextBend(bendIter)) { | 
| 428 | > |  | 
| 429 |  | a = bend->getAtomA()->getGlobalIndex(); | 
| 430 |  | b = bend->getAtomB()->getGlobalIndex(); | 
| 431 |  | c = bend->getAtomC()->getGlobalIndex(); | 
| 432 | + |  | 
| 433 | + | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 434 | + | oneTwoInteractions_.addPair(a, b); | 
| 435 | + | oneTwoInteractions_.addPair(b, c); | 
| 436 | + | } else { | 
| 437 | + | excludedInteractions_.addPair(a, b); | 
| 438 | + | excludedInteractions_.addPair(b, c); | 
| 439 | + | } | 
| 440 |  |  | 
| 441 | < | exclude_.addPair(a, b); | 
| 442 | < | exclude_.addPair(a, c); | 
| 443 | < | exclude_.addPair(b, c); | 
| 441 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 442 | > | oneThreeInteractions_.addPair(a, c); | 
| 443 | > | } else { | 
| 444 | > | excludedInteractions_.addPair(a, c); | 
| 445 | > | } | 
| 446 |  | } | 
| 447 |  |  | 
| 448 | < | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 448 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 449 | > | torsion = mol->nextTorsion(torsionIter)) { | 
| 450 | > |  | 
| 451 |  | a = torsion->getAtomA()->getGlobalIndex(); | 
| 452 |  | b = torsion->getAtomB()->getGlobalIndex(); | 
| 453 |  | c = torsion->getAtomC()->getGlobalIndex(); | 
| 454 | < | d = torsion->getAtomD()->getGlobalIndex(); | 
| 454 | > | d = torsion->getAtomD()->getGlobalIndex(); | 
| 455 |  |  | 
| 456 | < | exclude_.addPair(a, b); | 
| 457 | < | exclude_.addPair(a, c); | 
| 458 | < | exclude_.addPair(a, d); | 
| 459 | < | exclude_.addPair(b, c); | 
| 460 | < | exclude_.addPair(b, d); | 
| 461 | < | exclude_.addPair(c, d); | 
| 456 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 457 | > | oneTwoInteractions_.addPair(a, b); | 
| 458 | > | oneTwoInteractions_.addPair(b, c); | 
| 459 | > | oneTwoInteractions_.addPair(c, d); | 
| 460 | > | } else { | 
| 461 | > | excludedInteractions_.addPair(a, b); | 
| 462 | > | excludedInteractions_.addPair(b, c); | 
| 463 | > | excludedInteractions_.addPair(c, d); | 
| 464 | > | } | 
| 465 | > |  | 
| 466 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 467 | > | oneThreeInteractions_.addPair(a, c); | 
| 468 | > | oneThreeInteractions_.addPair(b, d); | 
| 469 | > | } else { | 
| 470 | > | excludedInteractions_.addPair(a, c); | 
| 471 | > | excludedInteractions_.addPair(b, d); | 
| 472 | > | } | 
| 473 | > |  | 
| 474 | > | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 475 | > | oneFourInteractions_.addPair(a, d); | 
| 476 | > | } else { | 
| 477 | > | excludedInteractions_.addPair(a, d); | 
| 478 | > | } | 
| 479 |  | } | 
| 480 |  |  | 
| 481 | < | Molecule::RigidBodyIterator rbIter; | 
| 482 | < | RigidBody* rb; | 
| 483 | < | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 484 | < | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 485 | < | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 486 | < | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 481 | > | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 482 | > | inversion = mol->nextInversion(inversionIter)) { | 
| 483 | > |  | 
| 484 | > | a = inversion->getAtomA()->getGlobalIndex(); | 
| 485 | > | b = inversion->getAtomB()->getGlobalIndex(); | 
| 486 | > | c = inversion->getAtomC()->getGlobalIndex(); | 
| 487 | > | d = inversion->getAtomD()->getGlobalIndex(); | 
| 488 | > |  | 
| 489 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 490 | > | oneTwoInteractions_.addPair(a, b); | 
| 491 | > | oneTwoInteractions_.addPair(a, c); | 
| 492 | > | oneTwoInteractions_.addPair(a, d); | 
| 493 | > | } else { | 
| 494 | > | excludedInteractions_.addPair(a, b); | 
| 495 | > | excludedInteractions_.addPair(a, c); | 
| 496 | > | excludedInteractions_.addPair(a, d); | 
| 497 | > | } | 
| 498 | > |  | 
| 499 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 500 | > | oneThreeInteractions_.addPair(b, c); | 
| 501 | > | oneThreeInteractions_.addPair(b, d); | 
| 502 | > | oneThreeInteractions_.addPair(c, d); | 
| 503 | > | } else { | 
| 504 | > | excludedInteractions_.addPair(b, c); | 
| 505 | > | excludedInteractions_.addPair(b, d); | 
| 506 | > | excludedInteractions_.addPair(c, d); | 
| 507 | > | } | 
| 508 | > | } | 
| 509 | > |  | 
| 510 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 511 | > | rb = mol->nextRigidBody(rbIter)) { | 
| 512 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 513 | > | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 514 | > | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 515 |  | a = atoms[i]->getGlobalIndex(); | 
| 516 |  | b = atoms[j]->getGlobalIndex(); | 
| 517 | < | exclude_.addPair(a, b); | 
| 517 | > | excludedInteractions_.addPair(a, b); | 
| 518 |  | } | 
| 519 |  | } | 
| 520 |  | } | 
| 521 |  |  | 
| 522 |  | } | 
| 523 |  |  | 
| 524 | < | void SimInfo::removeExcludePairs(Molecule* mol) { | 
| 525 | < | std::vector<Bond*>::iterator bondIter; | 
| 526 | < | std::vector<Bend*>::iterator bendIter; | 
| 527 | < | std::vector<Torsion*>::iterator torsionIter; | 
| 524 | > | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 525 | > | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 526 | > | vector<Bond*>::iterator bondIter; | 
| 527 | > | vector<Bend*>::iterator bendIter; | 
| 528 | > | vector<Torsion*>::iterator torsionIter; | 
| 529 | > | vector<Inversion*>::iterator inversionIter; | 
| 530 |  | Bond* bond; | 
| 531 |  | Bend* bend; | 
| 532 |  | Torsion* torsion; | 
| 533 | + | Inversion* inversion; | 
| 534 |  | int a; | 
| 535 |  | int b; | 
| 536 |  | int c; | 
| 537 |  | int d; | 
| 538 | + |  | 
| 539 | + | map<int, set<int> > atomGroups; | 
| 540 | + | Molecule::RigidBodyIterator rbIter; | 
| 541 | + | RigidBody* rb; | 
| 542 | + | Molecule::IntegrableObjectIterator ii; | 
| 543 | + | StuntDouble* sd; | 
| 544 |  |  | 
| 545 | < | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 545 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 546 | > | sd = mol->nextIntegrableObject(ii)) { | 
| 547 | > |  | 
| 548 | > | if (sd->isRigidBody()) { | 
| 549 | > | rb = static_cast<RigidBody*>(sd); | 
| 550 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 551 | > | set<int> rigidAtoms; | 
