| 35 | 
  | 
 *                                                                       | 
| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
< | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 38 | 
> | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 55 | 
  | 
#include "math/Vector3.hpp" | 
| 56 | 
  | 
#include "primitives/Molecule.hpp" | 
| 57 | 
  | 
#include "primitives/StuntDouble.hpp" | 
| 57 | 
– | 
#include "UseTheForce/fCutoffPolicy.h" | 
| 58 | 
– | 
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 59 | 
– | 
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" | 
| 60 | 
– | 
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" | 
| 61 | 
– | 
#include "UseTheForce/doForces_interface.h" | 
| 62 | 
– | 
#include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 63 | 
– | 
#include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 64 | 
– | 
#include "UseTheForce/DarkSide/switcheroo_interface.h" | 
| 58 | 
  | 
#include "utils/MemoryUtils.hpp" | 
| 59 | 
  | 
#include "utils/simError.h" | 
| 60 | 
  | 
#include "selection/SelectionManager.hpp" | 
| 61 | 
  | 
#include "io/ForceFieldOptions.hpp" | 
| 62 | 
< | 
#include "UseTheForce/ForceField.hpp" | 
| 63 | 
< | 
 | 
| 71 | 
< | 
 | 
| 62 | 
> | 
#include "brains/ForceField.hpp" | 
| 63 | 
> | 
#include "nonbonded/SwitchingFunction.hpp" | 
| 64 | 
  | 
#ifdef IS_MPI | 
| 65 | 
< | 
#include "UseTheForce/mpiComponentPlan.h" | 
| 66 | 
< | 
#include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 75 | 
< | 
#endif  | 
| 65 | 
> | 
#include <mpi.h> | 
| 66 | 
> | 
#endif | 
| 67 | 
  | 
 | 
| 68 | 
+ | 
using namespace std; | 
| 69 | 
  | 
namespace OpenMD { | 
| 78 | 
– | 
  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { | 
| 79 | 
– | 
    std::map<int, std::set<int> >::iterator i = container.find(index); | 
| 80 | 
– | 
    std::set<int> result; | 
| 81 | 
– | 
    if (i != container.end()) { | 
| 82 | 
– | 
        result = i->second; | 
| 83 | 
– | 
    } | 
| 84 | 
– | 
 | 
| 85 | 
– | 
    return result; | 
| 86 | 
– | 
  } | 
| 70 | 
  | 
   | 
| 71 | 
  | 
  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :  | 
| 72 | 
  | 
    forceField_(ff), simParams_(simParams),  | 
| 73 | 
  | 
    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 | 
  | 
    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),  | 
| 75 | 
< | 
    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 75 | 
> | 
    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), | 
| 76 | 
  | 
    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),  | 
| 77 | 
  | 
    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),  | 
| 78 | 
< | 
    nConstraints_(0), sman_(NULL), fortranInitialized_(false),  | 
| 79 | 
< | 
    calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 78 | 
> | 
    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),  | 
| 79 | 
> | 
    calcBoxDipole_(false), useAtomicVirial_(true) {     | 
| 80 | 
> | 
     | 
| 81 | 
> | 
    MoleculeStamp* molStamp; | 
| 82 | 
> | 
    int nMolWithSameStamp; | 
| 83 | 
> | 
    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 84 | 
> | 
    int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 85 | 
> | 
    CutoffGroupStamp* cgStamp;     | 
| 86 | 
> | 
    RigidBodyStamp* rbStamp; | 
| 87 | 
> | 
    int nRigidAtoms = 0; | 
| 88 | 
> | 
     | 
| 89 | 
> | 
    vector<Component*> components = simParams->getComponents(); | 
| 90 | 
> | 
     | 
| 91 | 
> | 
    for (vector<Component*>::iterator i = components.begin();  | 
| 92 | 
> | 
         i !=components.end(); ++i) { | 
| 93 | 
> | 
      molStamp = (*i)->getMoleculeStamp(); | 
| 94 | 
> | 
      if ( (*i)->haveRegion() ) {         | 
| 95 | 
> | 
        molStamp->setRegion( (*i)->getRegion() ); | 
| 96 | 
> | 
      } else { | 
| 97 | 
> | 
        // set the region to a disallowed value: | 
| 98 | 
> | 
        molStamp->setRegion( -1 ); | 
| 99 | 
> | 
      } | 
| 100 | 
  | 
 | 
| 101 | 
< | 
 | 
| 99 | 
< | 
      MoleculeStamp* molStamp; | 
| 100 | 
< | 
      int nMolWithSameStamp; | 
| 101 | 
< | 
      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 102 | 
< | 
      int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 103 | 
< | 
      CutoffGroupStamp* cgStamp;     | 
| 104 | 
< | 
      RigidBodyStamp* rbStamp; | 
| 105 | 
< | 
      int nRigidAtoms = 0; | 
| 106 | 
< | 
 | 
| 107 | 
< | 
      std::vector<Component*> components = simParams->getComponents(); | 
| 101 | 
> | 
      nMolWithSameStamp = (*i)->getNMol(); | 
| 102 | 
  | 
       | 
| 103 | 
< | 
      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 104 | 
< | 
        molStamp = (*i)->getMoleculeStamp(); | 
| 105 | 
< | 
        nMolWithSameStamp = (*i)->getNMol(); | 
| 106 | 
< | 
         | 
| 107 | 
< | 
        addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 108 | 
< | 
 | 
| 109 | 
< | 
        //calculate atoms in molecules | 
| 110 | 
< | 
        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;    | 
| 111 | 
< | 
 | 
| 112 | 
< | 
        //calculate atoms in cutoff groups | 
| 113 | 
< | 
        int nAtomsInGroups = 0; | 
| 114 | 
< | 
        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 121 | 
< | 
         | 
| 122 | 
< | 
        for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 123 | 
< | 
          cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 124 | 
< | 
          nAtomsInGroups += cgStamp->getNMembers(); | 
| 125 | 
< | 
        } | 
| 126 | 
< | 
 | 
| 127 | 
< | 
        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 128 | 
< | 
 | 
| 129 | 
< | 
        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;             | 
| 130 | 
< | 
 | 
| 131 | 
< | 
        //calculate atoms in rigid bodies | 
| 132 | 
< | 
        int nAtomsInRigidBodies = 0; | 
| 133 | 
< | 
        int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 134 | 
< | 
         | 
| 135 | 
< | 
        for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 136 | 
< | 
          rbStamp = molStamp->getRigidBodyStamp(j); | 
| 137 | 
< | 
          nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 138 | 
< | 
        } | 
| 139 | 
< | 
 | 
| 140 | 
< | 
        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 141 | 
< | 
        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;             | 
| 142 | 
< | 
         | 
| 103 | 
> | 
      addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 104 | 
> | 
       | 
| 105 | 
> | 
      //calculate atoms in molecules | 
| 106 | 
> | 
      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;    | 
| 107 | 
> | 
       | 
| 108 | 
> | 
      //calculate atoms in cutoff groups | 
| 109 | 
> | 
      int nAtomsInGroups = 0; | 
| 110 | 
> | 
      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 111 | 
> | 
       | 
| 112 | 
> | 
      for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 113 | 
> | 
        cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 114 | 
> | 
        nAtomsInGroups += cgStamp->getNMembers(); | 
| 115 | 
  | 
      } | 
| 116 | 
< | 
 | 
| 117 | 
< | 
      //every free atom (atom does not belong to cutoff groups) is a cutoff  | 
| 118 | 
< | 
      //group therefore the total number of cutoff groups in the system is  | 
| 119 | 
< | 
      //equal to the total number of atoms minus number of atoms belong to  | 
| 120 | 
< | 
      //cutoff group defined in meta-data file plus the number of cutoff  | 
| 121 | 
< | 
      //groups defined in meta-data file | 
| 122 | 
< | 
      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 123 | 
< | 
 | 
| 124 | 
< | 
      //every free atom (atom does not belong to rigid bodies) is an  | 
| 125 | 
< | 
      //integrable object therefore the total number of integrable objects  | 
| 126 | 
< | 
      //in the system is equal to the total number of atoms minus number of  | 
| 127 | 
< | 
      //atoms belong to rigid body defined in meta-data file plus the number  | 
| 128 | 
< | 
      //of rigid bodies defined in meta-data file | 
| 129 | 
< | 
      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms  | 
| 130 | 
< | 
                                                + nGlobalRigidBodies_; | 
| 131 | 
< | 
   | 
| 132 | 
< | 
      nGlobalMols_ = molStampIds_.size(); | 
| 161 | 
< | 
      molToProcMap_.resize(nGlobalMols_); | 
| 116 | 
> | 
       | 
| 117 | 
> | 
      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 118 | 
> | 
       | 
| 119 | 
> | 
      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;             | 
| 120 | 
> | 
       | 
| 121 | 
> | 
      //calculate atoms in rigid bodies | 
| 122 | 
> | 
      int nAtomsInRigidBodies = 0; | 
| 123 | 
> | 
      int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 124 | 
> | 
       | 
| 125 | 
> | 
      for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 126 | 
> | 
        rbStamp = molStamp->getRigidBodyStamp(j); | 
| 127 | 
> | 
        nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 128 | 
> | 
      } | 
| 129 | 
> | 
       | 
| 130 | 
> | 
      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 131 | 
> | 
      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;             | 
| 132 | 
> | 
       | 
| 133 | 
  | 
    } | 
| 134 | 
+ | 
     | 
| 135 | 
+ | 
    //every free atom (atom does not belong to cutoff groups) is a cutoff  | 
| 136 | 
+ | 
    //group therefore the total number of cutoff groups in the system is  | 
| 137 | 
+ | 
    //equal to the total number of atoms minus number of atoms belong to  | 
| 138 | 
+ | 
    //cutoff group defined in meta-data file plus the number of cutoff  | 
| 139 | 
+ | 
    //groups defined in meta-data file | 
| 140 | 
  | 
 | 
| 141 | 
+ | 
    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 142 | 
+ | 
     | 
| 143 | 
+ | 
    //every free atom (atom does not belong to rigid bodies) is an  | 
| 144 | 
+ | 
    //integrable object therefore the total number of integrable objects  | 
| 145 | 
+ | 
    //in the system is equal to the total number of atoms minus number of  | 
| 146 | 
+ | 
    //atoms belong to rigid body defined in meta-data file plus the number  | 
| 147 | 
+ | 
    //of rigid bodies defined in meta-data file | 
| 148 | 
+ | 
    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms  | 
| 149 | 
+ | 
      + nGlobalRigidBodies_; | 
| 150 | 
+ | 
     | 
| 151 | 
+ | 
    nGlobalMols_ = molStampIds_.size(); | 
| 152 | 
+ | 
    molToProcMap_.resize(nGlobalMols_); | 
