| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 | #include <map> | 
| 52 |  | 
| 53 | #include "brains/SimInfo.hpp" | 
| 54 | #include "math/Vector3.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include "UseTheForce/fCutoffPolicy.h" | 
| 57 | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 58 | #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" | 
| 59 | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" | 
| 60 | #include "UseTheForce/doForces_interface.h" | 
| 61 | #include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 62 | #include "UseTheForce/notifyCutoffs_interface.h" | 
| 63 | #include "UseTheForce/DarkSide/switcheroo_interface.h" | 
| 64 | #include "utils/MemoryUtils.hpp" | 
| 65 | #include "utils/simError.h" | 
| 66 | #include "selection/SelectionManager.hpp" | 
| 67 |  | 
| 68 | #ifdef IS_MPI | 
| 69 | #include "UseTheForce/mpiComponentPlan.h" | 
| 70 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 71 | #endif | 
| 72 |  | 
| 73 | namespace oopse { | 
| 74 | std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { | 
| 75 | std::map<int, std::set<int> >::iterator i = container.find(index); | 
| 76 | std::set<int> result; | 
| 77 | if (i != container.end()) { | 
| 78 | result = i->second; | 
| 79 | } | 
| 80 |  | 
| 81 | return result; | 
| 82 | } | 
| 83 |  | 
| 84 | SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, | 
| 85 | ForceField* ff, Globals* simParams) : | 
| 86 | stamps_(stamps), forceField_(ff), simParams_(simParams), | 
| 87 | ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 88 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 89 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 90 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0), | 
| 91 | nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0), | 
| 92 | sman_(NULL), fortranInitialized_(false) { | 
| 93 |  | 
| 94 |  | 
| 95 | std::vector<std::pair<MoleculeStamp*, int> >::iterator i; | 
| 96 | MoleculeStamp* molStamp; | 
| 97 | int nMolWithSameStamp; | 
| 98 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 99 | int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 100 | CutoffGroupStamp* cgStamp; | 
| 101 | RigidBodyStamp* rbStamp; | 
| 102 | int nRigidAtoms = 0; | 
| 103 |  | 
| 104 | for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { | 
| 105 | molStamp = i->first; | 
| 106 | nMolWithSameStamp = i->second; | 
| 107 |  | 
| 108 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 109 |  | 
| 110 | //calculate atoms in molecules | 
| 111 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 112 |  | 
| 113 |  | 
| 114 | //calculate atoms in cutoff groups | 
| 115 | int nAtomsInGroups = 0; | 
| 116 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 117 |  | 
| 118 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 119 | cgStamp = molStamp->getCutoffGroup(j); | 
| 120 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 121 | } | 
| 122 |  | 
| 123 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 124 |  | 
| 125 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 126 |  | 
| 127 | //calculate atoms in rigid bodies | 
| 128 | int nAtomsInRigidBodies = 0; | 
| 129 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 130 |  | 
| 131 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 132 | rbStamp = molStamp->getRigidBody(j); | 
| 133 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 134 | } | 
| 135 |  | 
| 136 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 137 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 138 |  | 
| 139 | } | 
| 140 |  | 
| 141 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 142 | //group therefore the total number of cutoff groups in the system is | 
| 143 | //equal to the total number of atoms minus number of atoms belong to | 
| 144 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 145 | //groups defined in meta-data file | 
| 146 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 147 |  | 
| 148 | //every free atom (atom does not belong to rigid bodies) is an | 
| 149 | //integrable object therefore the total number of integrable objects | 
| 150 | //in the system is equal to the total number of atoms minus number of | 
| 151 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 152 | //of rigid bodies defined in meta-data file | 
| 153 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 154 | + nGlobalRigidBodies_; | 
| 155 |  | 
| 156 | nGlobalMols_ = molStampIds_.size(); | 
| 157 |  | 
| 158 | #ifdef IS_MPI | 
| 159 | molToProcMap_.resize(nGlobalMols_); | 
| 160 | #endif | 
| 161 |  | 
| 162 | } | 
| 163 |  | 
| 164 | SimInfo::~SimInfo() { | 
| 165 | std::map<int, Molecule*>::iterator i; | 
| 166 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 167 | delete i->second; | 
| 168 | } | 
| 169 | molecules_.clear(); | 
| 170 |  | 
| 171 | delete stamps_; | 
| 172 | delete sman_; | 
| 173 | delete simParams_; | 
| 174 | delete forceField_; | 
| 175 | } | 
| 176 |  | 
| 177 | int SimInfo::getNGlobalConstraints() { | 
| 178 | int nGlobalConstraints; | 
| 179 | #ifdef IS_MPI | 
| 180 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 181 | MPI_COMM_WORLD); | 
| 182 | #else | 
| 183 | nGlobalConstraints =  nConstraints_; | 
| 184 | #endif | 
| 185 | return nGlobalConstraints; | 
| 186 | } | 
| 187 |  | 
| 188 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 189 | MoleculeIterator i; | 
| 190 |  | 