| 552 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 553 | > | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 554 | > | } | 
| 555 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 556 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 557 | > | } | 
| 558 | > | } else { | 
| 559 | > | set<int> oneAtomSet; | 
| 560 | > | oneAtomSet.insert(sd->getGlobalIndex()); | 
| 561 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); | 
| 562 | > | } | 
| 563 | > | } | 
| 564 | > |  | 
| 565 | > | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 566 | > | bond = mol->nextBond(bondIter)) { | 
| 567 | > |  | 
| 568 |  | a = bond->getAtomA()->getGlobalIndex(); | 
| 569 | < | b = bond->getAtomB()->getGlobalIndex(); | 
| 570 | < | exclude_.removePair(a, b); | 
| 569 | > | b = bond->getAtomB()->getGlobalIndex(); | 
| 570 | > |  | 
| 571 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 572 | > | oneTwoInteractions_.removePair(a, b); | 
| 573 | > | } else { | 
| 574 | > | excludedInteractions_.removePair(a, b); | 
| 575 | > | } | 
| 576 |  | } | 
| 577 |  |  | 
| 578 | < | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 578 | > | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 579 | > | bend = mol->nextBend(bendIter)) { | 
| 580 | > |  | 
| 581 |  | a = bend->getAtomA()->getGlobalIndex(); | 
| 582 |  | b = bend->getAtomB()->getGlobalIndex(); | 
| 583 |  | c = bend->getAtomC()->getGlobalIndex(); | 
| 584 | + |  | 
| 585 | + | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 586 | + | oneTwoInteractions_.removePair(a, b); | 
| 587 | + | oneTwoInteractions_.removePair(b, c); | 
| 588 | + | } else { | 
| 589 | + | excludedInteractions_.removePair(a, b); | 
| 590 | + | excludedInteractions_.removePair(b, c); | 
| 591 | + | } | 
| 592 |  |  | 
| 593 | < | exclude_.removePair(a, b); | 
| 594 | < | exclude_.removePair(a, c); | 
| 595 | < | exclude_.removePair(b, c); | 
| 593 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 594 | > | oneThreeInteractions_.removePair(a, c); | 
| 595 | > | } else { | 
| 596 | > | excludedInteractions_.removePair(a, c); | 
| 597 | > | } | 
| 598 |  | } | 
| 599 |  |  | 
| 600 | < | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 600 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 601 | > | torsion = mol->nextTorsion(torsionIter)) { | 
| 602 | > |  | 
| 603 |  | a = torsion->getAtomA()->getGlobalIndex(); | 
| 604 |  | b = torsion->getAtomB()->getGlobalIndex(); | 
| 605 |  | c = torsion->getAtomC()->getGlobalIndex(); | 
| 606 | < | d = torsion->getAtomD()->getGlobalIndex(); | 
| 606 | > | d = torsion->getAtomD()->getGlobalIndex(); | 
| 607 | > |  | 
| 608 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 609 | > | oneTwoInteractions_.removePair(a, b); | 
| 610 | > | oneTwoInteractions_.removePair(b, c); | 
| 611 | > | oneTwoInteractions_.removePair(c, d); | 
| 612 | > | } else { | 
| 613 | > | excludedInteractions_.removePair(a, b); | 
| 614 | > | excludedInteractions_.removePair(b, c); | 
| 615 | > | excludedInteractions_.removePair(c, d); | 
| 616 | > | } | 
| 617 |  |  | 
| 618 | < | exclude_.removePair(a, b); | 
| 619 | < | exclude_.removePair(a, c); | 
| 620 | < | exclude_.removePair(a, d); | 
| 621 | < | exclude_.removePair(b, c); | 
| 622 | < | exclude_.removePair(b, d); | 
| 623 | < | exclude_.removePair(c, d); | 
| 618 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 619 | > | oneThreeInteractions_.removePair(a, c); | 
| 620 | > | oneThreeInteractions_.removePair(b, d); | 
| 621 | > | } else { | 
| 622 | > | excludedInteractions_.removePair(a, c); | 
| 623 | > | excludedInteractions_.removePair(b, d); | 
| 624 | > | } | 
| 625 | > |  | 
| 626 | > | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 627 | > | oneFourInteractions_.removePair(a, d); | 
| 628 | > | } else { | 
| 629 | > | excludedInteractions_.removePair(a, d); | 
| 630 | > | } | 
| 631 |  | } | 
| 632 |  |  | 
| 633 | < | Molecule::RigidBodyIterator rbIter; | 
| 634 | < | RigidBody* rb; | 
| 635 | < | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 636 | < | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 637 | < | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 638 | < | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 633 | > | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 634 | > | inversion = mol->nextInversion(inversionIter)) { | 
| 635 | > |  | 
| 636 | > | a = inversion->getAtomA()->getGlobalIndex(); | 
| 637 | > | b = inversion->getAtomB()->getGlobalIndex(); | 
| 638 | > | c = inversion->getAtomC()->getGlobalIndex(); | 
| 639 | > | d = inversion->getAtomD()->getGlobalIndex(); | 
| 640 | > |  | 
| 641 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 642 | > | oneTwoInteractions_.removePair(a, b); | 
| 643 | > | oneTwoInteractions_.removePair(a, c); | 
| 644 | > | oneTwoInteractions_.removePair(a, d); | 
| 645 | > | } else { | 
| 646 | > | excludedInteractions_.removePair(a, b); | 
| 647 | > | excludedInteractions_.removePair(a, c); | 
| 648 | > | excludedInteractions_.removePair(a, d); | 
| 649 | > | } | 
| 650 | > |  | 
| 651 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 652 | > | oneThreeInteractions_.removePair(b, c); | 
| 653 | > | oneThreeInteractions_.removePair(b, d); | 
| 654 | > | oneThreeInteractions_.removePair(c, d); | 
| 655 | > | } else { | 
| 656 | > | excludedInteractions_.removePair(b, c); | 
| 657 | > | excludedInteractions_.removePair(b, d); | 
| 658 | > | excludedInteractions_.removePair(c, d); | 
| 659 | > | } | 
| 660 | > | } | 
| 661 | > |  | 
| 662 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 663 | > | rb = mol->nextRigidBody(rbIter)) { | 
| 664 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 665 | > | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 666 | > | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 667 |  | a = atoms[i]->getGlobalIndex(); | 
| 668 |  | b = atoms[j]->getGlobalIndex(); | 
| 669 | < | exclude_.removePair(a, b); | 
| 669 | > | excludedInteractions_.removePair(a, b); | 
| 670 |  | } | 
| 671 |  | } | 
| 672 |  | } | 
| 673 | < |  | 
| 673 | > |  | 
| 674 |  | } | 
| 675 | < |  | 
| 676 | < |  | 
| 675 | > |  | 
| 676 | > |  | 