| 153 | 
+ | 
  } | 
| 154 | 
+ | 
   | 
| 155 | 
  | 
  SimInfo::~SimInfo() { | 
| 156 | 
< | 
    std::map<int, Molecule*>::iterator i; | 
| 156 | 
> | 
    map<int, Molecule*>::iterator i; | 
| 157 | 
  | 
    for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 158 | 
  | 
      delete i->second; | 
| 159 | 
  | 
    } | 
| 164 | 
  | 
    delete forceField_; | 
| 165 | 
  | 
  } | 
| 166 | 
  | 
 | 
| 176 | 
– | 
  int SimInfo::getNGlobalConstraints() { | 
| 177 | 
– | 
    int nGlobalConstraints; | 
| 178 | 
– | 
#ifdef IS_MPI | 
| 179 | 
– | 
    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 180 | 
– | 
                  MPI_COMM_WORLD);     | 
| 181 | 
– | 
#else | 
| 182 | 
– | 
    nGlobalConstraints =  nConstraints_; | 
| 183 | 
– | 
#endif | 
| 184 | 
– | 
    return nGlobalConstraints; | 
| 185 | 
– | 
  } | 
| 167 | 
  | 
 | 
| 168 | 
  | 
  bool SimInfo::addMolecule(Molecule* mol) { | 
| 169 | 
  | 
    MoleculeIterator i; | 
| 170 | 
< | 
 | 
| 170 | 
> | 
     | 
| 171 | 
  | 
    i = molecules_.find(mol->getGlobalIndex()); | 
| 172 | 
  | 
    if (i == molecules_.end() ) { | 
| 173 | 
< | 
 | 
| 174 | 
< | 
      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 175 | 
< | 
         | 
| 173 | 
> | 
       | 
| 174 | 
> | 
      molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 175 | 
> | 
       | 
| 176 | 
  | 
      nAtoms_ += mol->getNAtoms(); | 
| 177 | 
  | 
      nBonds_ += mol->getNBonds(); | 
| 178 | 
  | 
      nBends_ += mol->getNBends(); | 
| 182 | 
  | 
      nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 183 | 
  | 
      nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 184 | 
  | 
      nConstraints_ += mol->getNConstraintPairs(); | 
| 185 | 
< | 
 | 
| 185 | 
> | 
       | 
| 186 | 
  | 
      addInteractionPairs(mol); | 
| 187 | 
< | 
   | 
| 187 | 
> | 
       | 
| 188 | 
  | 
      return true; | 
| 189 | 
  | 
    } else { | 
| 190 | 
  | 
      return false; | 
| 191 | 
  | 
    } | 
| 192 | 
  | 
  } | 
| 193 | 
< | 
 | 
| 193 | 
> | 
   | 
| 194 | 
  | 
  bool SimInfo::removeMolecule(Molecule* mol) { | 
| 195 | 
  | 
    MoleculeIterator i; | 
| 196 | 
  | 
    i = molecules_.find(mol->getGlobalIndex()); | 
| 218 | 
  | 
    } else { | 
| 219 | 
  | 
      return false; | 
| 220 | 
  | 
    } | 
| 240 | 
– | 
 | 
| 241 | 
– | 
 | 
| 221 | 
  | 
  }     | 
| 222 | 
  | 
 | 
| 223 | 
  | 
         | 
| 233 | 
  | 
 | 
| 234 | 
  | 
 | 
| 235 | 
  | 
  void SimInfo::calcNdf() { | 
| 236 | 
< | 
    int ndf_local; | 
| 236 | 
> | 
    int ndf_local, nfq_local; | 
| 237 | 
  | 
    MoleculeIterator i; | 
| 238 | 
< | 
    std::vector<StuntDouble*>::iterator j; | 
| 238 | 
> | 
    vector<StuntDouble*>::iterator j; | 
| 239 | 
> | 
    vector<Atom*>::iterator k; | 
| 240 | 
> | 
 | 
| 241 | 
  | 
    Molecule* mol; | 
| 242 | 
< | 
    StuntDouble* integrableObject; | 
| 242 | 
> | 
    StuntDouble* sd; | 
| 243 | 
> | 
    Atom* atom; | 
| 244 | 
  | 
 | 
| 245 | 
  | 
    ndf_local = 0; | 
| 246 | 
+ | 
    nfq_local = 0; | 
| 247 | 
  | 
     | 
| 248 | 
  | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 266 | 
– | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;  | 
| 267 | 
– | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 249 | 
  | 
 | 
| 250 | 
+ | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL;  | 
| 251 | 
+ | 
           sd = mol->nextIntegrableObject(j)) { | 
| 252 | 
+ | 
 | 
| 253 | 
  | 
        ndf_local += 3; | 
| 254 | 
  | 
 | 
| 255 | 
< | 
        if (integrableObject->isDirectional()) { | 
| 256 | 
< | 
          if (integrableObject->isLinear()) { | 
| 255 | 
> | 
        if (sd->isDirectional()) { | 
| 256 | 
> | 
          if (sd->isLinear()) { | 
| 257 | 
  | 
            ndf_local += 2; | 
| 258 | 
  | 
          } else { | 
| 259 | 
  | 
            ndf_local += 3; | 
| 260 | 
  | 
          } | 
| 261 | 
  | 
        } | 
| 278 | 
– | 
             | 
| 262 | 
  | 
      } | 
| 263 | 
+ | 
 | 
| 264 | 
+ | 
      for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | 
| 265 | 
+ | 
           atom = mol->nextFluctuatingCharge(k)) { | 
| 266 | 
+ | 
        if (atom->isFluctuatingCharge()) { | 
| 267 | 
+ | 
          nfq_local++; | 
| 268 | 
+ | 
        } | 
| 269 | 
+ | 
      } | 
| 270 | 
  | 
    } | 
| 271 | 
  | 
     | 
| 272 | 
+ | 
    ndfLocal_ = ndf_local; | 
| 273 | 
+ | 
 | 
| 274 | 
  | 
    // n_constraints is local, so subtract them on each processor | 
| 275 | 
  | 
    ndf_local -= nConstraints_; | 
| 276 | 
  | 
 | 
| 277 | 
  | 
#ifdef IS_MPI | 
| 278 | 
< | 
    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 278 | 
> | 
    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); | 
| 279 | 
> | 
    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, | 
| 280 | 
> | 
                              MPI::INT, MPI::SUM); | 
| 281 | 
  | 
#else | 
| 282 | 
  | 
    ndf_ = ndf_local; | 
| 283 | 
+ | 
    nGlobalFluctuatingCharges_ = nfq_local; | 
| 284 | 
  | 
#endif | 
| 285 | 
  | 
 | 
| 286 | 
  | 
    // nZconstraints_ is global, as are the 3 COM translations for the  | 
| 291 | 
  | 
 | 
| 292 | 
  | 
  int SimInfo::getFdf() { | 
| 293 | 
  | 
#ifdef IS_MPI | 
| 294 | 
< | 
    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 294 | 
> | 
    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); | 
| 295 | 
  | 
#else | 
| 296 | 
  | 
    fdf_ = fdf_local; | 
| 297 | 
  | 
#endif | 
| 298 | 
  | 
    return fdf_; | 
| 299 | 
  | 
  } | 
| 300 | 
+ | 
   | 
| 301 | 
+ | 
  unsigned int SimInfo::getNLocalCutoffGroups(){ | 
| 302 | 
+ | 
    int nLocalCutoffAtoms = 0; | 
| 303 | 
+ | 
    Molecule* mol; | 
| 304 | 
+ | 
    MoleculeIterator mi; | 
| 305 | 
+ | 
    CutoffGroup* cg; | 
| 306 | 
+ | 
    Molecule::CutoffGroupIterator ci; | 
| 307 | 
  | 
     | 
| 308 | 
+ | 
    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 309 | 
+ | 
       | 
| 310 | 
+ | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL;  | 
| 311 | 
+ | 
           cg = mol->nextCutoffGroup(ci)) { | 
| 312 | 
+ | 
        nLocalCutoffAtoms += cg->getNumAtom(); | 
| 313 | 
+ | 
         | 
| 314 | 
+ | 
      }         | 
| 315 | 
+ | 
    } | 
| 316 | 
+ | 
     | 
| 317 | 
+ | 
    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; | 
| 318 | 
+ | 
  } | 
| 319 | 
+ | 
     | 
| 320 | 
  | 
  void SimInfo::calcNdfRaw() { | 
| 321 | 
  | 
    int ndfRaw_local; | 
| 322 | 
  | 
 | 
| 323 | 
  | 
    MoleculeIterator i; | 
| 324 | 
< | 
    std::vector<StuntDouble*>::iterator j; | 
| 324 | 
> | 
    vector<StuntDouble*>::iterator j; | 
| 325 | 
  | 
    Molecule* mol; | 
| 326 | 
< | 
    StuntDouble* integrableObject; | 
| 326 | 
> | 
    StuntDouble* sd; | 
| 327 | 
  | 
 | 
| 328 | 
  | 
    // Raw degrees of freedom that we have to set | 
| 329 | 
  | 
    ndfRaw_local = 0; | 
| 330 | 
  | 
     | 
| 331 | 
  | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 318 | 
– | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 319 | 
– | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 332 | 
  | 
 | 
| 333 | 
+ | 
      for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 334 | 
+ | 
           sd = mol->nextIntegrableObject(j)) { | 
| 335 | 
+ | 
 | 
| 336 | 
  | 
        ndfRaw_local += 3; | 
| 337 | 
  | 
 | 
| 338 | 
< | 
        if (integrableObject->isDirectional()) { | 
| 339 | 
< | 
          if (integrableObject->isLinear()) { | 
| 338 | 
> | 
        if (sd->isDirectional()) { | 
| 339 | 
> | 
          if (sd->isLinear()) { | 
| 340 | 
  | 
            ndfRaw_local += 2; | 
| 341 | 
  | 
          } else { | 
| 342 | 
  | 
            ndfRaw_local += 3; | 
| 347 | 
  | 
    } | 
| 348 | 
  | 
     | 
| 349 | 
  | 
#ifdef IS_MPI | 
| 350 | 
< | 
    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 350 | 
> | 
    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); | 
| 351 | 
  | 
#else | 
| 352 | 
  | 
    ndfRaw_ = ndfRaw_local; | 
| 353 | 
  | 
#endif | 
| 360 | 
  | 
 | 
| 361 | 
  | 
 | 
| 362 | 
  | 
#ifdef IS_MPI | 
| 363 | 
< | 
    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 363 | 
> | 
    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,  | 
| 364 | 
> | 
                              MPI::INT, MPI::SUM); | 
| 365 | 
  | 
#else | 
| 366 | 
  | 
    ndfTrans_ = ndfTrans_local; | 
| 367 | 
  | 
#endif | 
| 372 | 
  | 
 | 
| 373 | 
  | 
  void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 374 | 
  | 
    ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 375 | 
< | 
    std::vector<Bond*>::iterator bondIter; | 
| 376 | 
< | 
    std::vector<Bend*>::iterator bendIter; | 
| 377 | 
< | 
    std::vector<Torsion*>::iterator torsionIter; | 
| 378 | 
< | 
    std::vector<Inversion*>::iterator inversionIter; | 
| 375 | 
> | 
    vector<Atom*>::iterator atomIter; | 
| 376 | 
> | 
    vector<Bond*>::iterator bondIter; | 
| 377 | 
> | 
    vector<Bend*>::iterator bendIter; | 
| 378 | 
> | 
    vector<Torsion*>::iterator torsionIter; | 
| 379 | 
> | 
    vector<Inversion*>::iterator inversionIter; | 
| 380 | 
> | 
    Atom* atom; | 
| 381 | 
  | 
    Bond* bond; | 
| 382 | 
  | 
    Bend* bend; | 
| 383 | 
  | 
    Torsion* torsion; | 
| 395 | 
  | 
    // always be excluded.  These are done at the bottom of this | 
| 396 | 
  | 
    // function. | 
| 397 | 
  | 
 | 
| 398 | 
< | 
    std::map<int, std::set<int> > atomGroups; | 
| 398 | 
> | 
    map<int, set<int> > atomGroups; | 
| 399 | 
  | 
    Molecule::RigidBodyIterator rbIter; | 
| 400 | 
  | 
    RigidBody* rb; | 
| 401 | 
  | 
    Molecule::IntegrableObjectIterator ii; | 
| 402 | 
< | 
    StuntDouble* integrableObject; | 
| 402 | 
> | 
    StuntDouble* sd; | 
| 403 | 
  | 
     | 
| 404 | 
< | 
    for (integrableObject = mol->beginIntegrableObject(ii);  | 
| 405 | 
< | 
         integrableObject != NULL; | 
| 388 | 
< | 
         integrableObject = mol->nextIntegrableObject(ii)) { | 
| 404 | 
> | 
    for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 405 | 
> | 
         sd = mol->nextIntegrableObject(ii)) { | 
| 406 | 
  | 
       | 
| 407 | 
< | 
      if (integrableObject->isRigidBody()) { | 
| 408 | 
< | 
        rb = static_cast<RigidBody*>(integrableObject); | 
| 409 | 
< | 
        std::vector<Atom*> atoms = rb->getAtoms(); | 
| 410 | 
< | 
        std::set<int> rigidAtoms; | 
| 407 | 
> | 
      if (sd->isRigidBody()) { | 
| 408 | 
> | 
        rb = static_cast<RigidBody*>(sd); | 
| 409 | 
> | 
        vector<Atom*> atoms = rb->getAtoms(); | 
| 410 | 
> | 