| 191 | i = molecules_.find(mol->getGlobalIndex()); | 
| 192 | if (i == molecules_.end() ) { | 
| 193 |  | 
| 194 | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 195 |  | 
| 196 | nAtoms_ += mol->getNAtoms(); | 
| 197 | nBonds_ += mol->getNBonds(); | 
| 198 | nBends_ += mol->getNBends(); | 
| 199 | nTorsions_ += mol->getNTorsions(); | 
| 200 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 201 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 202 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 203 | nConstraints_ += mol->getNConstraintPairs(); | 
| 204 |  | 
| 205 | addExcludePairs(mol); | 
| 206 |  | 
| 207 | return true; | 
| 208 | } else { | 
| 209 | return false; | 
| 210 | } | 
| 211 | } | 
| 212 |  | 
| 213 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 214 | MoleculeIterator i; | 
| 215 | i = molecules_.find(mol->getGlobalIndex()); | 
| 216 |  | 
| 217 | if (i != molecules_.end() ) { | 
| 218 |  | 
| 219 | assert(mol == i->second); | 
| 220 |  | 
| 221 | nAtoms_ -= mol->getNAtoms(); | 
| 222 | nBonds_ -= mol->getNBonds(); | 
| 223 | nBends_ -= mol->getNBends(); | 
| 224 | nTorsions_ -= mol->getNTorsions(); | 
| 225 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 226 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 227 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 228 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 229 |  | 
| 230 | removeExcludePairs(mol); | 
| 231 | molecules_.erase(mol->getGlobalIndex()); | 
| 232 |  | 
| 233 | delete mol; | 
| 234 |  | 
| 235 | return true; | 
| 236 | } else { | 
| 237 | return false; | 
| 238 | } | 
| 239 |  | 
| 240 |  | 
| 241 | } | 
| 242 |  | 
| 243 |  | 
| 244 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 245 | i = molecules_.begin(); | 
| 246 | return i == molecules_.end() ? NULL : i->second; | 
| 247 | } | 
| 248 |  | 
| 249 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 250 | ++i; | 
| 251 | return i == molecules_.end() ? NULL : i->second; | 
| 252 | } | 
| 253 |  | 
| 254 |  | 
| 255 | void SimInfo::calcNdf() { | 
| 256 | int ndf_local; | 
| 257 | MoleculeIterator i; | 
| 258 | std::vector<StuntDouble*>::iterator j; | 
| 259 | Molecule* mol; | 
| 260 | StuntDouble* integrableObject; | 
| 261 |  | 
| 262 | ndf_local = 0; | 
| 263 |  | 
| 264 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 265 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 266 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 267 |  | 
| 268 | ndf_local += 3; | 
| 269 |  | 
| 270 | if (integrableObject->isDirectional()) { | 
| 271 | if (integrableObject->isLinear()) { | 
| 272 | ndf_local += 2; | 
| 273 | } else { | 
| 274 | ndf_local += 3; | 
| 275 | } | 
| 276 | } | 
| 277 |  | 
| 278 | }//end for (integrableObject) | 
| 279 | }// end for (mol) | 
| 280 |  | 
| 281 | // n_constraints is local, so subtract them on each processor | 
| 282 | ndf_local -= nConstraints_; | 
| 283 |  | 
| 284 | #ifdef IS_MPI | 
| 285 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 286 | #else | 
| 287 | ndf_ = ndf_local; | 
| 288 | #endif | 
| 289 |  | 
| 290 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 291 | // entire system: | 
| 292 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 293 |  | 
| 294 | } | 
| 295 |  | 
| 296 | void SimInfo::calcNdfRaw() { | 
| 297 | int ndfRaw_local; | 
| 298 |  | 
| 299 | MoleculeIterator i; | 
| 300 | std::vector<StuntDouble*>::iterator j; | 
| 301 | Molecule* mol; | 
| 302 | StuntDouble* integrableObject; | 
| 303 |  | 
| 304 | // Raw degrees of freedom that we have to set | 
| 305 | ndfRaw_local = 0; | 
| 306 |  | 
| 307 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 308 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 309 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 310 |  | 
| 311 | ndfRaw_local += 3; | 
| 312 |  | 
| 313 | if (integrableObject->isDirectional()) { | 
| 314 | if (integrableObject->isLinear()) { | 
| 315 | ndfRaw_local += 2; | 
| 316 | } else { | 
| 317 | ndfRaw_local += 3; | 
| 318 | } | 
| 319 | } | 
| 320 |  | 
| 321 | } | 
| 322 | } | 
| 323 |  | 
| 324 | #ifdef IS_MPI | 
| 325 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 326 | #else | 
| 327 | ndfRaw_ = ndfRaw_local; | 
| 328 | #endif | 
| 329 | } | 
| 330 |  | 
| 331 | void SimInfo::calcNdfTrans() { | 
| 332 | int ndfTrans_local; | 
| 333 |  | 
| 334 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 335 |  | 
| 336 |  | 
| 337 | #ifdef IS_MPI | 
| 338 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 339 | #else | 
| 340 | ndfTrans_ = ndfTrans_local; | 
| 341 | #endif | 
| 342 |  | 
| 343 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 344 |  | 
| 345 | } | 
| 346 |  | 
| 347 | void SimInfo::addExcludePairs(Molecule* mol) { | 
| 348 | std::vector<Bond*>::iterator bondIter; | 
| 349 | std::vector<Bend*>::iterator bendIter; | 
| 350 | std::vector<Torsion*>::iterator torsionIter; | 
| 351 | Bond* bond; | 
| 352 | Bend* bend; | 
| 353 | Torsion* torsion; | 
| 354 | int a; | 
| 355 | int b; | 
| 356 | int c; | 
| 357 | int d; | 
| 358 |  | 
| 359 | std::map<int, std::set<int> > atomGroups; | 
| 360 |  | 
| 361 | Molecule::RigidBodyIterator rbIter; | 
| 362 | RigidBody* rb; | 
| 363 | Molecule::IntegrableObjectIterator ii; | 
| 364 | StuntDouble* integrableObject; | 
| 365 |  | 
| 366 | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 367 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 368 |  | 
| 369 | if (integrableObject->isRigidBody()) { | 