| 677 |  | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 678 |  | int curStampId; | 
| 679 | < |  | 
| 679 | > |  | 
| 680 |  | //index from 0 | 
| 681 |  | curStampId = moleculeStamps_.size(); | 
| 682 |  |  | 
| 684 |  | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 685 |  | } | 
| 686 |  |  | 
| 459 | – | void SimInfo::update() { | 
| 687 |  |  | 
| 688 | < | setupSimType(); | 
| 689 | < |  | 
| 690 | < | #ifdef IS_MPI | 
| 691 | < | setupFortranParallel(); | 
| 692 | < | #endif | 
| 693 | < |  | 
| 694 | < | setupFortranSim(); | 
| 695 | < |  | 
| 696 | < | //setup fortran force field | 
| 470 | < | /** @deprecate */ | 
| 471 | < | int isError = 0; | 
| 472 | < |  | 
| 473 | < | setupElectrostaticSummationMethod( isError ); | 
| 474 | < |  | 
| 475 | < | if(isError){ | 
| 476 | < | sprintf( painCave.errMsg, | 
| 477 | < | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 478 | < | painCave.isFatal = 1; | 
| 479 | < | simError(); | 
| 480 | < | } | 
| 481 | < |  | 
| 482 | < |  | 
| 483 | < | setupCutoff(); | 
| 484 | < |  | 
| 688 | > | /** | 
| 689 | > | * update | 
| 690 | > | * | 
| 691 | > | *  Performs the global checks and variable settings after the | 
| 692 | > | *  objects have been created. | 
| 693 | > | * | 
| 694 | > | */ | 
| 695 | > | void SimInfo::update() { | 
| 696 | > | setupSimVariables(); | 
| 697 |  | calcNdf(); | 
| 698 |  | calcNdfRaw(); | 
| 699 |  | calcNdfTrans(); | 
| 488 | – |  | 
| 489 | – | fortranInitialized_ = true; | 
| 700 |  | } | 
| 701 | < |  | 
| 702 | < | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 701 | > |  | 
| 702 | > | /** | 
| 703 | > | * getSimulatedAtomTypes | 
| 704 | > | * | 
| 705 | > | * Returns an STL set of AtomType* that are actually present in this | 
| 706 | > | * simulation.  Must query all processors to assemble this information. | 
| 707 | > | * | 
| 708 | > | */ | 
| 709 | > | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 710 |  | SimInfo::MoleculeIterator mi; | 
| 711 |  | Molecule* mol; | 
| 712 |  | Molecule::AtomIterator ai; | 
| 713 |  | Atom* atom; | 
| 714 | < | std::set<AtomType*> atomTypes; | 
| 715 | < |  | 
| 714 | > | set<AtomType*> atomTypes; | 
| 715 | > |  | 
| 716 |  | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 717 | < |  | 
| 718 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 717 | > | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 718 | > | atom = mol->nextAtom(ai)) { | 
| 719 |  | atomTypes.insert(atom->getAtomType()); | 
| 720 | < | } | 
| 721 | < |  | 
| 722 | < | } | 
| 720 | > | } | 
| 721 | > | } | 
| 722 | > |  | 
| 723 | > | #ifdef IS_MPI | 
| 724 |  |  | 
| 725 | < | return atomTypes; | 
| 726 | < | } | 
| 509 | < |  | 
| 510 | < | void SimInfo::setupSimType() { | 
| 511 | < | std::set<AtomType*>::iterator i; | 
| 512 | < | std::set<AtomType*> atomTypes; | 
| 513 | < | atomTypes = getUniqueAtomTypes(); | 
| 725 | > | // loop over the found atom types on this processor, and add their | 
| 726 | > | // numerical idents to a vector: | 
| 727 |  |  | 
| 728 | < | int useLennardJones = 0; | 
| 729 | < | int useElectrostatic = 0; | 
| 730 | < | int useEAM = 0; | 
| 731 | < | int useCharge = 0; | 
| 519 | < | int useDirectional = 0; | 
| 520 | < | int useDipole = 0; | 
| 521 | < | int useGayBerne = 0; | 
| 522 | < | int useSticky = 0; | 
| 523 | < | int useStickyPower = 0; | 
| 524 | < | int useShape = 0; | 
| 525 | < | int useFLARB = 0; //it is not in AtomType yet | 
| 526 | < | int useDirectionalAtom = 0; | 
| 527 | < | int useElectrostatics = 0; | 
| 528 | < | //usePBC and useRF are from simParams | 
| 529 | < | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 530 | < | int useRF; | 
| 531 | < | int useDW; | 
| 532 | < | std::string myMethod; | 
| 728 | > | vector<int> foundTypes; | 
| 729 | > | set<AtomType*>::iterator i; | 
| 730 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | 
| 731 | > | foundTypes.push_back( (*i)->getIdent() ); | 
| 732 |  |  | 
| 733 | < | // set the useRF logical | 
| 734 | < | useRF = 0; | 
| 536 | < | useDW = 0; | 
| 733 | > | // count_local holds the number of found types on this processor | 
| 734 | > | int count_local = foundTypes.size(); | 
| 735 |  |  | 
| 736 | + | int nproc = MPI::COMM_WORLD.Get_size(); | 
| 737 |  |  | 
| 738 | < | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 739 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 740 | < | toUpper(myMethod); | 
| 741 | < | if (myMethod == "REACTION_FIELD") { | 
| 543 | < | useRF=1; | 
| 544 | < | } else { | 
| 545 | < | if (myMethod == "DAMPED_WOLF") { | 
| 546 | < | useDW = 1; | 
| 547 | < | } | 
| 548 | < | } | 
| 549 | < | } | 
| 738 | > | // we need arrays to hold the counts and displacement vectors for | 
| 739 | > | // all processors | 
| 740 | > | vector<int> counts(nproc, 0); | 
| 741 | > | vector<int> disps(nproc, 0); | 
| 742 |  |  | 
| 743 | < | //loop over all of the atom types | 
| 744 | < | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 745 | < | useLennardJones |= (*i)->isLennardJones(); | 
| 746 | < | useElectrostatic |= (*i)->isElectrostatic(); | 
| 747 | < | useEAM |= (*i)->isEAM(); | 
| 748 | < | useCharge |= (*i)->isCharge(); | 
| 749 | < | useDirectional |= (*i)->isDirectional(); | 
| 750 | < | useDipole |= (*i)->isDipole(); | 
| 751 | < | useGayBerne |= (*i)->isGayBerne(); | 
| 752 | < | useSticky |= (*i)->isSticky(); | 
| 561 | < | useStickyPower |= (*i)->isStickyPower(); | 
| 562 | < | useShape |= (*i)->isShape(); | 
| 743 | > | // fill the counts array | 
| 744 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 745 | > | 1, MPI::INT); | 
| 746 | > |  | 
| 747 | > | // use the processor counts to compute the displacement array | 
| 748 | > | disps[0] = 0; | 
| 749 | > | int totalCount = counts[0]; | 
| 750 | > | for (int iproc = 1; iproc < nproc; iproc++) { | 
| 751 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 752 | > | totalCount += counts[iproc]; | 
| 753 |  | } | 
| 754 |  |  | 
| 755 | < | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 756 | < | useDirectionalAtom = 1; | 
| 757 | < | } | 
| 755 | > | // we need a (possibly redundant) set of all found types: | 
| 756 | > | vector<int> ftGlobal(totalCount); | 
| 757 | > |  | 