        set<int> rigidAtoms; | 
| 411 | 
  | 
        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 412 | 
  | 
          rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 413 | 
  | 
        } | 
| 414 | 
  | 
        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 415 | 
< | 
          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 415 | 
> | 
          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 416 | 
  | 
        }       | 
| 417 | 
  | 
      } else { | 
| 418 | 
< | 
        std::set<int> oneAtomSet; | 
| 419 | 
< | 
        oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 420 | 
< | 
        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));         | 
| 418 | 
> | 
        set<int> oneAtomSet; | 
| 419 | 
> | 
        oneAtomSet.insert(sd->getGlobalIndex()); | 
| 420 | 
> | 
        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));         | 
| 421 | 
  | 
      } | 
| 422 | 
  | 
    }   | 
| 423 | 
+ | 
 | 
| 424 | 
  | 
            | 
| 425 | 
  | 
    for (bond= mol->beginBond(bondIter); bond != NULL;  | 
| 426 | 
  | 
         bond = mol->nextBond(bondIter)) { | 
| 427 | 
  | 
 | 
| 428 | 
  | 
      a = bond->getAtomA()->getGlobalIndex(); | 
| 429 | 
  | 
      b = bond->getAtomB()->getGlobalIndex();    | 
| 430 | 
< | 
     | 
| 430 | 
> | 
 | 
| 431 | 
  | 
      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 432 | 
  | 
        oneTwoInteractions_.addPair(a, b); | 
| 433 | 
  | 
      } else { | 
| 521 | 
  | 
 | 
| 522 | 
  | 
    for (rb = mol->beginRigidBody(rbIter); rb != NULL;  | 
| 523 | 
  | 
         rb = mol->nextRigidBody(rbIter)) { | 
| 524 | 
< | 
      std::vector<Atom*> atoms = rb->getAtoms(); | 
| 524 | 
> | 
      vector<Atom*> atoms = rb->getAtoms(); | 
| 525 | 
  | 
      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 526 | 
  | 
        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 527 | 
  | 
          a = atoms[i]->getGlobalIndex(); | 
| 535 | 
  | 
 | 
| 536 | 
  | 
  void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 537 | 
  | 
    ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 538 | 
< | 
    std::vector<Bond*>::iterator bondIter; | 
| 539 | 
< | 
    std::vector<Bend*>::iterator bendIter; | 
| 540 | 
< | 
    std::vector<Torsion*>::iterator torsionIter; | 
| 541 | 
< | 
    std::vector<Inversion*>::iterator inversionIter; | 
| 538 | 
> | 
    vector<Bond*>::iterator bondIter; | 
| 539 | 
> | 
    vector<Bend*>::iterator bendIter; | 
| 540 | 
> | 
    vector<Torsion*>::iterator torsionIter; | 
| 541 | 
> | 
    vector<Inversion*>::iterator inversionIter; | 
| 542 | 
  | 
    Bond* bond; | 
| 543 | 
  | 
    Bend* bend; | 
| 544 | 
  | 
    Torsion* torsion; | 
| 548 | 
  | 
    int c; | 
| 549 | 
  | 
    int d; | 
| 550 | 
  | 
 | 
| 551 | 
< | 
    std::map<int, std::set<int> > atomGroups; | 
| 551 | 
> | 
    map<int, set<int> > atomGroups; | 
| 552 | 
  | 
    Molecule::RigidBodyIterator rbIter; | 
| 553 | 
  | 
    RigidBody* rb; | 
| 554 | 
  | 
    Molecule::IntegrableObjectIterator ii; | 
| 555 | 
< | 
    StuntDouble* integrableObject; | 
| 555 | 
> | 
    StuntDouble* sd; | 
| 556 | 
  | 
     | 
| 557 | 
< | 
    for (integrableObject = mol->beginIntegrableObject(ii);  | 
| 558 | 
< | 
         integrableObject != NULL; | 
| 541 | 
< | 
         integrableObject = mol->nextIntegrableObject(ii)) { | 
| 557 | 
> | 
    for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 558 | 
> | 
         sd = mol->nextIntegrableObject(ii)) { | 
| 559 | 
  | 
       | 
| 560 | 
< | 
      if (integrableObject->isRigidBody()) { | 
| 561 | 
< | 
        rb = static_cast<RigidBody*>(integrableObject); | 
| 562 | 
< | 
        std::vector<Atom*> atoms = rb->getAtoms(); | 
| 563 | 
< | 
        std::set<int> rigidAtoms; | 
| 560 | 
> | 
      if (sd->isRigidBody()) { | 
| 561 | 
> | 
        rb = static_cast<RigidBody*>(sd); | 
| 562 | 
> | 
        vector<Atom*> atoms = rb->getAtoms(); | 
| 563 | 
> | 
        set<int> rigidAtoms; | 
| 564 | 
  | 
        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 565 | 
  | 
          rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 566 | 
  | 
        } | 
| 567 | 
  | 
        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 568 | 
< | 
          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 568 | 
> | 
          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 569 | 
  | 
        }       | 
| 570 | 
  | 
      } else { | 
| 571 | 
< | 
        std::set<int> oneAtomSet; | 
| 572 | 
< | 
        oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 573 | 
< | 
        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));         | 
| 571 | 
> | 
        set<int> oneAtomSet; | 
| 572 | 
> | 
        oneAtomSet.insert(sd->getGlobalIndex()); | 
| 573 | 
> | 
        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));         | 
| 574 | 
  | 
      } | 
| 575 | 
  | 
    }   | 
| 576 | 
  | 
 | 
| 673 | 
  | 
 | 
| 674 | 
  | 
    for (rb = mol->beginRigidBody(rbIter); rb != NULL;  | 
| 675 | 
  | 
         rb = mol->nextRigidBody(rbIter)) { | 
| 676 | 
< | 
      std::vector<Atom*> atoms = rb->getAtoms(); | 
| 676 | 
> | 
      vector<Atom*> atoms = rb->getAtoms(); | 
| 677 | 
  | 
      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 678 | 
  | 
        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 679 | 
  | 
          a = atoms[i]->getGlobalIndex(); | 
| 696 | 
  | 
    molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 697 | 
  | 
  } | 
| 698 | 
  | 
 | 
| 682 | 
– | 
  void SimInfo::update() { | 
| 699 | 
  | 
 | 
| 700 | 
< | 
    setupSimType(); | 
| 701 | 
< | 
 | 
| 702 | 
< | 
#ifdef IS_MPI | 
| 703 | 
< | 
    setupFortranParallel(); | 
| 704 | 
< | 
#endif | 
| 705 | 
< | 
 | 
| 706 | 
< | 
    setupFortranSim(); | 
| 707 | 
< | 
 | 
| 708 | 
< | 
    //setup fortran force field | 
| 693 | 
< | 
    /** @deprecate */     | 
| 694 | 
< | 
    int isError = 0; | 
| 695 | 
< | 
     | 
| 696 | 
< | 
    setupCutoff(); | 
| 697 | 
< | 
     | 
| 698 | 
< | 
    setupElectrostaticSummationMethod( isError ); | 
| 699 | 
< | 
    setupSwitchingFunction(); | 
| 700 | 
< | 
    setupAccumulateBoxDipole(); | 
| 701 | 
< | 
 | 
| 702 | 
< | 
    if(isError){ | 
| 703 | 
< | 
      sprintf( painCave.errMsg, | 
| 704 | 
< | 
               "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 705 | 
< | 
      painCave.isFatal = 1; | 
| 706 | 
< | 
      simError(); | 
| 707 | 
< | 
    } | 
| 708 | 
< | 
 | 
| 700 | 
> | 
  /** | 
| 701 | 
> | 
   * update | 
| 702 | 
> | 
   * | 
| 703 | 
> | 
   *  Performs the global checks and variable settings after the | 
| 704 | 
> | 
   *  objects have been created. | 
| 705 | 
> | 
   *  | 
| 706 | 
> | 
   */ | 
| 707 | 
> | 
  void SimInfo::update() {    | 
| 708 | 
> | 
    setupSimVariables(); | 
| 709 | 
  | 
    calcNdf(); | 
| 710 | 
  | 
    calcNdfRaw(); | 
| 711 | 
  | 
    calcNdfTrans(); | 
| 712 | 
– | 
 | 
| 713 | 
– | 
    fortranInitialized_ = true; | 
| 712 | 
  | 
  } | 
| 713 | 
< | 
 | 
| 714 | 
< | 
  std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 713 | 
> | 
   | 
| 714 | 
> | 
  /** | 
| 715 | 
> | 
   * getSimulatedAtomTypes | 
| 716 | 
> | 
   * | 
| 717 | 
> | 
   * Returns an STL set of AtomType* that are actually present in this | 
| 718 | 
> | 
   * simulation.  Must query all processors to assemble this information. | 
| 719 | 
> | 
   *  | 
| 720 | 
> | 
   */ | 
| 721 | 
> | 
  set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 722 | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 723 | 
  | 
    Molecule* mol; | 
| 724 | 
  | 
    Molecule::AtomIterator ai; | 
| 725 | 
  | 
    Atom* atom; | 
| 726 | 
< | 
    std::set<AtomType*> atomTypes; | 
| 727 | 
< | 
 | 
| 726 | 
> | 
    set<AtomType*> atomTypes; | 
| 727 | 
> | 
     | 
| 728 | 
  | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 729 | 
< | 
 | 
| 730 | 
< | 
      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 729 | 
> | 
      for(atom = mol->beginAtom(ai); atom != NULL; | 
| 730 | 
> | 
          atom = mol->nextAtom(ai)) { | 
| 731 | 
  | 
        atomTypes.insert(atom->getAtomType()); | 
| 732 | 
< | 
      } | 
| 733 | 
< | 
         | 
| 729 | 
< | 
    } | 
| 730 | 
< | 
 | 
| 731 | 
< | 
    return atomTypes;         | 
| 732 | 
< | 
  } | 
| 733 | 
< | 
 | 
| 734 | 
< | 
  void SimInfo::setupSimType() { | 
| 735 | 
< | 
    std::set<AtomType*>::iterator i; | 
| 736 | 
< | 
    std::set<AtomType*> atomTypes; | 
| 737 | 
< | 
    atomTypes = getUniqueAtomTypes(); | 
| 732 | 
> | 
      }       | 
| 733 | 
> | 
    }     | 
| 734 | 
  | 
     | 
| 735 | 
< | 
    int useLennardJones = 0; | 
| 740 | 
< | 
    int useElectrostatic = 0; | 
| 741 | 
< | 
    int useEAM = 0; | 
| 742 | 
< | 
    int useSC = 0; | 
| 743 | 
< | 
    int useCharge = 0; | 
| 744 | 
< | 
    int useDirectional = 0; | 
| 745 | 
< | 
    int useDipole = 0; | 
| 746 | 
< | 
    int useGayBerne = 0; | 
| 747 | 
< | 
    int useSticky = 0; | 
| 748 | 
< | 
    int useStickyPower = 0; | 
| 749 | 
< | 
    int useShape = 0;  | 
| 750 | 
< | 
    int useFLARB = 0; //it is not in AtomType yet | 
| 751 | 
< | 
    int useDirectionalAtom = 0;     | 
| 752 | 
< | 
    int useElectrostatics = 0; | 
| 753 | 
< | 
    //usePBC and useRF are from simParams | 
| 754 | 
< | 
    int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 755 | 
< | 
    int useRF; | 
| 756 | 
< | 
    int useSF; | 
| 757 | 
< | 
    int useSP; | 
| 758 | 
< | 
    int useBoxDipole; | 
| 735 | 
> | 
#ifdef IS_MPI | 
| 736 | 
  | 
 | 
| 737 | 
< | 
    std::string myMethod; | 
| 738 | 
< | 
 | 
| 762 | 
< | 
    // set the useRF logical | 
| 763 | 
< | 
    useRF = 0; | 
| 764 | 
< | 
    useSF = 0; | 
| 765 | 
< | 
    useSP = 0; | 
| 766 | 
< | 
    useBoxDipole = 0; | 
| 767 | 
< | 
 | 
| 768 | 
< | 
 | 
| 769 | 
< | 
    if (simParams_->haveElectrostaticSummationMethod()) { | 
| 770 | 
< | 
      std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 771 | 
< | 
      toUpper(myMethod); | 
| 772 | 
< | 
      if (myMethod == "REACTION_FIELD"){ | 
| 773 | 
< | 
        useRF = 1; | 
| 774 | 
< | 
      } else if (myMethod == "SHIFTED_FORCE"){ | 
| 775 | 
< | 
        useSF = 1; | 
| 776 | 
< | 
      } else if (myMethod == "SHIFTED_POTENTIAL"){ | 
| 777 | 
< | 
        useSP = 1; | 
| 778 | 
< | 
      } | 
| 779 | 
< | 
    } | 
| 737 | 
> | 
    // loop over the found atom types on this processor, and add their | 