| 370 | rb = static_cast<RigidBody*>(integrableObject); | 
| 371 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 372 | std::set<int> rigidAtoms; | 
| 373 | for (int i = 0; i < atoms.size(); ++i) { | 
| 374 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 375 | } | 
| 376 | for (int i = 0; i < atoms.size(); ++i) { | 
| 377 | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 378 | } | 
| 379 | } else { | 
| 380 | std::set<int> oneAtomSet; | 
| 381 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 382 | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 383 | } | 
| 384 | } | 
| 385 |  | 
| 386 |  | 
| 387 |  | 
| 388 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 389 | a = bond->getAtomA()->getGlobalIndex(); | 
| 390 | b = bond->getAtomB()->getGlobalIndex(); | 
| 391 | exclude_.addPair(a, b); | 
| 392 | } | 
| 393 |  | 
| 394 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 395 | a = bend->getAtomA()->getGlobalIndex(); | 
| 396 | b = bend->getAtomB()->getGlobalIndex(); | 
| 397 | c = bend->getAtomC()->getGlobalIndex(); | 
| 398 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 399 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 400 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 401 |  | 
| 402 | exclude_.addPairs(rigidSetA, rigidSetB); | 
| 403 | exclude_.addPairs(rigidSetA, rigidSetC); | 
| 404 | exclude_.addPairs(rigidSetB, rigidSetC); | 
| 405 |  | 
| 406 | //exclude_.addPair(a, b); | 
| 407 | //exclude_.addPair(a, c); | 
| 408 | //exclude_.addPair(b, c); | 
| 409 | } | 
| 410 |  | 
| 411 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 412 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 413 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 414 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 415 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 416 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 417 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 418 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 419 | std::set<int> rigidSetD = getRigidSet(d, atomGroups); | 
| 420 |  | 
| 421 | exclude_.addPairs(rigidSetA, rigidSetB); | 
| 422 | exclude_.addPairs(rigidSetA, rigidSetC); | 
| 423 | exclude_.addPairs(rigidSetA, rigidSetD); | 
| 424 | exclude_.addPairs(rigidSetB, rigidSetC); | 
| 425 | exclude_.addPairs(rigidSetB, rigidSetD); | 
| 426 | exclude_.addPairs(rigidSetC, rigidSetD); | 
| 427 |  | 
| 428 | /* | 
| 429 | exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); | 
| 430 | exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 431 | exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 432 | exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 433 | exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 434 | exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 435 |  | 
| 436 |  | 
| 437 | exclude_.addPair(a, b); | 
| 438 | exclude_.addPair(a, c); | 
| 439 | exclude_.addPair(a, d); | 
| 440 | exclude_.addPair(b, c); | 
| 441 | exclude_.addPair(b, d); | 
| 442 | exclude_.addPair(c, d); | 
| 443 | */ | 
| 444 | } | 
| 445 |  | 
| 446 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 447 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 448 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 449 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 450 | a = atoms[i]->getGlobalIndex(); | 
| 451 | b = atoms[j]->getGlobalIndex(); | 
| 452 | exclude_.addPair(a, b); | 
| 453 | } | 
| 454 | } | 
| 455 | } | 
| 456 |  | 
| 457 | } | 
| 458 |  | 
| 459 | void SimInfo::removeExcludePairs(Molecule* mol) { | 
| 460 | std::vector<Bond*>::iterator bondIter; | 
| 461 | std::vector<Bend*>::iterator bendIter; | 
| 462 | std::vector<Torsion*>::iterator torsionIter; | 
| 463 | Bond* bond; | 
| 464 | Bend* bend; | 
| 465 | Torsion* torsion; | 
| 466 | int a; | 
| 467 | int b; | 
| 468 | int c; | 
| 469 | int d; | 
| 470 |  | 
| 471 | std::map<int, std::set<int> > atomGroups; | 
| 472 |  | 
| 473 | Molecule::RigidBodyIterator rbIter; | 
| 474 | RigidBody* rb; | 
| 475 | Molecule::IntegrableObjectIterator ii; | 
| 476 | StuntDouble* integrableObject; | 
| 477 |  | 
| 478 | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 479 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 480 |  | 
| 481 | if (integrableObject->isRigidBody()) { | 
| 482 | rb = static_cast<RigidBody*>(integrableObject); | 
| 483 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 484 | std::set<int> rigidAtoms; | 
| 485 | for (int i = 0; i < atoms.size(); ++i) { | 
| 486 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 487 | } | 
| 488 | for (int i = 0; i < atoms.size(); ++i) { | 
| 489 | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 490 | } | 
| 491 | } else { | 
| 492 | std::set<int> oneAtomSet; | 
| 493 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 494 | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 495 | } | 
| 496 | } | 
| 497 |  | 
| 498 |  | 
| 499 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 500 | a = bond->getAtomA()->getGlobalIndex(); | 
| 501 | b = bond->getAtomB()->getGlobalIndex(); | 
| 502 | exclude_.removePair(a, b); | 
| 503 | } | 
| 504 |  | 
| 505 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 506 | a = bend->getAtomA()->getGlobalIndex(); | 
| 507 | b = bend->getAtomB()->getGlobalIndex(); | 
| 508 | c = bend->getAtomC()->getGlobalIndex(); | 
| 509 |  | 