| 758 | > | // now spray out the foundTypes to all the other processors: | 
| 759 | > | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | 
| 760 | > | &ftGlobal[0], &counts[0], &disps[0], | 
| 761 | > | MPI::INT); | 
| 762 |  |  | 
| 763 | < | if (useCharge || useDipole) { | 
| 570 | < | useElectrostatics = 1; | 
| 571 | < | } | 
| 763 | > | vector<int>::iterator j; | 
| 764 |  |  | 
| 765 | < | #ifdef IS_MPI | 
| 766 | < | int temp; | 
| 765 | > | // foundIdents is a stl set, so inserting an already found ident | 
| 766 | > | // will have no effect. | 
| 767 | > | set<int> foundIdents; | 
| 768 |  |  | 
| 769 | < | temp = usePBC; | 
| 770 | < | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 769 | > | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 770 | > | foundIdents.insert((*j)); | 
| 771 | > |  | 
| 772 | > | // now iterate over the foundIdents and get the actual atom types | 
| 773 | > | // that correspond to these: | 
| 774 | > | set<int>::iterator it; | 
| 775 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 776 | > | atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 777 | > |  | 
| 778 | > | #endif | 
| 779 |  |  | 
| 780 | < | temp = useDirectionalAtom; | 
| 781 | < | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 780 | > | return atomTypes; | 
| 781 | > | } | 
| 782 |  |  | 
| 783 | < | temp = useLennardJones; | 
| 784 | < | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 783 | > | void SimInfo::setupSimVariables() { | 
| 784 | > | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 785 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole | 
| 786 | > | // parameter is true | 
| 787 | > | calcBoxDipole_ = false; | 
| 788 | > | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 789 | > | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 790 | > | calcBoxDipole_ = true; | 
| 791 | > | } | 
| 792 | > |  | 
| 793 | > | set<AtomType*>::iterator i; | 
| 794 | > | set<AtomType*> atomTypes; | 
| 795 | > | atomTypes = getSimulatedAtomTypes(); | 
| 796 | > | bool usesElectrostatic = false; | 
| 797 | > | bool usesMetallic = false; | 
| 798 | > | bool usesDirectional = false; | 
| 799 | > | bool usesFluctuatingCharges =  false; | 
| 800 | > | //loop over all of the atom types | 
| 801 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 802 | > | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 803 | > | usesMetallic |= (*i)->isMetal(); | 
| 804 | > | usesDirectional |= (*i)->isDirectional(); | 
| 805 | > | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | 
| 806 | > | } | 
| 807 |  |  | 
| 808 | < | temp = useElectrostatics; | 
| 809 | < | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 808 | > | #ifdef IS_MPI | 
| 809 | > | bool temp; | 
| 810 | > | temp = usesDirectional; | 
| 811 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, | 
| 812 | > | MPI::LOR); | 
| 813 | > |  | 
| 814 | > | temp = usesMetallic; | 
| 815 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, | 
| 816 | > | MPI::LOR); | 
| 817 | > |  | 
| 818 | > | temp = usesElectrostatic; | 
| 819 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, | 
| 820 | > | MPI::LOR); | 
| 821 |  |  | 
| 822 | < | temp = useCharge; | 
| 823 | < | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 822 | > | temp = usesFluctuatingCharges; | 
| 823 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, | 
| 824 | > | MPI::LOR); | 
| 825 | > | #else | 
| 826 |  |  | 
| 827 | < | temp = useDipole; | 
| 828 | < | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 827 | > | usesDirectionalAtoms_ = usesDirectional; | 
| 828 | > | usesMetallicAtoms_ = usesMetallic; | 
| 829 | > | usesElectrostaticAtoms_ = usesElectrostatic; | 
| 830 | > | usesFluctuatingCharges_ = usesFluctuatingCharges; | 
| 831 |  |  | 
| 832 | < | temp = useSticky; | 
| 595 | < | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 596 | < |  | 
| 597 | < | temp = useStickyPower; | 
| 598 | < | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 832 | > | #endif | 
| 833 |  |  | 
| 834 | < | temp = useGayBerne; | 
| 835 | < | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 834 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; | 
| 835 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 836 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 837 | > | } | 
| 838 |  |  | 
| 603 | – | temp = useEAM; | 
| 604 | – | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 839 |  |  | 
| 840 | < | temp = useShape; | 
| 841 | < | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 840 | > | vector<int> SimInfo::getGlobalAtomIndices() { | 
| 841 | > | SimInfo::MoleculeIterator mi; | 
| 842 | > | Molecule* mol; | 
| 843 | > | Molecule::AtomIterator ai; | 
| 844 | > | Atom* atom; | 
| 845 |  |  | 
| 846 | < | temp = useFLARB; | 
| 847 | < | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 846 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); | 
| 847 | > |  | 
| 848 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 849 | > |  | 
| 850 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 851 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); | 
| 852 | > | } | 
| 853 | > | } | 
| 854 | > | return GlobalAtomIndices; | 
| 855 | > | } | 
| 856 |  |  | 
| 612 | – | temp = useRF; | 
| 613 | – | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 857 |  |  | 
| 858 | < | temp = useDW; | 
| 859 | < | MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 858 | > | vector<int> SimInfo::getGlobalGroupIndices() { | 
| 859 | > | SimInfo::MoleculeIterator mi; | 
| 860 | > | Molecule* mol; | 
| 861 | > | Molecule::CutoffGroupIterator ci; | 
| 862 | > | CutoffGroup* cg; | 
| 863 |  |  | 
| 864 | < | #endif | 
| 865 | < |  | 
| 866 | < | fInfo_.SIM_uses_PBC = usePBC; | 
| 621 | < | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 622 | < | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 623 | < | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 624 | < | fInfo_.SIM_uses_Charges = useCharge; | 
| 625 | < | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 626 | < | fInfo_.SIM_uses_Sticky = useSticky; | 