| 738 | 
> | 
    // numerical idents to a vector: | 
| 739 | 
  | 
     | 
| 740 | 
< | 
    if (simParams_->haveAccumulateBoxDipole())  | 
| 741 | 
< | 
      if (simParams_->getAccumulateBoxDipole()) | 
| 742 | 
< | 
        useBoxDipole = 1; | 
| 740 | 
> | 
    vector<int> foundTypes; | 
| 741 | 
> | 
    set<AtomType*>::iterator i; | 
| 742 | 
> | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)  | 
| 743 | 
> | 
      foundTypes.push_back( (*i)->getIdent() ); | 
| 744 | 
  | 
 | 
| 745 | 
< | 
    useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 745 | 
> | 
    // count_local holds the number of found types on this processor | 
| 746 | 
> | 
    int count_local = foundTypes.size(); | 
| 747 | 
  | 
 | 
| 748 | 
< | 
    //loop over all of the atom types | 
| 788 | 
< | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 789 | 
< | 
      useLennardJones |= (*i)->isLennardJones(); | 
| 790 | 
< | 
      useElectrostatic |= (*i)->isElectrostatic(); | 
| 791 | 
< | 
      useEAM |= (*i)->isEAM(); | 
| 792 | 
< | 
      useSC |= (*i)->isSC(); | 
| 793 | 
< | 
      useCharge |= (*i)->isCharge(); | 
| 794 | 
< | 
      useDirectional |= (*i)->isDirectional(); | 
| 795 | 
< | 
      useDipole |= (*i)->isDipole(); | 
| 796 | 
< | 
      useGayBerne |= (*i)->isGayBerne(); | 
| 797 | 
< | 
      useSticky |= (*i)->isSticky(); | 
| 798 | 
< | 
      useStickyPower |= (*i)->isStickyPower(); | 
| 799 | 
< | 
      useShape |= (*i)->isShape();  | 
| 800 | 
< | 
    } | 
| 748 | 
> | 
    int nproc = MPI::COMM_WORLD.Get_size(); | 
| 749 | 
  | 
 | 
| 750 | 
< | 
    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 751 | 
< | 
      useDirectionalAtom = 1; | 
| 752 | 
< | 
    } | 
| 750 | 
> | 
    // we need arrays to hold the counts and displacement vectors for | 
| 751 | 
> | 
    // all processors | 
| 752 | 
> | 
    vector<int> counts(nproc, 0); | 
| 753 | 
> | 
    vector<int> disps(nproc, 0); | 
| 754 | 
  | 
 | 
| 755 | 
< | 
    if (useCharge || useDipole) { | 
| 756 | 
< | 
      useElectrostatics = 1; | 
| 755 | 
> | 
    // fill the counts array | 
| 756 | 
> | 
    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 757 | 
> | 
                              1, MPI::INT); | 
| 758 | 
> | 
   | 
| 759 | 
> | 
    // use the processor counts to compute the displacement array | 
| 760 | 
> | 
    disps[0] = 0;     | 
| 761 | 
> | 
    int totalCount = counts[0]; | 
| 762 | 
> | 
    for (int iproc = 1; iproc < nproc; iproc++) { | 
| 763 | 
> | 
      disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 764 | 
> | 
      totalCount += counts[iproc]; | 
| 765 | 
  | 
    } | 
| 766 | 
  | 
 | 
| 767 | 
< | 
#ifdef IS_MPI     | 
| 768 | 
< | 
    int temp; | 
| 767 | 
> | 
    // we need a (possibly redundant) set of all found types: | 
| 768 | 
> | 
    vector<int> ftGlobal(totalCount); | 
| 769 | 
> | 
     | 
| 770 | 
> | 
    // now spray out the foundTypes to all the other processors:     | 
| 771 | 
> | 
    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,  | 
| 772 | 
> | 
                               &ftGlobal[0], &counts[0], &disps[0],  | 
| 773 | 
> | 
                               MPI::INT); | 
| 774 | 
  | 
 | 
| 775 | 
< | 
    temp = usePBC; | 
| 814 | 
< | 
    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 775 | 
> | 
    vector<int>::iterator j; | 
| 776 | 
  | 
 | 
| 777 | 
< | 
    temp = useDirectionalAtom; | 
| 778 | 
< | 
    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 777 | 
> | 
    // foundIdents is a stl set, so inserting an already found ident | 
| 778 | 
> | 
    // will have no effect. | 
| 779 | 
> | 
    set<int> foundIdents; | 
| 780 | 
  | 
 | 
| 781 | 
< | 
    temp = useLennardJones; | 
| 782 | 
< | 
    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 781 | 
> | 
    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 782 | 
> | 
      foundIdents.insert((*j)); | 
| 783 | 
> | 
     | 
| 784 | 
> | 
    // now iterate over the foundIdents and get the actual atom types  | 
| 785 | 
> | 
    // that correspond to these: | 
| 786 | 
> | 
    set<int>::iterator it; | 
| 787 | 
> | 
    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)  | 
| 788 | 
> | 
      atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 789 | 
> | 
  | 
| 790 | 
> | 
#endif | 
| 791 | 
  | 
 | 
| 792 | 
< | 
    temp = useElectrostatics; | 
| 793 | 
< | 
    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 792 | 
> | 
    return atomTypes;         | 
| 793 | 
> | 
  } | 
| 794 | 
  | 
 | 
| 825 | 
– | 
    temp = useCharge; | 
| 826 | 
– | 
    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 795 | 
  | 
 | 
| 796 | 
< | 
    temp = useDipole; | 
| 797 | 
< | 
    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 796 | 
> | 
  int getGlobalCountOfType(AtomType* atype) { | 
| 797 | 
> | 
    /* | 
| 798 | 
> | 
    set<AtomType*> atypes = getSimulatedAtomTypes(); | 
| 799 | 
> | 
    map<AtomType*, int> counts_; | 
| 800 | 
  | 
 | 
| 801 | 
< | 
    temp = useSticky; | 
| 802 | 
< | 
    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 801 | 
> | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 802 | 
> | 
      for(atom = mol->beginAtom(ai); atom != NULL; | 
| 803 | 
> | 
          atom = mol->nextAtom(ai)) { | 
| 804 | 
> | 
        atom->getAtomType(); | 
| 805 | 
> | 
      }       | 
| 806 | 
> | 
    }     | 
| 807 | 
> | 
    */ | 
| 808 | 
> | 
    return 0; | 
| 809 | 
> | 
  } | 
| 810 | 
  | 
 | 
| 811 | 
< | 
    temp = useStickyPower; | 
| 812 | 
< | 
    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 811 | 
> | 
  void SimInfo::setupSimVariables() { | 
| 812 | 
> | 
    useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 813 | 
> | 
    // we only call setAccumulateBoxDipole if the accumulateBoxDipole | 
| 814 | 
> | 
    // parameter is true | 
| 815 | 
> | 
    calcBoxDipole_ = false; | 
| 816 | 
> | 
    if ( simParams_->haveAccumulateBoxDipole() )  | 
| 817 | 
> | 
      if ( simParams_->getAccumulateBoxDipole() ) { | 
| 818 | 
> | 
        calcBoxDipole_ = true;        | 
| 819 | 
> | 
      } | 
| 820 | 
  | 
     | 
| 821 | 
< | 
    temp = useGayBerne; | 
| 822 | 
< | 
    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 821 | 
> | 
    set<AtomType*>::iterator i; | 
| 822 | 
> | 
    set<AtomType*> atomTypes; | 
| 823 | 
> | 
    atomTypes = getSimulatedAtomTypes();     | 
| 824 | 
> | 
    bool usesElectrostatic = false; | 
| 825 | 
> | 
    bool usesMetallic = false; | 
| 826 | 
> | 
    bool usesDirectional = false; | 
| 827 | 
> | 
    bool usesFluctuatingCharges =  false; | 
| 828 | 
> | 
    //loop over all of the atom types | 
| 829 | 
> | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 830 | 
> | 
      usesElectrostatic |= (*i)->isElectrostatic(); | 
| 831 | 
> | 
      usesMetallic |= (*i)->isMetal(); | 
| 832 | 
> | 
      usesDirectional |= (*i)->isDirectional(); | 
| 833 | 
> | 
      usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | 
| 834 | 
> | 
    } | 
| 835 | 
  | 
 | 
| 836 | 
< | 
    temp = useEAM; | 
| 837 | 
< | 
    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 838 | 
< | 
 | 
| 839 | 
< | 
    temp = useSC; | 
| 840 | 
< | 
    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 836 | 
> | 
#ifdef IS_MPI | 
| 837 | 
> | 
    bool temp; | 
| 838 | 
> | 
    temp = usesDirectional; | 
| 839 | 
> | 
    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,  | 
| 840 | 
> | 
                              MPI::LOR); | 
| 841 | 
> | 
         | 
| 842 | 
> | 
    temp = usesMetallic; | 
| 843 | 
> | 
    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,  | 
| 844 | 
> | 
                              MPI::LOR); | 
| 845 | 
  | 
     | 
| 846 | 
< | 
    temp = useShape; | 
| 847 | 
< | 
    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    | 
| 846 | 
> | 
    temp = usesElectrostatic; | 
| 847 | 
> | 
    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,  | 
| 848 | 
> | 
                              MPI::LOR); | 
| 849 | 
  | 
 | 
| 850 | 
< | 
    temp = useFLARB; | 
| 851 | 
< | 
    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 850 | 
> | 
    temp = usesFluctuatingCharges; | 
| 851 | 
> | 
    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,  | 
| 852 | 
> | 
                              MPI::LOR); | 
| 853 | 
> | 
#else | 
| 854 | 
  | 
 | 
| 855 | 
< | 
    temp = useRF; | 
| 856 | 
< | 
    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 855 | 
> | 
    usesDirectionalAtoms_ = usesDirectional; | 
| 856 | 
> | 
    usesMetallicAtoms_ = usesMetallic; | 
| 857 | 
> | 
    usesElectrostaticAtoms_ = usesElectrostatic; | 
| 858 | 
> | 
    usesFluctuatingCharges_ = usesFluctuatingCharges; | 
| 859 | 
  | 
 | 
| 860 | 
< | 
    temp = useSF; | 
| 861 | 
< | 
    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    | 
| 860 | 
> | 
#endif | 
| 861 | 
> | 
     | 
| 862 | 
> | 
    requiresPrepair_ = usesMetallicAtoms_ ? true : false;  | 
| 863 | 
> | 
    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 864 | 
> | 
    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;     | 
| 865 | 
> | 
  } | 
| 866 | 
  | 
 | 
| 858 | 
– | 
    temp = useSP; | 
| 859 | 
– | 
    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 867 | 
  | 
 | 
| 868 | 
< | 
    temp = useBoxDipole; | 
| 869 | 
< | 
    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  | 
| 868 | 
> | 
  vector<int> SimInfo::getGlobalAtomIndices() { | 
| 869 | 
> | 
    SimInfo::MoleculeIterator mi; | 
| 870 | 
> | 
    Molecule* mol; | 
| 871 | 
> | 
    Molecule::AtomIterator ai; | 
| 872 | 
> | 
    Atom* atom; | 
| 873 | 
  | 
 | 
| 874 | 
< | 
    temp = useAtomicVirial_; | 
| 875 | 
< | 
    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  | 
| 874 | 
> | 
    vector<int> GlobalAtomIndices(getNAtoms(), 0); | 
| 875 | 
> | 
     | 
| 876 | 
> | 
    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 877 | 
> | 
       | 
| 878 | 
> | 
      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 879 | 
> | 
        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); | 
| 880 | 
> | 
      } | 
| 881 | 
> | 
    } | 
| 882 | 
> | 
    return GlobalAtomIndices; | 
| 883 | 
> | 
  } | 
| 884 | 
  | 
 | 
| 867 | 
– | 
#endif | 
| 885 | 
  | 
 | 
| 886 | 
< | 
    fInfo_.SIM_uses_PBC = usePBC;     | 
| 887 | 
< | 
    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 888 | 
< | 
    fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 889 | 