| 510 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 511 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 512 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 513 |  | 
| 514 | exclude_.removePairs(rigidSetA, rigidSetB); | 
| 515 | exclude_.removePairs(rigidSetA, rigidSetC); | 
| 516 | exclude_.removePairs(rigidSetB, rigidSetC); | 
| 517 |  | 
| 518 | //exclude_.removePair(a, b); | 
| 519 | //exclude_.removePair(a, c); | 
| 520 | //exclude_.removePair(b, c); | 
| 521 | } | 
| 522 |  | 
| 523 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 524 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 525 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 526 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 527 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 528 |  | 
| 529 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 530 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 531 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 532 | std::set<int> rigidSetD = getRigidSet(d, atomGroups); | 
| 533 |  | 
| 534 | exclude_.removePairs(rigidSetA, rigidSetB); | 
| 535 | exclude_.removePairs(rigidSetA, rigidSetC); | 
| 536 | exclude_.removePairs(rigidSetA, rigidSetD); | 
| 537 | exclude_.removePairs(rigidSetB, rigidSetC); | 
| 538 | exclude_.removePairs(rigidSetB, rigidSetD); | 
| 539 | exclude_.removePairs(rigidSetC, rigidSetD); | 
| 540 |  | 
| 541 | /* | 
| 542 | exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); | 
| 543 | exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 544 | exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 545 | exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 546 | exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 547 | exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 548 |  | 
| 549 |  | 
| 550 | exclude_.removePair(a, b); | 
| 551 | exclude_.removePair(a, c); | 
| 552 | exclude_.removePair(a, d); | 
| 553 | exclude_.removePair(b, c); | 
| 554 | exclude_.removePair(b, d); | 
| 555 | exclude_.removePair(c, d); | 
| 556 | */ | 
| 557 | } | 
| 558 |  | 
| 559 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 560 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 561 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 562 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 563 | a = atoms[i]->getGlobalIndex(); | 
| 564 | b = atoms[j]->getGlobalIndex(); | 
| 565 | exclude_.removePair(a, b); | 
| 566 | } | 
| 567 | } | 
| 568 | } | 
| 569 |  | 
| 570 | } | 
| 571 |  | 
| 572 |  | 
| 573 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 574 | int curStampId; | 
| 575 |  | 
| 576 | //index from 0 | 
| 577 | curStampId = moleculeStamps_.size(); | 
| 578 |  | 
| 579 | moleculeStamps_.push_back(molStamp); | 
| 580 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 581 | } | 
| 582 |  | 
| 583 | void SimInfo::update() { | 
| 584 |  | 
| 585 | setupSimType(); | 
| 586 |  | 
| 587 | #ifdef IS_MPI | 
| 588 | setupFortranParallel(); | 
| 589 | #endif | 
| 590 |  | 
| 591 | setupFortranSim(); | 
| 592 |  | 
| 593 | //setup fortran force field | 
| 594 | /** @deprecate */ | 
| 595 | int isError = 0; | 
| 596 |  | 
| 597 | setupElectrostaticSummationMethod( isError ); | 
| 598 | setupSwitchingFunction(); | 
| 599 |  | 
| 600 | if(isError){ | 
| 601 | sprintf( painCave.errMsg, | 
| 602 | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 603 | painCave.isFatal = 1; | 
| 604 | simError(); | 
| 605 | } | 
| 606 |  | 
| 607 |  | 
| 608 | setupCutoff(); | 
| 609 |  | 
| 610 | calcNdf(); | 
| 611 | calcNdfRaw(); | 
| 612 | calcNdfTrans(); | 
| 613 |  | 
| 614 | fortranInitialized_ = true; | 
| 615 | } | 
| 616 |  | 
| 617 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 618 | SimInfo::MoleculeIterator mi; | 
| 619 | Molecule* mol; | 
| 620 | Molecule::AtomIterator ai; | 
| 621 | Atom* atom; | 
| 622 | std::set<AtomType*> atomTypes; | 
| 623 |  | 
| 624 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 625 |  | 
| 626 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 627 | atomTypes.insert(atom->getAtomType()); | 
| 628 | } | 
| 629 |  | 
| 630 | } | 
| 631 |  | 
| 632 | return atomTypes; | 
| 633 | } | 
| 634 |  | 
| 635 | void SimInfo::setupSimType() { | 
| 636 | std::set<AtomType*>::iterator i; | 
| 637 | std::set<AtomType*> atomTypes; | 
| 638 | atomTypes = getUniqueAtomTypes(); | 
| 639 |  | 
| 640 | int useLennardJones = 0; | 
| 641 | int useElectrostatic = 0; | 
| 642 | int useEAM = 0; | 
| 643 | int useSC = 0; | 
| 644 | int useCharge = 0; | 
| 645 | int useDirectional = 0; | 
| 646 | int useDipole = 0; | 
| 647 | int useGayBerne = 0; | 
| 648 | int useSticky = 0; | 
| 649 | int useStickyPower = 0; | 
| 650 | int useShape = 0; | 
| 651 | int useFLARB = 0; //it is not in AtomType yet | 
| 652 | int useDirectionalAtom = 0; | 
| 653 | int useElectrostatics = 0; | 
| 654 | //usePBC and useRF are from simParams | 
| 655 | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 656 | int useRF; | 
| 657 | int useSF; | 
| 658 | std::string myMethod; | 
| 659 |  | 
| 660 | // set the useRF logical | 
| 661 | useRF = 0; | 
| 662 | useSF = 0; | 
| 663 |  | 
| 664 |  | 
| 665 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 666 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 667 | toUpper(myMethod); | 
| 668 | if (myMethod == "REACTION_FIELD") { | 
| 669 | useRF=1; | 
| 670 | } else { | 
| 671 | if (myMethod == "SHIFTED_FORCE") { | 
| 672 | useSF = 1; | 
| 673 | } | 
| 674 | } | 
| 675 | } | 