| 627 | < | fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 628 | < | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 629 | < | fInfo_.SIM_uses_EAM = useEAM; | 
| 630 | < | fInfo_.SIM_uses_Shapes = useShape; | 
| 631 | < | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 632 | < | fInfo_.SIM_uses_RF = useRF; | 
| 633 | < | fInfo_.SIM_uses_DampedWolf = useDW; | 
| 634 | < |  | 
| 635 | < | if( myMethod == "REACTION_FIELD") { | 
| 864 | > | vector<int> GlobalGroupIndices; | 
| 865 | > |  | 
| 866 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 867 |  |  | 
| 868 | < | if (simParams_->haveDielectric()) { | 
| 869 | < | fInfo_.dielect = simParams_->getDielectric(); | 
| 870 | < | } else { | 
| 871 | < | sprintf(painCave.errMsg, | 
| 872 | < | "SimSetup Error: No Dielectric constant was set.\n" | 
| 873 | < | "\tYou are trying to use Reaction Field without" | 
| 643 | < | "\tsetting a dielectric constant!\n"); | 
| 644 | < | painCave.isFatal = 1; | 
| 645 | < | simError(); | 
| 646 | < | } | 
| 868 | > | //local index of cutoff group is trivial, it only depends on the | 
| 869 | > | //order of travesing | 
| 870 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 871 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 872 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); | 
| 873 | > | } | 
| 874 |  | } | 
| 875 | < |  | 
| 875 | > | return GlobalGroupIndices; | 
| 876 |  | } | 
| 877 |  |  | 
| 651 | – | void SimInfo::setupFortranSim() { | 
| 652 | – | int isError; | 
| 653 | – | int nExclude; | 
| 654 | – | std::vector<int> fortranGlobalGroupMembership; | 
| 655 | – |  | 
| 656 | – | nExclude = exclude_.getSize(); | 
| 657 | – | isError = 0; | 
| 878 |  |  | 
| 879 | < | //globalGroupMembership_ is filled by SimCreator | 
| 660 | < | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 661 | < | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 662 | < | } | 
| 879 | > | void SimInfo::prepareTopology() { | 
| 880 |  |  | 
| 881 |  | //calculate mass ratio of cutoff group | 
| 665 | – | std::vector<double> mfact; | 
| 882 |  | SimInfo::MoleculeIterator mi; | 
| 883 |  | Molecule* mol; | 
| 884 |  | Molecule::CutoffGroupIterator ci; | 
| 885 |  | CutoffGroup* cg; | 
| 886 |  | Molecule::AtomIterator ai; | 
| 887 |  | Atom* atom; | 
| 888 | < | double totalMass; | 
| 888 | > | RealType totalMass; | 
| 889 |  |  | 
| 890 | < | //to avoid memory reallocation, reserve enough space for mfact | 
| 891 | < | mfact.reserve(getNCutoffGroups()); | 
| 890 | > | /** | 
| 891 | > | * The mass factor is the relative mass of an atom to the total | 
| 892 | > | * mass of the cutoff group it belongs to.  By default, all atoms | 
| 893 | > | * are their own cutoff groups, and therefore have mass factors of | 
| 894 | > | * 1.  We need some special handling for massless atoms, which | 
| 895 | > | * will be treated as carrying the entire mass of the cutoff | 
| 896 | > | * group. | 
| 897 | > | */ | 
| 898 | > | massFactors_.clear(); | 
| 899 | > | massFactors_.resize(getNAtoms(), 1.0); | 
| 900 |  |  | 
| 901 |  | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 902 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 902 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 903 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 904 |  |  | 
| 905 |  | totalMass = cg->getMass(); | 
| 906 |  | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 907 |  | // Check for massless groups - set mfact to 1 if true | 
| 908 | < | if (totalMass != 0) | 
| 909 | < | mfact.push_back(atom->getMass()/totalMass); | 
| 908 | > | if (totalMass != 0) | 
| 909 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; | 
| 910 |  | else | 
| 911 | < | mfact.push_back( 1.0 ); | 
| 911 | > | massFactors_[atom->getLocalIndex()] = 1.0; | 
| 912 |  | } | 
| 688 | – |  | 
| 913 |  | } | 
| 914 |  | } | 
| 915 |  |  | 
| 916 | < | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 693 | < | std::vector<int> identArray; | 
| 916 | > | // Build the identArray_ | 
| 917 |  |  | 
| 918 | < | //to avoid memory reallocation, reserve enough space identArray | 
| 919 | < | identArray.reserve(getNAtoms()); | 
| 697 | < |  | 
| 918 | > | identArray_.clear(); | 
| 919 | > | identArray_.reserve(getNAtoms()); | 
| 920 |  | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 921 |  | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 922 | < | identArray.push_back(atom->getIdent()); | 
| 922 | > | identArray_.push_back(atom->getIdent()); | 
| 923 |  | } | 
| 924 |  | } | 
| 703 | – |  | 
| 704 | – | //fill molMembershipArray | 
| 705 | – | //molMembershipArray is filled by SimCreator | 
| 706 | – | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 707 | – | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 708 | – | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 709 | – | } | 
| 925 |  |  | 
| 926 | < | //setup fortran simulation | 
| 712 | < | int nGlobalExcludes = 0; | 
| 713 | < | int* globalExcludes = NULL; | 
| 714 | < | int* excludeList = exclude_.getExcludeList(); | 
| 715 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , | 
| 716 | < | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], | 
| 717 | < | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); | 
| 926 | > | //scan topology | 
| 927 |  |  | 
| 928 | < | if( isError ){ | 
| 929 | < |  | 
| 930 | < | sprintf( painCave.errMsg, | 
| 931 | < | "There was an error setting the simulation information in fortran.\n" ); | 
| 723 | < | painCave.isFatal = 1; | 
| 724 | < | painCave.severity = OOPSE_ERROR; | 
| 725 | < | simError(); | 
| 726 | < | } | 
| 727 | < |  | 
| 728 | < | #ifdef IS_MPI | 
| 729 | < | sprintf( checkPointMsg, | 
| 730 | < | "succesfully sent the simulation information to fortran.\n"); | 
| 731 | < | MPIcheckPoint(); | 
| 732 | < | #endif // is_mpi | 
| 733 | < | } | 
| 734 | < |  | 
| 735 | < |  | 
| 736 | < | #ifdef IS_MPI | 
| 737 | < | void SimInfo::setupFortranParallel() { | 
| 738 | < |  | 
| 739 | < | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 740 | < | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 741 | < | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 742 | < | SimInfo::MoleculeIterator mi; | 
| 743 | < | Molecule::AtomIterator ai; | 