< | 
    fInfo_.SIM_uses_Electrostatics = useElectrostatics;     | 
| 890 | 
< | 
    fInfo_.SIM_uses_Charges = useCharge; | 
| 874 | 
< | 
    fInfo_.SIM_uses_Dipoles = useDipole; | 
| 875 | 
< | 
    fInfo_.SIM_uses_Sticky = useSticky; | 
| 876 | 
< | 
    fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 877 | 
< | 
    fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 878 | 
< | 
    fInfo_.SIM_uses_EAM = useEAM; | 
| 879 | 
< | 
    fInfo_.SIM_uses_SC = useSC; | 
| 880 | 
< | 
    fInfo_.SIM_uses_Shapes = useShape; | 
| 881 | 
< | 
    fInfo_.SIM_uses_FLARB = useFLARB; | 
| 882 | 
< | 
    fInfo_.SIM_uses_RF = useRF; | 
| 883 | 
< | 
    fInfo_.SIM_uses_SF = useSF; | 
| 884 | 
< | 
    fInfo_.SIM_uses_SP = useSP; | 
| 885 | 
< | 
    fInfo_.SIM_uses_BoxDipole = useBoxDipole; | 
| 886 | 
< | 
    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; | 
| 887 | 
< | 
  } | 
| 886 | 
> | 
  vector<int> SimInfo::getGlobalGroupIndices() { | 
| 887 | 
> | 
    SimInfo::MoleculeIterator mi; | 
| 888 | 
> | 
    Molecule* mol; | 
| 889 | 
> | 
    Molecule::CutoffGroupIterator ci; | 
| 890 | 
> | 
    CutoffGroup* cg; | 
| 891 | 
  | 
 | 
| 892 | 
< | 
  void SimInfo::setupFortranSim() { | 
| 890 | 
< | 
    int isError; | 
| 891 | 
< | 
    int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 892 | 
< | 
    std::vector<int> fortranGlobalGroupMembership; | 
| 892 | 
> | 
    vector<int> GlobalGroupIndices; | 
| 893 | 
  | 
     | 
| 894 | 
< | 
    isError = 0; | 
| 895 | 
< | 
 | 
| 896 | 
< | 
    //globalGroupMembership_ is filled by SimCreator     | 
| 897 | 
< | 
    for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 898 | 
< | 
      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 894 | 
> | 
    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 895 | 
> | 
       | 
| 896 | 
> | 
      //local index of cutoff group is trivial, it only depends on the | 
| 897 | 
> | 
      //order of travesing | 
| 898 | 
> | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL;  | 
| 899 | 
> | 
           cg = mol->nextCutoffGroup(ci)) { | 
| 900 | 
> | 
        GlobalGroupIndices.push_back(cg->getGlobalIndex()); | 
| 901 | 
> | 
      }         | 
| 902 | 
  | 
    } | 
| 903 | 
+ | 
    return GlobalGroupIndices; | 
| 904 | 
+ | 
  } | 
| 905 | 
  | 
 | 
| 906 | 
+ | 
 | 
| 907 | 
+ | 
  void SimInfo::prepareTopology() { | 
| 908 | 
+ | 
 | 
| 909 | 
  | 
    //calculate mass ratio of cutoff group | 
| 902 | 
– | 
    std::vector<RealType> mfact; | 
| 910 | 
  | 
    SimInfo::MoleculeIterator mi; | 
| 911 | 
  | 
    Molecule* mol; | 
| 912 | 
  | 
    Molecule::CutoffGroupIterator ci; | 
| 915 | 
  | 
    Atom* atom; | 
| 916 | 
  | 
    RealType totalMass; | 
| 917 | 
  | 
 | 
| 918 | 
< | 
    //to avoid memory reallocation, reserve enough space for mfact | 
| 919 | 
< | 
    mfact.reserve(getNCutoffGroups()); | 
| 918 | 
> | 
    /** | 
| 919 | 
> | 
     * The mass factor is the relative mass of an atom to the total | 
| 920 | 
> | 
     * mass of the cutoff group it belongs to.  By default, all atoms | 
| 921 | 
> | 
     * are their own cutoff groups, and therefore have mass factors of | 
| 922 | 
> | 
     * 1.  We need some special handling for massless atoms, which | 
| 923 | 
> | 
     * will be treated as carrying the entire mass of the cutoff | 
| 924 | 
> | 
     * group. | 
| 925 | 
> | 
     */ | 
| 926 | 
> | 
    massFactors_.clear(); | 
| 927 | 
> | 
    massFactors_.resize(getNAtoms(), 1.0); | 
| 928 | 
  | 
     | 
| 929 | 
  | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {         | 
| 930 | 
< | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 930 | 
> | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL;  | 
| 931 | 
> | 
           cg = mol->nextCutoffGroup(ci)) { | 
| 932 | 
  | 
 | 
| 933 | 
  | 
        totalMass = cg->getMass(); | 
| 934 | 
  | 
        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 935 | 
  | 
          // Check for massless groups - set mfact to 1 if true | 
| 936 | 
< | 
          if (totalMass != 0) | 
| 937 | 
< | 
            mfact.push_back(atom->getMass()/totalMass); | 
| 936 | 
> | 
          if (totalMass != 0)  | 
| 937 | 
> | 
            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; | 
| 938 | 
  | 
          else | 
| 939 | 
< | 
            mfact.push_back( 1.0 ); | 
| 939 | 
> | 
            massFactors_[atom->getLocalIndex()] = 1.0; | 
| 940 | 
  | 
        } | 
| 941 | 
  | 
      }        | 
| 942 | 
  | 
    } | 
| 943 | 
  | 
 | 
| 944 | 
< | 
    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 929 | 
< | 
    std::vector<int> identArray; | 
| 944 | 
> | 
    // Build the identArray_ and regions_ | 
| 945 | 
  | 
 | 
| 946 | 
< | 
    //to avoid memory reallocation, reserve enough space identArray | 
| 947 | 
< | 
    identArray.reserve(getNAtoms()); | 
| 948 | 
< | 
     | 
| 949 | 
< | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {         | 
| 946 | 
> | 
    identArray_.clear(); | 
| 947 | 
> | 
    identArray_.reserve(getNAtoms());    | 
| 948 | 
> | 
    regions_.clear(); | 
| 949 | 
> | 
    regions_.reserve(getNAtoms()); | 
| 950 | 
> | 
  | 
| 951 | 
> | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {       | 
| 952 | 
> | 
      int reg = mol->getRegion();       | 
| 953 | 
  | 
      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 954 | 
< | 
        identArray.push_back(atom->getIdent()); | 
| 954 | 
> | 
        identArray_.push_back(atom->getIdent()); | 
| 955 | 
> | 
        regions_.push_back(reg); | 
| 956 | 
  | 
      } | 
| 957 | 
  | 
    }     | 
| 958 | 
+ | 
        | 
| 959 | 
+ | 
    topologyDone_ = true; | 
| 960 | 
+ | 
  } | 
| 961 | 
  | 
 | 
| 962 | 
< | 
    //fill molMembershipArray | 
| 963 | 
< | 
    //molMembershipArray is filled by SimCreator     | 
| 964 | 
< | 
    std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 943 | 
< | 
    for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 944 | 
< | 
      molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 945 | 
< | 
    } | 
| 946 | 
< | 
     | 
| 947 | 
< | 
    //setup fortran simulation | 
| 962 | 
> | 
  void SimInfo::addProperty(GenericData* genData) { | 
| 963 | 
> | 
    properties_.addProperty(genData);   | 
| 964 | 
> | 
  } | 
| 965 | 
  | 
 | 
| 966 | 
< | 
    nExclude = excludedInteractions_.getSize(); | 
| 967 | 
< | 
    nOneTwo = oneTwoInteractions_.getSize(); | 
| 968 | 
< | 
    nOneThree = oneThreeInteractions_.getSize(); | 
| 952 | 
< | 
    nOneFour = oneFourInteractions_.getSize(); | 
| 966 | 
> | 
  void SimInfo::removeProperty(const string& propName) { | 
| 967 | 
> | 
    properties_.removeProperty(propName);   | 
| 968 | 
> | 
  } | 
| 969 | 
  | 
 | 
| 970 | 
< | 
    int* excludeList = excludedInteractions_.getPairList(); | 
| 971 | 
< | 
    int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 972 | 
< | 
    int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 957 | 
< | 
    int* oneFourList = oneFourInteractions_.getPairList(); | 
| 970 | 
> | 
  void SimInfo::clearProperties() { | 
| 971 | 
> | 
    properties_.clearProperties();  | 
| 972 | 
> | 
  } | 
| 973 | 
  | 
 | 
| 974 | 
< | 
    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],  | 
| 975 | 
< | 
                   &nExclude, excludeList,  | 
| 976 | 
< | 
                   &nOneTwo, oneTwoList, | 
| 962 | 
< | 
                   &nOneThree, oneThreeList, | 
| 963 | 
< | 
                   &nOneFour, oneFourList, | 
| 964 | 
< | 
                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,  | 
| 965 | 
< | 
                   &fortranGlobalGroupMembership[0], &isError);  | 
| 966 | 
< | 
     | 
| 967 | 
< | 
    if( isError ){ | 
| 974 | 
> | 
  vector<string> SimInfo::getPropertyNames() { | 
| 975 | 
> | 
    return properties_.getPropertyNames();   | 
| 976 | 
> | 
  } | 
| 977 | 
  | 
       | 
| 978 | 
< | 
      sprintf( painCave.errMsg, | 
| 979 | 
< | 
               "There was an error setting the simulation information in fortran.\n" ); | 
| 980 | 
< | 
      painCave.isFatal = 1; | 
| 972 | 
< | 
      painCave.severity = OPENMD_ERROR; | 
| 973 | 
< | 
      simError(); | 
| 974 | 
< | 
    } | 
| 975 | 
< | 
     | 
| 976 | 
< | 
     | 
| 977 | 
< | 
    sprintf( checkPointMsg, | 
| 978 | 
< | 
             "succesfully sent the simulation information to fortran.\n"); | 
| 979 | 
< | 
     | 
| 980 | 
< | 
    errorCheckPoint(); | 
| 981 | 
< | 
     | 
| 982 | 
< | 
    // Setup number of neighbors in neighbor list if present | 
| 983 | 
< | 
    if (simParams_->haveNeighborListNeighbors()) { | 
| 984 | 
< | 
      int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 985 | 
< | 
      setNeighbors(&nlistNeighbors); | 
| 986 | 
< | 
    } | 
| 987 | 
< | 
    | 
| 978 | 
> | 
  vector<GenericData*> SimInfo::getProperties() {  | 
| 979 | 
> | 
    return properties_.getProperties();  | 
| 980 | 
> | 
  } | 
| 981 | 
  | 
 | 
| 982 | 
+ | 
  GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 983 | 
+ | 
    return properties_.getPropertyByName(propName);  | 
| 984 | 
  | 
  } | 
| 985 | 
  | 
 | 
| 986 | 
+ | 
  void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 987 | 
+ | 
    if (sman_ == sman) { | 
| 988 | 
+ | 
      return; | 
| 989 | 
+ | 
    }     | 
| 990 | 
+ | 
    delete sman_; | 
| 991 | 
+ | 
    sman_ = sman; | 
| 992 | 
  | 
 | 
| 992 | 
– | 
  void SimInfo::setupFortranParallel() { | 
| 993 | 
– | 
#ifdef IS_MPI     | 
| 994 | 
– | 
    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 995 | 
– | 
    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 996 | 
– | 
    std::vector<int> localToGlobalCutoffGroupIndex; | 
| 997 | 
– | 
    SimInfo::MoleculeIterator mi; | 
| 998 | 
– | 
    Molecule::AtomIterator ai; | 
| 999 | 
– | 
    Molecule::CutoffGroupIterator ci; | 
| 993 | 
  | 
    Molecule* mol; | 
| 994 | 
+ | 
    RigidBody* rb; | 
| 995 | 
  | 
    Atom* atom; | 
| 996 | 
  | 
    CutoffGroup* cg; | 
| 997 | 
< | 
    mpiSimData parallelData; | 
| 998 | 
< | 
    int isError; | 
| 999 | 
< | 
 | 
| 1000 | 
< | 
    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 1001 | 
< | 
 | 
| 1002 | 
< | 
      //local index(index in DataStorge) of atom is important | 
| 1009 | 
< | 
      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 1010 | 
< | 
        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 1011 | 
< | 
      } | 
| 1012 | 
< | 
 | 
| 1013 | 
< | 