| 676 |  | 
| 677 | //loop over all of the atom types | 
| 678 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 679 | useLennardJones |= (*i)->isLennardJones(); | 
| 680 | useElectrostatic |= (*i)->isElectrostatic(); | 
| 681 | useEAM |= (*i)->isEAM(); | 
| 682 | useSC |= (*i)->isSC(); | 
| 683 | useCharge |= (*i)->isCharge(); | 
| 684 | useDirectional |= (*i)->isDirectional(); | 
| 685 | useDipole |= (*i)->isDipole(); | 
| 686 | useGayBerne |= (*i)->isGayBerne(); | 
| 687 | useSticky |= (*i)->isSticky(); | 
| 688 | useStickyPower |= (*i)->isStickyPower(); | 
| 689 | useShape |= (*i)->isShape(); | 
| 690 | } | 
| 691 |  | 
| 692 | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 693 | useDirectionalAtom = 1; | 
| 694 | } | 
| 695 |  | 
| 696 | if (useCharge || useDipole) { | 
| 697 | useElectrostatics = 1; | 
| 698 | } | 
| 699 |  | 
| 700 | #ifdef IS_MPI | 
| 701 | int temp; | 
| 702 |  | 
| 703 | temp = usePBC; | 
| 704 | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 705 |  | 
| 706 | temp = useDirectionalAtom; | 
| 707 | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 708 |  | 
| 709 | temp = useLennardJones; | 
| 710 | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 711 |  | 
| 712 | temp = useElectrostatics; | 
| 713 | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 714 |  | 
| 715 | temp = useCharge; | 
| 716 | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 717 |  | 
| 718 | temp = useDipole; | 
| 719 | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 720 |  | 
| 721 | temp = useSticky; | 
| 722 | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 723 |  | 
| 724 | temp = useStickyPower; | 
| 725 | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 726 |  | 
| 727 | temp = useGayBerne; | 
| 728 | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 729 |  | 
| 730 | temp = useEAM; | 
| 731 | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 732 |  | 
| 733 | temp = useSC; | 
| 734 | MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 735 |  | 
| 736 | temp = useShape; | 
| 737 | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 738 |  | 
| 739 | temp = useFLARB; | 
| 740 | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 741 |  | 
| 742 | temp = useRF; | 
| 743 | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 744 |  | 
| 745 | temp = useSF; | 
| 746 | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 747 |  | 
| 748 | #endif | 
| 749 |  | 
| 750 | fInfo_.SIM_uses_PBC = usePBC; | 
| 751 | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 752 | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 753 | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 754 | fInfo_.SIM_uses_Charges = useCharge; | 
| 755 | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 756 | fInfo_.SIM_uses_Sticky = useSticky; | 
| 757 | fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 758 | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 759 | fInfo_.SIM_uses_EAM = useEAM; | 
| 760 | fInfo_.SIM_uses_SC = useSC; | 
| 761 | fInfo_.SIM_uses_Shapes = useShape; | 
| 762 | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 763 | fInfo_.SIM_uses_RF = useRF; | 
| 764 | fInfo_.SIM_uses_SF = useSF; | 
| 765 |  | 
| 766 | if( myMethod == "REACTION_FIELD") { | 
| 767 |  | 
| 768 | if (simParams_->haveDielectric()) { | 
| 769 | fInfo_.dielect = simParams_->getDielectric(); | 
| 770 | } else { | 
| 771 | sprintf(painCave.errMsg, | 
| 772 | "SimSetup Error: No Dielectric constant was set.\n" | 
| 773 | "\tYou are trying to use Reaction Field without" | 
| 774 | "\tsetting a dielectric constant!\n"); | 
| 775 | painCave.isFatal = 1; | 
| 776 | simError(); | 
| 777 | } | 
| 778 | } | 
| 779 |  | 
| 780 | } | 
| 781 |  | 
| 782 | void SimInfo::setupFortranSim() { | 
| 783 | int isError; | 
| 784 | int nExclude; | 
| 785 | std::vector<int> fortranGlobalGroupMembership; | 
| 786 |  | 
| 787 | nExclude = exclude_.getSize(); | 
| 788 | isError = 0; | 
| 789 |  | 
| 790 | //globalGroupMembership_ is filled by SimCreator | 
| 791 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 792 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 793 | } | 
| 794 |  | 
| 795 | //calculate mass ratio of cutoff group | 
| 796 | std::vector<double> mfact; | 
| 797 | SimInfo::MoleculeIterator mi; | 
| 798 | Molecule* mol; | 
| 799 | Molecule::CutoffGroupIterator ci; | 
| 800 | CutoffGroup* cg; | 
| 801 | Molecule::AtomIterator ai; | 
| 802 | Atom* atom; | 
| 803 | double totalMass; | 
| 804 |  | 
| 805 | //to avoid memory reallocation, reserve enough space for mfact | 
| 806 | mfact.reserve(getNCutoffGroups()); | 
| 807 |  | 
| 808 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 809 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 810 |  | 
| 811 | totalMass = cg->getMass(); | 
| 812 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 813 | // Check for massless groups - set mfact to 1 if true | 
| 814 | if (totalMass != 0) | 
| 815 | mfact.push_back(atom->getMass()/totalMass); | 
| 816 | else | 
| 817 | mfact.push_back( 1.0 ); | 
| 818 | } | 
| 819 |  | 
| 820 | } | 
| 821 | } | 
| 822 |  | 
| 823 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 824 | std::vector<int> identArray; | 
| 825 |  | 
| 826 | //to avoid memory reallocation, reserve enough space identArray | 
| 827 | identArray.reserve(getNAtoms()); | 
| 828 |  | 
| 829 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 830 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 831 | identArray.push_back(atom->getIdent()); | 