| 744 | < | Molecule::CutoffGroupIterator ci; | 
| 745 | < | Molecule* mol; | 
| 746 | < | Atom* atom; | 
| 747 | < | CutoffGroup* cg; | 
| 748 | < | mpiSimData parallelData; | 
| 749 | < | int isError; | 
| 750 | < |  | 
| 751 | < | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 752 | < |  | 
| 753 | < | //local index(index in DataStorge) of atom is important | 
| 754 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 755 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 756 | < | } | 
| 757 | < |  | 
| 758 | < | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 759 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 760 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 761 | < | } | 
| 762 | < |  | 
| 763 | < | } | 
| 764 | < |  | 
| 765 | < | //fill up mpiSimData struct | 
| 766 | < | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 767 | < | parallelData.nMolLocal = getNMolecules(); | 
| 768 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 769 | < | parallelData.nAtomsLocal = getNAtoms(); | 
| 770 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 771 | < | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 772 | < | parallelData.myNode = worldRank; | 
| 773 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 774 | < |  | 
| 775 | < | //pass mpiSimData struct and index arrays to fortran | 
| 776 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 777 | < | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 778 | < | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 779 | < |  | 
| 780 | < | if (isError) { | 
| 781 | < | sprintf(painCave.errMsg, | 
| 782 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 783 | < | painCave.isFatal = 1; | 
| 784 | < | simError(); | 
| 785 | < | } | 
| 786 | < |  | 
| 787 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 788 | < | MPIcheckPoint(); | 
| 789 | < |  | 
| 790 | < |  | 
| 791 | < | } | 
| 792 | < |  | 
| 793 | < | #endif | 
| 794 | < |  | 
| 795 | < | double SimInfo::calcMaxCutoffRadius() { | 
| 796 | < |  | 
| 797 | < |  | 
| 798 | < | std::set<AtomType*> atomTypes; | 
| 799 | < | std::set<AtomType*>::iterator i; | 
| 800 | < | std::vector<double> cutoffRadius; | 
| 801 | < |  | 
| 802 | < | //get the unique atom types | 
| 803 | < | atomTypes = getUniqueAtomTypes(); | 
| 804 | < |  | 
| 805 | < | //query the max cutoff radius among these atom types | 
| 806 | < | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 807 | < | cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); | 
| 808 | < | } | 
| 809 | < |  | 
| 810 | < | double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); | 
| 811 | < | #ifdef IS_MPI | 
| 812 | < | //pick the max cutoff radius among the processors | 
| 813 | < | #endif | 
| 814 | < |  | 
| 815 | < | return maxCutoffRadius; | 
| 816 | < | } | 
| 817 | < |  | 
| 818 | < | void SimInfo::getCutoff(double& rcut, double& rsw) { | 
| 819 | < |  | 
| 820 | < | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 821 | < |  | 
| 822 | < | if (!simParams_->haveCutoffRadius()){ | 
| 823 | < | sprintf(painCave.errMsg, | 
| 824 | < | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 825 | < | "\tOOPSE will use a default value of 15.0 angstroms" | 
| 826 | < | "\tfor the cutoffRadius.\n"); | 
| 827 | < | painCave.isFatal = 0; | 
| 828 | < | simError(); | 
| 829 | < | rcut = 15.0; | 
| 830 | < | } else{ | 
| 831 | < | rcut = simParams_->getCutoffRadius(); | 
| 832 | < | } | 
| 833 | < |  | 
| 834 | < | if (!simParams_->haveSwitchingRadius()){ | 
| 835 | < | sprintf(painCave.errMsg, | 
| 836 | < | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 837 | < | "\tOOPSE will use a default value of\n" | 
| 838 | < | "\t0.85 * cutoffRadius for the switchingRadius\n"); | 
| 839 | < | painCave.isFatal = 0; | 
| 840 | < | simError(); | 
| 841 | < | rsw = 0.85 * rcut; | 
| 842 | < | } else{ | 
| 843 | < | rsw = simParams_->getSwitchingRadius(); | 
| 844 | < | } | 
| 928 | > | int* excludeList = excludedInteractions_.getPairList(); | 
| 929 | > | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 930 | > | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 931 | > | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 932 |  |  | 
| 933 | < | } else { | 
| 847 | < | // if charge, dipole or reaction field is not used and the cutofff radius is not specified in | 
| 848 | < | //meta-data file, the maximum cutoff radius calculated from forcefiled will be used | 
| 849 | < |  | 
| 850 | < | if (simParams_->haveCutoffRadius()) { | 
| 851 | < | rcut = simParams_->getCutoffRadius(); | 
| 852 | < | } else { | 
| 853 | < | //set cutoff radius to the maximum cutoff radius based on atom types in the whole system | 
| 854 | < | rcut = calcMaxCutoffRadius(); | 
| 855 | < | } | 
| 856 | < |  | 
| 857 | < | if (simParams_->haveSwitchingRadius()) { | 
| 858 | < | rsw  = simParams_->getSwitchingRadius(); | 
| 859 | < | } else { | 
| 860 | < | rsw = rcut; | 
| 861 | < | } | 
| 862 | < |  | 
| 863 | < | } | 
| 933 | > | topologyDone_ = true; | 
| 934 |  | } | 
| 935 |  |  | 
| 866 | – | void SimInfo::setupCutoff() { | 
| 867 | – | getCutoff(rcut_, rsw_); | 
| 868 | – | double rnblist = rcut_ + 1; // skin of neighbor list | 
| 869 | – |  | 
| 870 | – | //Pass these cutoff radius etc. to fortran. This function should be called once and only once | 
| 871 | – |  | 
| 872 | – | int cp =  TRADITIONAL_CUTOFF_POLICY; | 
| 873 | – | if (simParams_->haveCutoffPolicy()) { | 
| 874 | – | std::string myPolicy = simParams_->getCutoffPolicy(); | 
| 875 | – | toUpper(myPolicy); | 
| 876 | – | if (myPolicy == "MIX") { | 
| 877 | – | cp = MIX_CUTOFF_POLICY; | 
| 878 | – | } else { | 
| 879 | – | if (myPolicy == "MAX") { | 
| 880 | – | cp = MAX_CUTOFF_POLICY; | 
| 881 | – | } else { | 
| 882 | – | if (myPolicy == "TRADITIONAL") { | 
| 883 | – | cp = TRADITIONAL_CUTOFF_POLICY; | 
| 884 | – | } else { | 
| 885 | – | // throw error | 
| 886 | – | sprintf( painCave.errMsg, | 
| 887 | – | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 888 | – | painCave.isFatal = 1; | 
| 889 | – | simError(); | 
| 890 | – | } | 
| 891 | – | } | 
| 892 | – | } | 
| 893 | – | } | 
| 894 | – |  | 
| 895 | – |  | 