      //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 1014 | 
< | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 1015 | 
< | 
        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 1016 | 
< | 
      }         | 
| 997 | 
> | 
    SimInfo::MoleculeIterator mi; | 
| 998 | 
> | 
    Molecule::RigidBodyIterator rbIter; | 
| 999 | 
> | 
    Molecule::AtomIterator atomIter; | 
| 1000 | 
> | 
    Molecule::CutoffGroupIterator cgIter; | 
| 1001 | 
> | 
  | 
| 1002 | 
> | 
    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1003 | 
  | 
         | 
| 1004 | 
< | 
    } | 
| 1005 | 
< | 
 | 
| 1006 | 
< | 
    //fill up mpiSimData struct | 
| 1021 | 
< | 
    parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 1022 | 
< | 
    parallelData.nMolLocal = getNMolecules(); | 
| 1023 | 
< | 
    parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 1024 | 
< | 
    parallelData.nAtomsLocal = getNAtoms(); | 
| 1025 | 
< | 
    parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 1026 | 
< | 
    parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 1027 | 
< | 
    parallelData.myNode = worldRank; | 
| 1028 | 
< | 
    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 1029 | 
< | 
 | 
| 1030 | 
< | 
    //pass mpiSimData struct and index arrays to fortran | 
| 1031 | 
< | 
    setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 1032 | 
< | 
                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 1033 | 
< | 
                    &localToGlobalCutoffGroupIndex[0], &isError); | 
| 1034 | 
< | 
 | 
| 1035 | 
< | 
    if (isError) { | 
| 1036 | 
< | 
      sprintf(painCave.errMsg, | 
| 1037 | 
< | 
              "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 1038 | 
< | 
      painCave.isFatal = 1; | 
| 1039 | 
< | 
      simError(); | 
| 1040 | 
< | 
    } | 
| 1041 | 
< | 
 | 
| 1042 | 
< | 
    sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 1043 | 
< | 
    errorCheckPoint(); | 
| 1044 | 
< | 
 | 
| 1045 | 
< | 
#endif | 
| 1046 | 
< | 
  } | 
| 1047 | 
< | 
 | 
| 1048 | 
< | 
  void SimInfo::setupCutoff() {            | 
| 1049 | 
< | 
     | 
| 1050 | 
< | 
    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); | 
| 1051 | 
< | 
 | 
| 1052 | 
< | 
    // Check the cutoff policy | 
| 1053 | 
< | 
    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default | 
| 1054 | 
< | 
 | 
| 1055 | 
< | 
    // Set LJ shifting bools to false | 
| 1056 | 
< | 
    ljsp_ = 0; | 
| 1057 | 
< | 
    ljsf_ = 0; | 
| 1058 | 
< | 
 | 
| 1059 | 
< | 
    std::string myPolicy; | 
| 1060 | 
< | 
    if (forceFieldOptions_.haveCutoffPolicy()){ | 
| 1061 | 
< | 
      myPolicy = forceFieldOptions_.getCutoffPolicy(); | 
| 1062 | 
< | 
    }else if (simParams_->haveCutoffPolicy()) { | 
| 1063 | 
< | 
      myPolicy = simParams_->getCutoffPolicy(); | 
| 1064 | 
< | 
    } | 
| 1065 | 
< | 
 | 
| 1066 | 
< | 
    if (!myPolicy.empty()){ | 
| 1067 | 
< | 
      toUpper(myPolicy); | 
| 1068 | 
< | 
      if (myPolicy == "MIX") { | 
| 1069 | 
< | 
        cp = MIX_CUTOFF_POLICY; | 
| 1070 | 
< | 
      } else { | 
| 1071 | 
< | 
        if (myPolicy == "MAX") { | 
| 1072 | 
< | 
          cp = MAX_CUTOFF_POLICY; | 
| 1073 | 
< | 
        } else { | 
| 1074 | 
< | 
          if (myPolicy == "TRADITIONAL") {             | 
| 1075 | 
< | 
            cp = TRADITIONAL_CUTOFF_POLICY; | 
| 1076 | 
< | 
          } else { | 
| 1077 | 
< | 
            // throw error         | 
| 1078 | 
< | 
            sprintf( painCave.errMsg, | 
| 1079 | 
< | 
                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 1080 | 
< | 
            painCave.isFatal = 1; | 
| 1081 | 
< | 
            simError(); | 
| 1082 | 
< | 
          }      | 
| 1083 | 
< | 
        }            | 
| 1004 | 
> | 
      for (atom = mol->beginAtom(atomIter); atom != NULL;  | 
| 1005 | 
> | 
           atom = mol->nextAtom(atomIter)) { | 
| 1006 | 
> | 
        atom->setSnapshotManager(sman_); | 
| 1007 | 
  | 
      } | 
| 1085 | 
– | 
    }            | 
| 1086 | 
– | 
    notifyFortranCutoffPolicy(&cp); | 
| 1087 | 
– | 
 | 
| 1088 | 
– | 
    // Check the Skin Thickness for neighborlists | 
| 1089 | 
– | 
    RealType skin; | 
| 1090 | 
– | 
    if (simParams_->haveSkinThickness()) { | 
| 1091 | 
– | 
      skin = simParams_->getSkinThickness(); | 
| 1092 | 
– | 
      notifyFortranSkinThickness(&skin); | 
| 1093 | 
– | 
    }             | 
| 1008 | 
  | 
         | 
| 1009 | 
< | 
    // Check if the cutoff was set explicitly: | 
| 1010 | 
< | 
    if (simParams_->haveCutoffRadius()) { | 
| 1011 | 
< | 
      rcut_ = simParams_->getCutoffRadius(); | 
| 1098 | 
< | 
      if (simParams_->haveSwitchingRadius()) { | 
| 1099 | 
< | 
        rsw_  = simParams_->getSwitchingRadius(); | 
| 1100 | 
< | 
      } else { | 
| 1101 | 
< | 
        if (fInfo_.SIM_uses_Charges |  | 
| 1102 | 
< | 
            fInfo_.SIM_uses_Dipoles |  | 
| 1103 | 
< | 
            fInfo_.SIM_uses_RF) { | 
| 1104 | 
< | 
           | 
| 1105 | 
< | 
          rsw_ = 0.85 * rcut_; | 
| 1106 | 
< | 
          sprintf(painCave.errMsg, | 
| 1107 | 
< | 
                  "SimCreator Warning: No value was set for the switchingRadius.\n" | 
| 1108 | 
< | 
                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" | 
| 1109 | 
< | 
                  "\tswitchingRadius = %f. for this simulation\n", rsw_); | 
| 1110 | 
< | 
        painCave.isFatal = 0; | 
| 1111 | 
< | 
        simError(); | 
| 1112 | 
< | 
        } else { | 
| 1113 | 
< | 
          rsw_ = rcut_; | 
| 1114 | 
< | 
          sprintf(painCave.errMsg, | 
| 1115 | 
< | 
                  "SimCreator Warning: No value was set for the switchingRadius.\n" | 
| 1116 | 
< | 
                  "\tOpenMD will use the same value as the cutoffRadius.\n" | 
| 1117 | 
< | 
                  "\tswitchingRadius = %f. for this simulation\n", rsw_); | 
| 1118 | 
< | 
          painCave.isFatal = 0; | 
| 1119 | 
< | 
          simError(); | 
| 1120 | 
< | 
        } | 
| 1009 | 
> | 
      for (rb = mol->beginRigidBody(rbIter); rb != NULL;  | 
| 1010 | 
> | 
           rb = mol->nextRigidBody(rbIter)) { | 
| 1011 | 
> | 
        rb->setSnapshotManager(sman_); | 
| 1012 | 
  | 
      } | 
| 1013 | 
  | 
 | 
| 1014 | 
< | 
      if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1015 | 
< | 
        std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1016 | 
< | 
        toUpper(myMethod); | 
| 1126 | 
< | 
         | 
| 1127 | 
< | 
        if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1128 | 
< | 
          ljsp_ = 1; | 
| 1129 | 
< | 
        } else if (myMethod == "SHIFTED_FORCE") { | 
| 1130 | 
< | 
          ljsf_ = 1; | 
| 1131 | 
< | 
        } | 
| 1014 | 
> | 
      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;  | 
| 1015 | 
> | 
           cg = mol->nextCutoffGroup(cgIter)) { | 
| 1016 | 
> | 
        cg->setSnapshotManager(sman_); | 
| 1017 | 
  | 
      } | 
| 1018 | 
< | 
 | 
| 1019 | 
< | 
      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); | 
| 1135 | 
< | 
       | 
| 1136 | 
< | 
    } else { | 
| 1137 | 
< | 
       | 
| 1138 | 
< | 
      // For electrostatic atoms, we'll assume a large safe value: | 
| 1139 | 
< | 
      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 1140 | 
< | 
        sprintf(painCave.errMsg, | 
| 1141 | 
< | 
                "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 1142 | 
< | 
                "\tOpenMD will use a default value of 15.0 angstroms" | 
| 1143 | 
< | 
                "\tfor the cutoffRadius.\n"); | 
| 1144 | 
< | 
        painCave.isFatal = 0; | 
| 1145 | 
< | 
        simError(); | 
| 1146 | 
< | 
        rcut_ = 15.0; | 
| 1147 | 
< | 
       | 
| 1148 | 
< | 
        if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1149 | 
< | 
          std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1150 | 
< | 
          toUpper(myMethod); | 
| 1151 | 
< | 
       | 
| 1152 | 
< | 
      // For the time being, we're tethering the LJ shifted behavior to the | 
| 1153 | 
< | 
      // electrostaticSummationMethod keyword options | 
| 1154 | 
< | 
          if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1155 | 
< | 
            ljsp_ = 1; | 
| 1156 | 
< | 
          } else if (myMethod == "SHIFTED_FORCE") { | 
| 1157 | 
< | 
            ljsf_ = 1; | 
| 1158 | 
< | 
          } | 
| 1159 | 
< | 
          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { | 
| 1160 | 
< | 
            if (simParams_->haveSwitchingRadius()){ | 
| 1161 | 
< | 
              sprintf(painCave.errMsg, | 
| 1162 | 
< | 
                      "SimInfo Warning: A value was set for the switchingRadius\n" | 
| 1163 | 
< | 
                      "\teven though the electrostaticSummationMethod was\n" | 
| 1164 | 
< | 
                      "\tset to %s\n", myMethod.c_str()); | 
| 1165 | 
< | 
              painCave.isFatal = 1; | 
| 1166 | 
< | 
              simError();             | 
| 1167 | 
< | 
            }  | 
| 1168 | 
< | 
          } | 
| 1169 | 
< | 
        } | 
| 1170 | 
< | 
       | 
| 1171 | 
< | 
        if (simParams_->haveSwitchingRadius()){ | 
| 1172 | 
< | 
          rsw_ = simParams_->getSwitchingRadius(); | 
| 1173 | 
< | 
        } else {         | 
| 1174 | 
< | 
          sprintf(painCave.errMsg, | 
| 1175 | 
< | 
                  "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 1176 | 
< | 
                  "\tOpenMD will use a default value of\n" | 
| 1177 | 
< | 
                  "\t0.85 * cutoffRadius for the switchingRadius\n"); | 
| 1178 | 
< | 
          painCave.isFatal = 0; | 
| 1179 | 
< | 
          simError(); | 
| 1180 | 
< | 
          rsw_ = 0.85 * rcut_; | 
| 1181 | 
< | 
        } | 
| 1182 | 
< | 
 | 
| 1183 | 
< | 
        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); | 
| 1184 | 
< | 
 | 
| 1185 | 
< | 
      } else { | 
| 1186 | 
< | 
        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so | 
| 1187 | 
< | 
        // We'll punt and let fortran figure out the cutoffs later. | 
| 1188 | 
< | 
         | 
| 1189 | 
< | 
        notifyFortranYouAreOnYourOwn(); | 
| 1190 | 
< | 
 | 
| 1191 | 
< | 
      } | 
| 1192 | 
< | 
    } | 
| 1018 | 
> | 
    }     | 
| 1019 | 
> | 
     | 
| 1020 | 
  | 
  } | 
| 1021 | 
  | 
 | 
| 1195 | 
– | 
  void SimInfo::setupElectrostaticSummationMethod( int isError ) {     | 
| 1196 | 
– | 
      | 
| 1197 | 
– | 
    int errorOut; | 
| 1198 | 
– | 
    int esm =  NONE; | 
| 1199 | 
– | 
    int sm = UNDAMPED; | 