| 832 | } | 
| 833 | } | 
| 834 |  | 
| 835 | //fill molMembershipArray | 
| 836 | //molMembershipArray is filled by SimCreator | 
| 837 | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 838 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 839 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 840 | } | 
| 841 |  | 
| 842 | //setup fortran simulation | 
| 843 | int nGlobalExcludes = 0; | 
| 844 | int* globalExcludes = NULL; | 
| 845 | int* excludeList = exclude_.getExcludeList(); | 
| 846 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , | 
| 847 | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], | 
| 848 | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); | 
| 849 |  | 
| 850 | if( isError ){ | 
| 851 |  | 
| 852 | sprintf( painCave.errMsg, | 
| 853 | "There was an error setting the simulation information in fortran.\n" ); | 
| 854 | painCave.isFatal = 1; | 
| 855 | painCave.severity = OOPSE_ERROR; | 
| 856 | simError(); | 
| 857 | } | 
| 858 |  | 
| 859 | #ifdef IS_MPI | 
| 860 | sprintf( checkPointMsg, | 
| 861 | "succesfully sent the simulation information to fortran.\n"); | 
| 862 | MPIcheckPoint(); | 
| 863 | #endif // is_mpi | 
| 864 | } | 
| 865 |  | 
| 866 |  | 
| 867 | #ifdef IS_MPI | 
| 868 | void SimInfo::setupFortranParallel() { | 
| 869 |  | 
| 870 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 871 | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 872 | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 873 | SimInfo::MoleculeIterator mi; | 
| 874 | Molecule::AtomIterator ai; | 
| 875 | Molecule::CutoffGroupIterator ci; | 
| 876 | Molecule* mol; | 
| 877 | Atom* atom; | 
| 878 | CutoffGroup* cg; | 
| 879 | mpiSimData parallelData; | 
| 880 | int isError; | 
| 881 |  | 
| 882 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 883 |  | 
| 884 | //local index(index in DataStorge) of atom is important | 
| 885 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 886 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 887 | } | 
| 888 |  | 
| 889 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 890 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 891 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 892 | } | 
| 893 |  | 
| 894 | } | 
| 895 |  | 
| 896 | //fill up mpiSimData struct | 
| 897 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 898 | parallelData.nMolLocal = getNMolecules(); | 
| 899 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 900 | parallelData.nAtomsLocal = getNAtoms(); | 
| 901 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 902 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 903 | parallelData.myNode = worldRank; | 
| 904 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 905 |  | 
| 906 | //pass mpiSimData struct and index arrays to fortran | 
| 907 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 908 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 909 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 910 |  | 
| 911 | if (isError) { | 
| 912 | sprintf(painCave.errMsg, | 
| 913 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 914 | painCave.isFatal = 1; | 
| 915 | simError(); | 
| 916 | } | 
| 917 |  | 
| 918 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 919 | MPIcheckPoint(); | 
| 920 |  | 
| 921 |  | 
| 922 | } | 
| 923 |  | 
| 924 | #endif | 
| 925 |  | 
| 926 | double SimInfo::calcMaxCutoffRadius() { | 
| 927 |  | 
| 928 |  | 
| 929 | std::set<AtomType*> atomTypes; | 
| 930 | std::set<AtomType*>::iterator i; | 
| 931 | std::vector<double> cutoffRadius; | 
| 932 |  | 
| 933 | //get the unique atom types | 
| 934 | atomTypes = getUniqueAtomTypes(); | 
| 935 |  | 
| 936 | //query the max cutoff radius among these atom types | 
| 937 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 938 | cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); | 
| 939 | } | 
| 940 |  | 
| 941 | double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); | 
| 942 | #ifdef IS_MPI | 
| 943 | //pick the max cutoff radius among the processors | 
| 944 | #endif | 
| 945 |  | 
| 946 | return maxCutoffRadius; | 
| 947 | } | 
| 948 |  | 
| 949 | void SimInfo::getCutoff(double& rcut, double& rsw) { | 
| 950 |  | 
| 951 | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 952 |  | 
| 953 | if (!simParams_->haveCutoffRadius()){ | 
| 954 | sprintf(painCave.errMsg, | 
| 955 | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 956 | "\tOOPSE will use a default value of 15.0 angstroms" | 
| 957 | "\tfor the cutoffRadius.\n"); | 
| 958 | painCave.isFatal = 0; | 
| 959 | simError(); | 
| 960 | rcut = 15.0; | 
| 961 | } else{ | 
| 962 | rcut = simParams_->getCutoffRadius(); | 
| 963 | } | 
| 964 |  | 
| 965 | if (!simParams_->haveSwitchingRadius()){ | 
| 966 | sprintf(painCave.errMsg, | 
| 967 | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 968 | "\tOOPSE will use a default value of\n" | 
| 969 | "\t0.85 * cutoffRadius for the switchingRadius\n"); | 
| 970 | painCave.isFatal = 0; | 
| 971 | simError(); | 
| 972 | rsw = 0.85 * rcut; | 
| 973 | } else{ | 
| 974 | rsw = simParams_->getSwitchingRadius(); | 
| 975 | } | 
| 976 |  | 
| 977 | } else { | 
| 978 | // if charge, dipole or reaction field is not used and the cutofff radius is not specified in | 
| 979 | //meta-data file, the maximum cutoff radius calculated from forcefiled will be used | 
| 980 |  | 