| 896 | – | if (simParams_->haveSkinThickness()) { | 
| 897 | – | double skinThickness = simParams_->getSkinThickness(); | 
| 898 | – | } | 
| 899 | – |  | 
| 900 | – | notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); | 
| 901 | – | // also send cutoff notification to electrostatics | 
| 902 | – | setElectrostaticCutoffRadius(&rcut_, &rsw_); | 
| 903 | – | } | 
| 904 | – |  | 
| 905 | – | void SimInfo::setupElectrostaticSummationMethod( int isError ) { | 
| 906 | – |  | 
| 907 | – | int errorOut; | 
| 908 | – | int esm =  NONE; | 
| 909 | – | double alphaVal; | 
| 910 | – | double dielectric; | 
| 911 | – |  | 
| 912 | – | errorOut = isError; | 
| 913 | – | alphaVal = simParams_->getDampingAlpha(); | 
| 914 | – | dielectric = simParams_->getDielectric(); | 
| 915 | – |  | 
| 916 | – | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 917 | – | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 918 | – | toUpper(myMethod); | 
| 919 | – | if (myMethod == "NONE") { | 
| 920 | – | esm = NONE; | 
| 921 | – | } else { | 
| 922 | – | if (myMethod == "UNDAMPED_WOLF") { | 
| 923 | – | esm = UNDAMPED_WOLF; | 
| 924 | – | } else { | 
| 925 | – | if (myMethod == "DAMPED_WOLF") { | 
| 926 | – | esm = DAMPED_WOLF; | 
| 927 | – | if (!simParams_->haveDampingAlpha()) { | 
| 928 | – | //throw error | 
| 929 | – | sprintf( painCave.errMsg, | 
| 930 | – | "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal); | 
| 931 | – | painCave.isFatal = 0; | 
| 932 | – | simError(); | 
| 933 | – | } | 
| 934 | – | } else { | 
| 935 | – | if (myMethod == "REACTION_FIELD") { | 
| 936 | – | esm = REACTION_FIELD; | 
| 937 | – | } else { | 
| 938 | – | // throw error | 
| 939 | – | sprintf( painCave.errMsg, | 
| 940 | – | "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() ); | 
| 941 | – | painCave.isFatal = 1; | 
| 942 | – | simError(); | 
| 943 | – | } | 
| 944 | – | } | 
| 945 | – | } | 
| 946 | – | } | 
| 947 | – | } | 
| 948 | – | // let's pass some summation method variables to fortran | 
| 949 | – | setElectrostaticSummationMethod( &esm ); | 
| 950 | – | setDampedWolfAlpha( &alphaVal ); | 
| 951 | – | setReactionFieldDielectric( &dielectric ); | 
| 952 | – | initFortranFF( &esm, &errorOut ); | 
| 953 | – | } | 
| 954 | – |  | 
| 936 |  | void SimInfo::addProperty(GenericData* genData) { | 
| 937 |  | properties_.addProperty(genData); | 
| 938 |  | } | 
| 939 |  |  | 
| 940 | < | void SimInfo::removeProperty(const std::string& propName) { | 
| 940 | > | void SimInfo::removeProperty(const string& propName) { | 
| 941 |  | properties_.removeProperty(propName); | 
| 942 |  | } | 
| 943 |  |  | 
| 945 |  | properties_.clearProperties(); | 
| 946 |  | } | 
| 947 |  |  | 
| 948 | < | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 948 | > | vector<string> SimInfo::getPropertyNames() { | 
| 949 |  | return properties_.getPropertyNames(); | 
| 950 |  | } | 
| 951 |  |  | 
| 952 | < | std::vector<GenericData*> SimInfo::getProperties() { | 
| 952 | > | vector<GenericData*> SimInfo::getProperties() { | 
| 953 |  | return properties_.getProperties(); | 
| 954 |  | } | 
| 955 |  |  | 
| 956 | < | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 956 | > | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 957 |  | return properties_.getPropertyByName(propName); | 
| 958 |  | } | 
| 959 |  |  | 
| 967 |  | Molecule* mol; | 
| 968 |  | RigidBody* rb; | 
| 969 |  | Atom* atom; | 
| 970 | + | CutoffGroup* cg; | 
| 971 |  | SimInfo::MoleculeIterator mi; | 
| 972 |  | Molecule::RigidBodyIterator rbIter; | 
| 973 | < | Molecule::AtomIterator atomIter;; | 
| 973 | > | Molecule::AtomIterator atomIter; | 
| 974 | > | Molecule::CutoffGroupIterator cgIter; | 
| 975 |  |  | 
| 976 |  | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 977 |  |  | 
| 978 | < | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 978 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; | 
| 979 | > | atom = mol->nextAtom(atomIter)) { | 
| 980 |  | atom->setSnapshotManager(sman_); | 
| 981 |  | } | 
| 982 |  |  | 
| 983 | < | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 983 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 984 | > | rb = mol->nextRigidBody(rbIter)) { | 
| 985 |  | rb->setSnapshotManager(sman_); | 
| 986 |  | } | 
| 987 | + |  | 
| 988 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; | 
| 989 | + | cg = mol->nextCutoffGroup(cgIter)) { | 
| 990 | + | cg->setSnapshotManager(sman_); | 
| 991 | + | } | 
| 992 |  | } | 
| 993 |  |  | 
| 994 |  | } | 
| 995 |  |  | 
| 1006 | – | Vector3d SimInfo::getComVel(){ | 
| 1007 | – | SimInfo::MoleculeIterator i; | 
| 1008 | – | Molecule* mol; | 
| 996 |  |  | 
| 997 | < | Vector3d comVel(0.0); | 
| 1011 | < | double totalMass = 0.0; | 
| 1012 | < |  | 
| 1013 | < |  | 
| 1014 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1015 | < | double mass = mol->getMass(); | 
| 1016 | < | totalMass += mass; | 
| 1017 | < | comVel += mass * mol->getComVel(); | 
| 1018 | < | } | 
| 997 | > | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 998 |  |  | 
| 1020 | – | #ifdef IS_MPI | 
| 1021 | – | double tmpMass = totalMass; | 
| 1022 | – | Vector3d tmpComVel(comVel); | 
| 1023 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1024 | – | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1025 | – | #endif | 
| 1026 | – |  | 
| 1027 | – | comVel /= totalMass; | 
| 1028 | – |  | 
| 1029 | – | return comVel; | 
| 1030 | – | } | 
| 1031 | – |  | 
| 1032 | – | Vector3d SimInfo::getCom(){ | 
| 1033 | – | SimInfo::MoleculeIterator i; | 
| 1034 | – | Molecule* mol; | 
| 1035 | – |  | 
| 1036 | – | Vector3d com(0.0); | 
| 1037 | – | double totalMass = 0.0; | 
| 1038 | – |  | 
| 1039 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1040 | – | double mass = mol->getMass(); | 
| 1041 | – | totalMass += mass; | 
| 1042 | – | com += mass * mol->getCom(); | 
| 1043 | – | } | 
| 1044 | – |  | 
| 1045 | – | #ifdef IS_MPI | 
| 1046 | – | double tmpMass = totalMass; | 
| 1047 | – | Vector3d tmpCom(com); | 
| 1048 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1049 | – | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1050 | – | #endif | 
| 1051 | – |  | 