| 1200 | 
– | 
    RealType alphaVal; | 
| 1201 | 
– | 
    RealType dielectric; | 
| 1202 | 
– | 
     | 
| 1203 | 
– | 
    errorOut = isError; | 
| 1022 | 
  | 
 | 
| 1023 | 
< | 
    if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1206 | 
< | 
      std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1207 | 
< | 
      toUpper(myMethod); | 
| 1208 | 
< | 
      if (myMethod == "NONE") { | 
| 1209 | 
< | 
        esm = NONE; | 
| 1210 | 
< | 
      } else { | 
| 1211 | 
< | 
        if (myMethod == "SWITCHING_FUNCTION") { | 
| 1212 | 
< | 
          esm = SWITCHING_FUNCTION; | 
| 1213 | 
< | 
        } else { | 
| 1214 | 
< | 
          if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1215 | 
< | 
            esm = SHIFTED_POTENTIAL; | 
| 1216 | 
< | 
          } else { | 
| 1217 | 
< | 
            if (myMethod == "SHIFTED_FORCE") {             | 
| 1218 | 
< | 
              esm = SHIFTED_FORCE; | 
| 1219 | 
< | 
            } else { | 
| 1220 | 
< | 
              if (myMethod == "REACTION_FIELD") { | 
| 1221 | 
< | 
                esm = REACTION_FIELD; | 
| 1222 | 
< | 
                dielectric = simParams_->getDielectric(); | 
| 1223 | 
< | 
                if (!simParams_->haveDielectric()) { | 
| 1224 | 
< | 
                  // throw warning | 
| 1225 | 
< | 
                  sprintf( painCave.errMsg, | 
| 1226 | 
< | 
                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" | 
| 1227 | 
< | 
                           "\tA default value of %f will be used for the dielectric.\n", dielectric); | 
| 1228 | 
< | 
                  painCave.isFatal = 0; | 
| 1229 | 
< | 
                  simError(); | 
| 1230 | 
< | 
                } | 
| 1231 | 
< | 
              } else { | 
| 1232 | 
< | 
                // throw error         | 
| 1233 | 
< | 
                sprintf( painCave.errMsg, | 
| 1234 | 
< | 
                         "SimInfo error: Unknown electrostaticSummationMethod.\n" | 
| 1235 | 
< | 
                         "\t(Input file specified %s .)\n" | 
| 1236 | 
< | 
                         "\telectrostaticSummationMethod must be one of: \"none\",\n" | 
| 1237 | 
< | 
                         "\t\"shifted_potential\", \"shifted_force\", or \n" | 
| 1238 | 
< | 
                         "\t\"reaction_field\".\n", myMethod.c_str() ); | 
| 1239 | 
< | 
                painCave.isFatal = 1; | 
| 1240 | 
< | 
                simError(); | 
| 1241 | 
< | 
              }      | 
| 1242 | 
< | 
            }            | 
| 1243 | 
< | 
          } | 
| 1244 | 
< | 
        } | 
| 1245 | 
< | 
      } | 
| 1246 | 
< | 
    } | 
| 1247 | 
< | 
     | 
| 1248 | 
< | 
    if (simParams_->haveElectrostaticScreeningMethod()) { | 
| 1249 | 
< | 
      std::string myScreen = simParams_->getElectrostaticScreeningMethod(); | 
| 1250 | 
< | 
      toUpper(myScreen); | 
| 1251 | 
< | 
      if (myScreen == "UNDAMPED") { | 
| 1252 | 
< | 
        sm = UNDAMPED; | 
| 1253 | 
< | 
      } else { | 
| 1254 | 
< | 
        if (myScreen == "DAMPED") { | 
| 1255 | 
< | 
          sm = DAMPED; | 
| 1256 | 
< | 
          if (!simParams_->haveDampingAlpha()) { | 
| 1257 | 
< | 
            // first set a cutoff dependent alpha value | 
| 1258 | 
< | 
            // we assume alpha depends linearly with rcut from 0 to 20.5 ang | 
| 1259 | 
< | 
            alphaVal = 0.5125 - rcut_* 0.025; | 
| 1260 | 
< | 
            // for values rcut > 20.5, alpha is zero | 
| 1261 | 
< | 
            if (alphaVal < 0) alphaVal = 0; | 
| 1023 | 
> | 
  ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1024 | 
  | 
 | 
| 1263 | 
– | 
            // throw warning | 
| 1264 | 
– | 
            sprintf( painCave.errMsg, | 
| 1265 | 
– | 
                     "SimInfo warning: dampingAlpha was not specified in the input file.\n" | 
| 1266 | 
– | 
                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); | 
| 1267 | 
– | 
            painCave.isFatal = 0; | 
| 1268 | 
– | 
            simError(); | 
| 1269 | 
– | 
          } else { | 
| 1270 | 
– | 
            alphaVal = simParams_->getDampingAlpha(); | 
| 1271 | 
– | 
          } | 
| 1272 | 
– | 
           | 
| 1273 | 
– | 
        } else { | 
| 1274 | 
– | 
          // throw error         | 
| 1275 | 
– | 
          sprintf( painCave.errMsg, | 
| 1276 | 
– | 
                   "SimInfo error: Unknown electrostaticScreeningMethod.\n" | 
| 1277 | 
– | 
                   "\t(Input file specified %s .)\n" | 
| 1278 | 
– | 
                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n" | 
| 1279 | 
– | 
                   "or \"damped\".\n", myScreen.c_str() ); | 
| 1280 | 
– | 
          painCave.isFatal = 1; | 
| 1281 | 
– | 
          simError(); | 
| 1282 | 
– | 
        } | 
| 1283 | 
– | 
      } | 
| 1284 | 
– | 
    } | 
| 1285 | 
– | 
     | 
| 1286 | 
– | 
    // let's pass some summation method variables to fortran | 
| 1287 | 
– | 
    setElectrostaticSummationMethod( &esm ); | 
| 1288 | 
– | 
    setFortranElectrostaticMethod( &esm ); | 
| 1289 | 
– | 
    setScreeningMethod( &sm ); | 
| 1290 | 
– | 
    setDampingAlpha( &alphaVal ); | 
| 1291 | 
– | 
    setReactionFieldDielectric( &dielectric ); | 
| 1292 | 
– | 
    initFortranFF( &errorOut ); | 
| 1293 | 
– | 
  } | 
| 1294 | 
– | 
 | 
| 1295 | 
– | 
  void SimInfo::setupSwitchingFunction() {     | 
| 1296 | 
– | 
    int ft = CUBIC; | 
| 1297 | 
– | 
 | 
| 1298 | 
– | 
    if (simParams_->haveSwitchingFunctionType()) { | 
| 1299 | 
– | 
      std::string funcType = simParams_->getSwitchingFunctionType(); | 
| 1300 | 
– | 
      toUpper(funcType); | 
| 1301 | 
– | 
      if (funcType == "CUBIC") { | 
| 1302 | 
– | 
        ft = CUBIC; | 
| 1303 | 
– | 
      } else { | 
| 1304 | 
– | 
        if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 1305 | 
– | 
          ft = FIFTH_ORDER_POLY; | 
| 1306 | 
– | 
        } else { | 
| 1307 | 
– | 
          // throw error         | 
| 1308 | 
– | 
          sprintf( painCave.errMsg, | 
| 1309 | 
– | 
                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); | 
| 1310 | 
– | 
          painCave.isFatal = 1; | 
| 1311 | 
– | 
          simError(); | 
| 1312 | 
– | 
        }            | 
| 1313 | 
– | 
      } | 
| 1314 | 
– | 
    } | 
| 1315 | 
– | 
 | 
| 1316 | 
– | 
    // send switching function notification to switcheroo | 
| 1317 | 
– | 
    setFunctionType(&ft); | 
| 1318 | 
– | 
 | 
| 1319 | 
– | 
  } | 
| 1320 | 
– | 
 | 
| 1321 | 
– | 
  void SimInfo::setupAccumulateBoxDipole() {     | 
| 1322 | 
– | 
 | 
| 1323 | 
– | 
    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 1324 | 
– | 
    if ( simParams_->haveAccumulateBoxDipole() )  | 
| 1325 | 
– | 
      if ( simParams_->getAccumulateBoxDipole() ) { | 
| 1326 | 
– | 
        setAccumulateBoxDipole(); | 
| 1327 | 
– | 
        calcBoxDipole_ = true; | 
| 1328 | 
– | 
      } | 
| 1329 | 
– | 
 | 
| 1330 | 
– | 
  } | 
| 1331 | 
– | 
 | 
| 1332 | 
– | 
  void SimInfo::addProperty(GenericData* genData) { | 
| 1333 | 
– | 
    properties_.addProperty(genData);   | 
| 1334 | 
– | 
  } | 
| 1335 | 
– | 
 | 
| 1336 | 
– | 
  void SimInfo::removeProperty(const std::string& propName) { | 
| 1337 | 
– | 
    properties_.removeProperty(propName);   | 
| 1338 | 
– | 
  } | 
| 1339 | 
– | 
 | 
| 1340 | 
– | 
  void SimInfo::clearProperties() { | 
| 1341 | 
– | 
    properties_.clearProperties();  | 
| 1342 | 
– | 
  } | 
| 1343 | 
– | 
 | 
| 1344 | 
– | 
  std::vector<std::string> SimInfo::getPropertyNames() { | 
| 1345 | 
– | 
    return properties_.getPropertyNames();   | 
| 1346 | 
– | 
  } | 
| 1347 | 
– | 
       | 
| 1348 | 
– | 
  std::vector<GenericData*> SimInfo::getProperties() {  | 
| 1349 | 
– | 
    return properties_.getProperties();  | 
| 1350 | 
– | 
  } | 
| 1351 | 
– | 
 | 
| 1352 | 
– | 
  GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 1353 | 
– | 
    return properties_.getPropertyByName(propName);  | 
| 1354 | 
– | 
  } | 
| 1355 | 
– | 
 | 
| 1356 | 
– | 
  void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1357 | 
– | 
    if (sman_ == sman) { | 
| 1358 | 
– | 
      return; | 
| 1359 | 
– | 
    }     | 
| 1360 | 
– | 
    delete sman_; | 
| 1361 | 
– | 
    sman_ = sman; | 
| 1362 | 
– | 
 | 
| 1363 | 
– | 
    Molecule* mol; | 
| 1364 | 
– | 
    RigidBody* rb; | 
| 1365 | 
– | 
    Atom* atom; | 
| 1366 | 
– | 
    SimInfo::MoleculeIterator mi; | 
| 1367 | 
– | 
    Molecule::RigidBodyIterator rbIter; | 
| 1368 | 
– | 
    Molecule::AtomIterator atomIter;; | 
| 1369 | 
– | 
  | 
| 1370 | 
– | 
    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1371 | 
– | 
         | 
| 1372 | 
– | 
      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1373 | 
– | 
        atom->setSnapshotManager(sman_); | 
| 1374 | 
– | 
      } | 
| 1375 | 
– | 
         | 
| 1376 | 
– | 
      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1377 | 
– | 
        rb->setSnapshotManager(sman_); | 
| 1378 | 
– | 
      } | 
| 1379 | 
– | 
    }     | 
| 1380 | 
– | 
     | 
| 1381 | 
– | 
  } | 
| 1382 | 
– | 
 | 
| 1383 | 
– | 
  Vector3d SimInfo::getComVel(){  | 
| 1384 | 
– | 
    SimInfo::MoleculeIterator i; | 
| 1385 | 
– | 
    Molecule* mol; | 
| 1386 | 
– | 
 | 
| 1387 | 
– | 
    Vector3d comVel(0.0); | 
| 1388 | 
– | 
    RealType totalMass = 0.0; | 
| 1389 | 
– | 
     | 
| 1390 | 
– | 
  | 
| 1391 | 
– | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1392 | 
– | 
      RealType mass = mol->getMass(); | 
| 1393 | 
– | 
      totalMass += mass; | 
| 1394 | 
– | 
      comVel += mass * mol->getComVel(); | 
| 1395 | 
– | 
    }   | 
| 1396 | 
– | 
 | 
| 1397 | 
– | 
#ifdef IS_MPI | 
| 1398 | 
– | 
    RealType tmpMass = totalMass; | 
| 1399 | 
– | 
    Vector3d tmpComVel(comVel);     | 
| 1400 | 
– | 
    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1401 | 
– | 
    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1402 | 
– | 
#endif | 
| 1403 | 
– | 
 | 
| 1404 | 
– | 
    comVel /= totalMass; | 
| 1405 | 
– | 
 | 
| 1406 | 
– | 
    return comVel; | 
| 1407 | 
– | 
  } | 
| 1408 | 
– | 
 | 
| 1409 | 
– | 
  Vector3d SimInfo::getCom(){  | 
| 1410 | 
– | 
    SimInfo::MoleculeIterator i; | 
| 1411 | 
– | 
    Molecule* mol; | 
| 1412 | 
– | 
 | 
| 1413 | 
– | 
    Vector3d com(0.0); | 
| 1414 | 
– | 
    RealType totalMass = 0.0; | 
| 1415 | 
– | 
      | 
| 1416 | 
– | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1417 | 
– | 
      RealType mass = mol->getMass(); | 
| 1418 | 
– | 
      totalMass += mass; | 