| 981 | if (simParams_->haveCutoffRadius()) { | 
| 982 | rcut = simParams_->getCutoffRadius(); | 
| 983 | } else { | 
| 984 | //set cutoff radius to the maximum cutoff radius based on atom types in the whole system | 
| 985 | rcut = calcMaxCutoffRadius(); | 
| 986 | } | 
| 987 |  | 
| 988 | if (simParams_->haveSwitchingRadius()) { | 
| 989 | rsw  = simParams_->getSwitchingRadius(); | 
| 990 | } else { | 
| 991 | rsw = rcut; | 
| 992 | } | 
| 993 |  | 
| 994 | } | 
| 995 | } | 
| 996 |  | 
| 997 | void SimInfo::setupCutoff() { | 
| 998 | getCutoff(rcut_, rsw_); | 
| 999 | double rnblist = rcut_ + 1; // skin of neighbor list | 
| 1000 |  | 
| 1001 | //Pass these cutoff radius etc. to fortran. This function should be called once and only once | 
| 1002 |  | 
| 1003 | int cp =  TRADITIONAL_CUTOFF_POLICY; | 
| 1004 | if (simParams_->haveCutoffPolicy()) { | 
| 1005 | std::string myPolicy = simParams_->getCutoffPolicy(); | 
| 1006 | toUpper(myPolicy); | 
| 1007 | if (myPolicy == "MIX") { | 
| 1008 | cp = MIX_CUTOFF_POLICY; | 
| 1009 | } else { | 
| 1010 | if (myPolicy == "MAX") { | 
| 1011 | cp = MAX_CUTOFF_POLICY; | 
| 1012 | } else { | 
| 1013 | if (myPolicy == "TRADITIONAL") { | 
| 1014 | cp = TRADITIONAL_CUTOFF_POLICY; | 
| 1015 | } else { | 
| 1016 | // throw error | 
| 1017 | sprintf( painCave.errMsg, | 
| 1018 | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 1019 | painCave.isFatal = 1; | 
| 1020 | simError(); | 
| 1021 | } | 
| 1022 | } | 
| 1023 | } | 
| 1024 | } | 
| 1025 |  | 
| 1026 |  | 
| 1027 | if (simParams_->haveSkinThickness()) { | 
| 1028 | double skinThickness = simParams_->getSkinThickness(); | 
| 1029 | } | 
| 1030 |  | 
| 1031 | notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); | 
| 1032 | // also send cutoff notification to electrostatics | 
| 1033 | setElectrostaticCutoffRadius(&rcut_, &rsw_); | 
| 1034 | } | 
| 1035 |  | 
| 1036 | void SimInfo::setupElectrostaticSummationMethod( int isError ) { | 
| 1037 |  | 
| 1038 | int errorOut; | 
| 1039 | int esm =  NONE; | 
| 1040 | int sm = UNDAMPED; | 
| 1041 | double alphaVal; | 
| 1042 | double dielectric; | 
| 1043 |  | 
| 1044 | errorOut = isError; | 
| 1045 | alphaVal = simParams_->getDampingAlpha(); | 
| 1046 | dielectric = simParams_->getDielectric(); | 
| 1047 |  | 
| 1048 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1049 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1050 | toUpper(myMethod); | 
| 1051 | if (myMethod == "NONE") { | 
| 1052 | esm = NONE; | 
| 1053 | } else { | 
| 1054 | if (myMethod == "SWITCHING_FUNCTION") { | 
| 1055 | esm = SWITCHING_FUNCTION; | 
| 1056 | } else { | 
| 1057 | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1058 | esm = SHIFTED_POTENTIAL; | 
| 1059 | } else { | 
| 1060 | if (myMethod == "SHIFTED_FORCE") { | 
| 1061 | esm = SHIFTED_FORCE; | 
| 1062 | } else { | 
| 1063 | if (myMethod == "REACTION_FIELD") { | 
| 1064 | esm = REACTION_FIELD; | 
| 1065 | } else { | 
| 1066 | // throw error | 
| 1067 | sprintf( painCave.errMsg, | 
| 1068 | "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() ); | 
| 1069 | painCave.isFatal = 1; | 
| 1070 | simError(); | 
| 1071 | } | 
| 1072 | } | 
| 1073 | } | 
| 1074 | } | 
| 1075 | } | 
| 1076 | } | 
| 1077 |  | 
| 1078 | if (simParams_->haveElectrostaticScreeningMethod()) { | 
| 1079 | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); | 
| 1080 | toUpper(myScreen); | 
| 1081 | if (myScreen == "UNDAMPED") { | 
| 1082 | sm = UNDAMPED; | 
| 1083 | } else { | 
| 1084 | if (myScreen == "DAMPED") { | 
| 1085 | sm = DAMPED; | 
| 1086 | if (!simParams_->haveDampingAlpha()) { | 
| 1087 | //throw error | 
| 1088 | sprintf( painCave.errMsg, | 
| 1089 | "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal); | 
| 1090 | painCave.isFatal = 0; | 
| 1091 | simError(); | 
| 1092 | } | 
| 1093 | } else { | 
| 1094 | // throw error | 
| 1095 | sprintf( painCave.errMsg, | 
| 1096 | "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() ); | 
| 1097 | painCave.isFatal = 1; | 
| 1098 | simError(); | 
| 1099 | } | 
| 1100 | } | 
| 1101 | } | 
| 1102 |  | 
| 1103 | // let's pass some summation method variables to fortran | 
| 1104 | setElectrostaticSummationMethod( &esm ); | 
| 1105 | setScreeningMethod( &sm ); | 
| 1106 | setDampingAlpha( &alphaVal ); | 
| 1107 | setReactionFieldDielectric( &dielectric ); | 
| 1108 | initFortranFF( &esm, &errorOut ); | 
| 1109 | } | 
| 1110 |  | 
| 1111 | void SimInfo::setupSwitchingFunction() { | 
| 1112 | int ft = CUBIC; | 
| 1113 |  | 
| 1114 | if (simParams_->haveSwitchingFunctionType()) { | 
| 1115 | std::string funcType = simParams_->getSwitchingFunctionType(); | 
| 1116 | toUpper(funcType); | 
| 1117 | if (funcType == "CUBIC") { | 
| 1118 | ft = CUBIC; | 
| 1119 | } else { | 
| 1120 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 1121 | ft = FIFTH_ORDER_POLY; | 
| 1122 | } else { | 
| 1123 | // throw error | 
| 1124 | sprintf( painCave.errMsg, | 
| 1125 | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); | 
| 1126 | painCave.isFatal = 1; | 
| 1127 | simError(); | 
| 1128 | } | 
| 1129 | } | 
| 1130 | } | 
| 1131 |  | 
| 1132 | // send switching function notification to switcheroo | 
| 1133 | setFunctionType(&ft); | 
| 1134 |  | 
| 1135 | } | 
| 1136 |  | 
| 1137 | void SimInfo::addProperty(GenericData* genData) { | 
| 1138 | properties_.addProperty(genData); | 
| 1139 | } | 
| 1140 |  | 
| 1141 | void SimInfo::removeProperty(const std::string& propName) { | 