| 1052 | – | com /= totalMass; | 
| 1053 | – |  | 
| 1054 | – | return com; | 
| 1055 | – |  | 
| 1056 | – | } | 
| 1057 | – |  | 
| 1058 | – | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1059 | – |  | 
| 999 |  | return o; | 
| 1000 |  | } | 
| 1001 |  |  | 
| 1002 | < |  | 
| 1003 | < | /* | 
| 1004 | < | Returns center of mass and center of mass velocity in one function call. | 
| 1005 | < | */ | 
| 1006 | < |  | 
| 1007 | < | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1008 | < | SimInfo::MoleculeIterator i; | 
| 1009 | < | Molecule* mol; | 
| 1010 | < |  | 
| 1011 | < |  | 
| 1012 | < | double totalMass = 0.0; | 
| 1013 | < |  | 
| 1002 | > |  | 
| 1003 | > | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1004 | > | if (index >= IOIndexToIntegrableObject.size()) { | 
| 1005 | > | sprintf(painCave.errMsg, | 
| 1006 | > | "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" | 
| 1007 | > | "\tindex exceeds number of known objects!\n"); | 
| 1008 | > | painCave.isFatal = 1; | 
| 1009 | > | simError(); | 
| 1010 | > | return NULL; | 
| 1011 | > | } else | 
| 1012 | > | return IOIndexToIntegrableObject.at(index); | 
| 1013 | > | } | 
| 1014 | > |  | 
| 1015 | > | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1016 | > | IOIndexToIntegrableObject= v; | 
| 1017 | > | } | 
| 1018 |  |  | 
| 1019 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1020 | < | double mass = mol->getMass(); | 
| 1078 | < | totalMass += mass; | 
| 1079 | < | com += mass * mol->getCom(); | 
| 1080 | < | comVel += mass * mol->getComVel(); | 
| 1081 | < | } | 
| 1082 | < |  | 
| 1019 | > | int SimInfo::getNGlobalConstraints() { | 
| 1020 | > | int nGlobalConstraints; | 
| 1021 |  | #ifdef IS_MPI | 
| 1022 | < | double tmpMass = totalMass; | 
| 1023 | < | Vector3d tmpCom(com); | 
| 1024 | < | Vector3d tmpComVel(comVel); | 
| 1025 | < | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1088 | < | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1089 | < | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1022 | > | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 1023 | > | MPI_COMM_WORLD); | 
| 1024 | > | #else | 
| 1025 | > | nGlobalConstraints =  nConstraints_; | 
| 1026 |  | #endif | 
| 1027 | < |  | 
| 1028 | < | com /= totalMass; | 
| 1093 | < | comVel /= totalMass; | 
| 1094 | < | } | 
| 1095 | < |  | 
| 1096 | < | /* | 
| 1097 | < | Return intertia tensor for entire system and angular momentum Vector. | 
| 1027 | > | return nGlobalConstraints; | 
| 1028 | > | } | 
| 1029 |  |  | 
| 1030 | + | }//end namespace OpenMD | 
| 1031 |  |  | 
| 1100 | – | [  Ixx -Ixy  -Ixz ] | 
| 1101 | – | J =| -Iyx  Iyy  -Iyz | | 
| 1102 | – | [ -Izx -Iyz   Izz ] | 
| 1103 | – | */ | 
| 1104 | – |  | 
| 1105 | – | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1106 | – |  | 
| 1107 | – |  | 
| 1108 | – | double xx = 0.0; | 
| 1109 | – | double yy = 0.0; | 
| 1110 | – | double zz = 0.0; | 
| 1111 | – | double xy = 0.0; | 
| 1112 | – | double xz = 0.0; | 
| 1113 | – | double yz = 0.0; | 
| 1114 | – | Vector3d com(0.0); | 
| 1115 | – | Vector3d comVel(0.0); | 
| 1116 | – |  | 
| 1117 | – | getComAll(com, comVel); | 
| 1118 | – |  | 
| 1119 | – | SimInfo::MoleculeIterator i; | 
| 1120 | – | Molecule* mol; | 
| 1121 | – |  | 
| 1122 | – | Vector3d thisq(0.0); | 
| 1123 | – | Vector3d thisv(0.0); | 
| 1124 | – |  | 
| 1125 | – | double thisMass = 0.0; | 
| 1126 | – |  | 
| 1127 | – |  | 
| 1128 | – |  | 
| 1129 | – |  | 
| 1130 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1131 | – |  | 
| 1132 | – | thisq = mol->getCom()-com; | 
| 1133 | – | thisv = mol->getComVel()-comVel; | 
| 1134 | – | thisMass = mol->getMass(); | 
| 1135 | – | // Compute moment of intertia coefficients. | 
| 1136 | – | xx += thisq[0]*thisq[0]*thisMass; | 
| 1137 | – | yy += thisq[1]*thisq[1]*thisMass; | 
| 1138 | – | zz += thisq[2]*thisq[2]*thisMass; | 
| 1139 | – |  | 
| 1140 | – | // compute products of intertia | 
| 1141 | – | xy += thisq[0]*thisq[1]*thisMass; | 
| 1142 | – | xz += thisq[0]*thisq[2]*thisMass; | 
| 1143 | – | yz += thisq[1]*thisq[2]*thisMass; | 
| 1144 | – |  | 
| 1145 | – | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1146 | – |  | 
| 1147 | – | } | 
| 1148 | – |  | 
| 1149 | – |  | 
| 1150 | – | inertiaTensor(0,0) = yy + zz; | 
| 1151 | – | inertiaTensor(0,1) = -xy; | 
| 1152 | – | inertiaTensor(0,2) = -xz; | 
| 1153 | – | inertiaTensor(1,0) = -xy; | 
| 1154 | – | inertiaTensor(1,1) = xx + zz; | 
| 1155 | – | inertiaTensor(1,2) = -yz; | 
| 1156 | – | inertiaTensor(2,0) = -xz; | 
| 1157 | – | inertiaTensor(2,1) = -yz; | 
| 1158 | – | inertiaTensor(2,2) = xx + yy; | 
| 1159 | – |  | 
| 1160 | – | #ifdef IS_MPI | 
| 1161 | – | Mat3x3d tmpI(inertiaTensor); | 
| 1162 | – | Vector3d tmpAngMom; | 
| 1163 | – | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1164 | – | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1165 | – | #endif | 
| 1166 | – |  | 
| 1167 | – | return; | 
| 1168 | – | } | 
| 1169 | – |  | 
| 1170 | – | //Returns the angular momentum of the system | 
| 1171 | – | Vector3d SimInfo::getAngularMomentum(){ | 
| 1172 | – |  | 
| 1173 | – | Vector3d com(0.0); | 
| 1174 | – | Vector3d comVel(0.0); | 
| 1175 | – | Vector3d angularMomentum(0.0); | 
| 1176 | – |  | 
| 1177 | – | getComAll(com,comVel); | 
| 1178 | – |  | 
| 1179 | – | SimInfo::MoleculeIterator i; | 
| 1180 | – | Molecule* mol; | 
| 1181 | – |  | 
| 1182 | – | Vector3d thisr(0.0); | 
| 1183 | – | Vector3d thisp(0.0); | 
| 1184 | – |  | 
| 1185 | – | double thisMass; | 
| 1186 | – |  | 
| 1187 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1188 | – | thisMass = mol->getMass(); | 
| 1189 | – | thisr = mol->getCom()-com; | 
| 1190 | – | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1191 | – |  | 
| 1192 | – | angularMomentum += cross( thisr, thisp ); | 
| 1193 | – |  | 
| 1194 | – | } | 
| 1195 | – |  | 
| 1196 | – | #ifdef IS_MPI | 
| 1197 | – | Vector3d tmpAngMom; | 
| 1198 | – | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1199 | – | #endif | 
| 1200 | – |  | 
| 1201 | – | return angularMomentum; | 
| 1202 | – | } | 
| 1203 | – |  | 
| 1204 | – |  | 
| 1205 | – | }//end namespace oopse | 
| 1206 | – |  |