| 1419 | 
– | 
      com += mass * mol->getCom(); | 
| 1420 | 
– | 
    }   | 
| 1421 | 
– | 
 | 
| 1422 | 
– | 
#ifdef IS_MPI | 
| 1423 | 
– | 
    RealType tmpMass = totalMass; | 
| 1424 | 
– | 
    Vector3d tmpCom(com);     | 
| 1425 | 
– | 
    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1426 | 
– | 
    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1427 | 
– | 
#endif | 
| 1428 | 
– | 
 | 
| 1429 | 
– | 
    com /= totalMass; | 
| 1430 | 
– | 
 | 
| 1431 | 
– | 
    return com; | 
| 1432 | 
– | 
 | 
| 1433 | 
– | 
  }         | 
| 1434 | 
– | 
 | 
| 1435 | 
– | 
  std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1436 | 
– | 
 | 
| 1025 | 
  | 
    return o; | 
| 1026 | 
  | 
  } | 
| 1027 | 
  | 
    | 
| 1028 | 
< | 
    | 
| 1441 | 
< | 
   /*  | 
| 1442 | 
< | 
   Returns center of mass and center of mass velocity in one function call. | 
| 1443 | 
< | 
   */ | 
| 1444 | 
< | 
    | 
| 1445 | 
< | 
   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){  | 
| 1446 | 
< | 
      SimInfo::MoleculeIterator i; | 
| 1447 | 
< | 
      Molecule* mol; | 
| 1448 | 
< | 
       | 
| 1449 | 
< | 
     | 
| 1450 | 
< | 
      RealType totalMass = 0.0; | 
| 1451 | 
< | 
     | 
| 1452 | 
< | 
 | 
| 1453 | 
< | 
      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1454 | 
< | 
         RealType mass = mol->getMass(); | 
| 1455 | 
< | 
         totalMass += mass; | 
| 1456 | 
< | 
         com += mass * mol->getCom(); | 
| 1457 | 
< | 
         comVel += mass * mol->getComVel();            | 
| 1458 | 
< | 
      }   | 
| 1459 | 
< | 
       | 
| 1460 | 
< | 
#ifdef IS_MPI | 
| 1461 | 
< | 
      RealType tmpMass = totalMass; | 
| 1462 | 
< | 
      Vector3d tmpCom(com);   | 
| 1463 | 
< | 
      Vector3d tmpComVel(comVel); | 
| 1464 | 
< | 
      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1465 | 
< | 
      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1466 | 
< | 
      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1467 | 
< | 
#endif | 
| 1468 | 
< | 
       | 
| 1469 | 
< | 
      com /= totalMass; | 
| 1470 | 
< | 
      comVel /= totalMass; | 
| 1471 | 
< | 
   }         | 
| 1472 | 
< | 
    | 
| 1473 | 
< | 
   /*  | 
| 1474 | 
< | 
   Return intertia tensor for entire system and angular momentum Vector. | 
| 1475 | 
< | 
 | 
| 1476 | 
< | 
 | 
| 1477 | 
< | 
       [  Ixx -Ixy  -Ixz ] | 
| 1478 | 
< | 
  J =| -Iyx  Iyy  -Iyz | | 
| 1479 | 
< | 
       [ -Izx -Iyz   Izz ] | 
| 1480 | 
< | 
    */ | 
| 1481 | 
< | 
 | 
| 1482 | 
< | 
   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1483 | 
< | 
       | 
| 1484 | 
< | 
  | 
| 1485 | 
< | 
      RealType xx = 0.0; | 
| 1486 | 
< | 
      RealType yy = 0.0; | 
| 1487 | 
< | 
      RealType zz = 0.0; | 
| 1488 | 
< | 
      RealType xy = 0.0; | 
| 1489 | 
< | 
      RealType xz = 0.0; | 
| 1490 | 
< | 
      RealType yz = 0.0; | 
| 1491 | 
< | 
      Vector3d com(0.0); | 
| 1492 | 
< | 
      Vector3d comVel(0.0); | 
| 1493 | 
< | 
       | 
| 1494 | 
< | 
      getComAll(com, comVel); | 
| 1495 | 
< | 
       | 
| 1496 | 
< | 
      SimInfo::MoleculeIterator i; | 
| 1497 | 
< | 
      Molecule* mol; | 
| 1498 | 
< | 
       | 
| 1499 | 
< | 
      Vector3d thisq(0.0); | 
| 1500 | 
< | 
      Vector3d thisv(0.0); | 
| 1501 | 
< | 
 | 
| 1502 | 
< | 
      RealType thisMass = 0.0; | 
| 1503 | 
< | 
      | 
| 1504 | 
< | 
       | 
| 1505 | 
< | 
       | 
| 1506 | 
< | 
    | 
| 1507 | 
< | 
      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1508 | 
< | 
         | 
| 1509 | 
< | 
         thisq = mol->getCom()-com; | 
| 1510 | 
< | 
         thisv = mol->getComVel()-comVel; | 
| 1511 | 
< | 
         thisMass = mol->getMass(); | 
| 1512 | 
< | 
         // Compute moment of intertia coefficients. | 
| 1513 | 
< | 
         xx += thisq[0]*thisq[0]*thisMass; | 
| 1514 | 
< | 
         yy += thisq[1]*thisq[1]*thisMass; | 
| 1515 | 
< | 
         zz += thisq[2]*thisq[2]*thisMass; | 
| 1516 | 
< | 
          | 
| 1517 | 
< | 
         // compute products of intertia | 
| 1518 | 
< | 
         xy += thisq[0]*thisq[1]*thisMass; | 
| 1519 | 
< | 
         xz += thisq[0]*thisq[2]*thisMass; | 
| 1520 | 
< | 
         yz += thisq[1]*thisq[2]*thisMass; | 
| 1521 | 
< | 
             | 
| 1522 | 
< | 
         angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1523 | 
< | 
             | 
| 1524 | 
< | 
      }   | 
| 1525 | 
< | 
       | 
| 1526 | 
< | 
       | 
| 1527 | 
< | 
      inertiaTensor(0,0) = yy + zz; | 
| 1528 | 
< | 
      inertiaTensor(0,1) = -xy; | 
| 1529 | 
< | 
      inertiaTensor(0,2) = -xz; | 
| 1530 | 
< | 
      inertiaTensor(1,0) = -xy; | 
| 1531 | 
< | 
      inertiaTensor(1,1) = xx + zz; | 
| 1532 | 
< | 
      inertiaTensor(1,2) = -yz; | 
| 1533 | 
< | 
      inertiaTensor(2,0) = -xz; | 
| 1534 | 
< | 
      inertiaTensor(2,1) = -yz; | 
| 1535 | 
< | 
      inertiaTensor(2,2) = xx + yy; | 
| 1536 | 
< | 
       | 
| 1537 | 
< | 
#ifdef IS_MPI | 
| 1538 | 
< | 
      Mat3x3d tmpI(inertiaTensor); | 
| 1539 | 
< | 
      Vector3d tmpAngMom; | 
| 1540 | 
< | 
      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1541 | 
< | 
      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1542 | 
< | 
#endif | 
| 1543 | 
< | 
                | 
| 1544 | 
< | 
      return; | 
| 1545 | 
< | 
   } | 
| 1546 | 
< | 
 | 
| 1547 | 
< | 
   //Returns the angular momentum of the system | 
| 1548 | 
< | 
   Vector3d SimInfo::getAngularMomentum(){ | 
| 1549 | 
< | 
       | 
| 1550 | 
< | 
      Vector3d com(0.0); | 
| 1551 | 
< | 
      Vector3d comVel(0.0); | 
| 1552 | 
< | 
      Vector3d angularMomentum(0.0); | 
| 1553 | 
< | 
       | 
| 1554 | 
< | 
      getComAll(com,comVel); | 
| 1555 | 
< | 
       | 
| 1556 | 
< | 
      SimInfo::MoleculeIterator i; | 
| 1557 | 
< | 
      Molecule* mol; | 
| 1558 | 
< | 
       | 
| 1559 | 
< | 
      Vector3d thisr(0.0); | 
| 1560 | 
< | 
      Vector3d thisp(0.0); | 
| 1561 | 
< | 
       | 
| 1562 | 
< | 
      RealType thisMass; | 
| 1563 | 
< | 
       | 
| 1564 | 
< | 
      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {          | 
| 1565 | 
< | 
        thisMass = mol->getMass();  | 
| 1566 | 
< | 
        thisr = mol->getCom()-com; | 
| 1567 | 
< | 
        thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1568 | 
< | 
          | 
| 1569 | 
< | 
        angularMomentum += cross( thisr, thisp ); | 
| 1570 | 
< | 
          | 
| 1571 | 
< | 
      }   | 
| 1572 | 
< | 
        | 
| 1573 | 
< | 
#ifdef IS_MPI | 
| 1574 | 
< | 
      Vector3d tmpAngMom; | 
| 1575 | 
< | 
      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1576 | 
< | 
#endif | 
| 1577 | 
< | 
       | 
| 1578 | 
< | 
      return angularMomentum; | 
| 1579 | 
< | 
   } | 
| 1580 | 
< | 
    | 
| 1028 | 
> | 
   | 
| 1029 | 
  | 
  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1030 | 
< | 
    return IOIndexToIntegrableObject.at(index); | 
| 1030 | 
> | 
    if (index >= int(IOIndexToIntegrableObject.size())) { | 
| 1031 | 
> | 
      sprintf(painCave.errMsg, | 
| 1032 | 
> | 
              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" | 
| 1033 | 
> | 
              "\tindex exceeds number of known objects!\n"); | 
| 1034 | 
> | 
      painCave.isFatal = 1; | 
| 1035 | 
> | 
      simError(); | 
| 1036 | 
> | 
      return NULL; | 
| 1037 | 
> | 
    } else | 
| 1038 | 
> | 
      return IOIndexToIntegrableObject.at(index); | 
| 1039 | 
  | 
  } | 
| 1040 | 
  | 
   | 
| 1041 | 
< | 
  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { | 
| 1041 | 
> | 
  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1042 | 
  | 
    IOIndexToIntegrableObject= v; | 
| 1043 | 
  | 
  } | 
| 1044 | 
  | 
 | 
| 1045 | 
< | 
  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes  | 
| 1046 | 
< | 
     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1047 | 
< | 
     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to  | 
| 1048 | 
< | 
     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1049 | 
< | 
  */ | 
| 1050 | 
< | 
  void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1051 | 
< | 
    Mat3x3d intTensor; | 
| 1052 | 
< | 
    RealType det; | 
| 1053 | 
< | 
    Vector3d dummyAngMom;  | 
| 1598 | 
< | 
    RealType sysconstants; | 
| 1599 | 
< | 
    RealType geomCnst; | 
| 1600 | 
< | 
 | 
| 1601 | 
< | 
    geomCnst = 3.0/2.0; | 
| 1602 | 
< | 
    /* Get the inertial tensor and angular momentum for free*/ | 
| 1603 | 
< | 
    getInertiaTensor(intTensor,dummyAngMom); | 
| 1604 | 
< | 
     | 
| 1605 | 
< | 
    det = intTensor.determinant(); | 
| 1606 | 
< | 
    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1607 | 
< | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1608 | 
< | 
    return; | 
| 1045 | 
> | 
  int SimInfo::getNGlobalConstraints() { | 
| 1046 | 
> | 
    int nGlobalConstraints; | 
| 1047 | 
> | 
#ifdef IS_MPI | 
| 1048 | 
> | 
    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,  | 
| 1049 | 
> | 
                              MPI::INT, MPI::SUM); | 
| 1050 | 
> | 
#else | 
| 1051 | 
> | 
    nGlobalConstraints =  nConstraints_; | 
| 1052 | 
> | 
#endif | 
| 1053 | 
> | 
    return nGlobalConstraints; | 
| 1054 | 
  | 
  } | 
| 1055 | 
  | 
 | 
| 1611 | 
– | 
  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1612 | 
– | 
    Mat3x3d intTensor; | 
| 1613 | 
– | 
    Vector3d dummyAngMom;  | 
| 1614 | 
– | 
    RealType sysconstants; | 
| 1615 | 
– | 
    RealType geomCnst; | 
| 1616 | 
– | 
 | 
| 1617 | 
– | 
    geomCnst = 3.0/2.0; | 
| 1618 | 
– | 
    /* Get the inertial tensor and angular momentum for free*/ | 
| 1619 | 
– | 
    getInertiaTensor(intTensor,dummyAngMom); | 
| 1620 | 
– | 
     | 
| 1621 | 
– | 
    detI = intTensor.determinant(); | 
| 1622 | 
– | 
    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1623 | 
– | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1624 | 
– | 
    return; | 
| 1625 | 
– | 
  } | 
| 1626 | 
– | 
/* | 
| 1627 | 
– | 
   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { | 
| 1628 | 
– | 
      assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1629 | 
– | 
      sdByGlobalIndex_ = v; | 
| 1630 | 
– | 
    } | 
| 1631 | 
– | 
 | 
| 1632 | 
– | 
    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1633 | 
– | 
      //assert(index < nAtoms_ + nRigidBodies_); | 
| 1634 | 
– | 
      return sdByGlobalIndex_.at(index); | 
| 1635 | 
– | 
    }    | 
| 1636 | 
– | 
*/    | 
| 1056 | 
  | 
}//end namespace OpenMD | 
| 1057 | 
  | 
 |