| 1142 | properties_.removeProperty(propName); | 
| 1143 | } | 
| 1144 |  | 
| 1145 | void SimInfo::clearProperties() { | 
| 1146 | properties_.clearProperties(); | 
| 1147 | } | 
| 1148 |  | 
| 1149 | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 1150 | return properties_.getPropertyNames(); | 
| 1151 | } | 
| 1152 |  | 
| 1153 | std::vector<GenericData*> SimInfo::getProperties() { | 
| 1154 | return properties_.getProperties(); | 
| 1155 | } | 
| 1156 |  | 
| 1157 | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 1158 | return properties_.getPropertyByName(propName); | 
| 1159 | } | 
| 1160 |  | 
| 1161 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1162 | if (sman_ == sman) { | 
| 1163 | return; | 
| 1164 | } | 
| 1165 | delete sman_; | 
| 1166 | sman_ = sman; | 
| 1167 |  | 
| 1168 | Molecule* mol; | 
| 1169 | RigidBody* rb; | 
| 1170 | Atom* atom; | 
| 1171 | SimInfo::MoleculeIterator mi; | 
| 1172 | Molecule::RigidBodyIterator rbIter; | 
| 1173 | Molecule::AtomIterator atomIter;; | 
| 1174 |  | 
| 1175 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1176 |  | 
| 1177 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1178 | atom->setSnapshotManager(sman_); | 
| 1179 | } | 
| 1180 |  | 
| 1181 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1182 | rb->setSnapshotManager(sman_); | 
| 1183 | } | 
| 1184 | } | 
| 1185 |  | 
| 1186 | } | 
| 1187 |  | 
| 1188 | Vector3d SimInfo::getComVel(){ | 
| 1189 | SimInfo::MoleculeIterator i; | 
| 1190 | Molecule* mol; | 
| 1191 |  | 
| 1192 | Vector3d comVel(0.0); | 
| 1193 | double totalMass = 0.0; | 
| 1194 |  | 
| 1195 |  | 
| 1196 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1197 | double mass = mol->getMass(); | 
| 1198 | totalMass += mass; | 
| 1199 | comVel += mass * mol->getComVel(); | 
| 1200 | } | 
| 1201 |  | 
| 1202 | #ifdef IS_MPI | 
| 1203 | double tmpMass = totalMass; | 
| 1204 | Vector3d tmpComVel(comVel); | 
| 1205 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1206 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1207 | #endif | 
| 1208 |  | 
| 1209 | comVel /= totalMass; | 
| 1210 |  | 
| 1211 | return comVel; | 
| 1212 | } | 
| 1213 |  | 
| 1214 | Vector3d SimInfo::getCom(){ | 
| 1215 | SimInfo::MoleculeIterator i; | 
| 1216 | Molecule* mol; | 
| 1217 |  | 
| 1218 | Vector3d com(0.0); | 
| 1219 | double totalMass = 0.0; | 
| 1220 |  | 
| 1221 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1222 | double mass = mol->getMass(); | 
| 1223 | totalMass += mass; | 
| 1224 | com += mass * mol->getCom(); | 
| 1225 | } | 
| 1226 |  | 
| 1227 | #ifdef IS_MPI | 
| 1228 | double tmpMass = totalMass; | 
| 1229 | Vector3d tmpCom(com); | 
| 1230 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1231 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1232 | #endif | 
| 1233 |  | 
| 1234 | com /= totalMass; | 
| 1235 |  | 
| 1236 | return com; | 
| 1237 |  | 
| 1238 | } | 
| 1239 |  | 
| 1240 | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1241 |  | 
| 1242 | return o; | 
| 1243 | } | 
| 1244 |  | 
| 1245 |  | 
| 1246 | /* | 
| 1247 | Returns center of mass and center of mass velocity in one function call. | 
| 1248 | */ | 
| 1249 |  | 
| 1250 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1251 | SimInfo::MoleculeIterator i; | 
| 1252 | Molecule* mol; | 
| 1253 |  | 
| 1254 |  | 
| 1255 | double totalMass = 0.0; | 
| 1256 |  | 
| 1257 |  | 
| 1258 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1259 | double mass = mol->getMass(); | 
| 1260 | totalMass += mass; | 
| 1261 | com += mass * mol->getCom(); | 
| 1262 | comVel += mass * mol->getComVel(); | 
| 1263 | } | 
| 1264 |  | 
| 1265 | #ifdef IS_MPI | 
| 1266 | double tmpMass = totalMass; | 
| 1267 | Vector3d tmpCom(com); | 
| 1268 | Vector3d tmpComVel(comVel); | 
| 1269 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1270 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1271 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1272 | #endif | 
| 1273 |  | 
| 1274 | com /= totalMass; | 
| 1275 | comVel /= totalMass; | 
| 1276 | } | 
| 1277 |  | 
| 1278 | /* | 
| 1279 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1280 |  | 
| 1281 |  | 
| 1282 | [  Ixx -Ixy  -Ixz ] | 
| 1283 | J =| -Iyx  Iyy  -Iyz | | 
| 1284 | [ -Izx -Iyz   Izz ] | 
| 1285 | */ | 
| 1286 |  | 
| 1287 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1288 |  | 
| 1289 |  | 
| 1290 | double xx = 0.0; | 
| 1291 | double yy = 0.0; | 
| 1292 | double zz = 0.0; | 
| 1293 | double xy = 0.0; | 
| 1294 | double xz = 0.0; | 
| 1295 | double yz = 0.0; | 
| 1296 | Vector3d com(0.0); | 
| 1297 | Vector3d comVel(0.0); | 
| 1298 |  | 
| 1299 | getComAll(com, comVel); | 
| 1300 |  | 
| 1301 | SimInfo::MoleculeIterator i; | 
| 1302 | Molecule* mol; | 
| 1303 |  | 
| 1304 | Vector3d thisq(0.0); | 
| 1305 | Vector3d thisv(0.0); | 
| 1306 |  | 
| 1307 | double thisMass = 0.0; | 
| 1308 |  | 
| 1309 |  | 
| 1310 |  | 
| 1311 |  | 
| 1312 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1313 |  | 
| 1314 | thisq = mol->getCom()-com; | 
| 1315 | thisv = mol->getComVel()-comVel; | 
| 1316 | thisMass = mol->getMass(); | 
| 1317 | // Compute moment of intertia coefficients. | 
| 1318 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1319 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1320 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1321 |  | 
| 1322 | // compute products of intertia | 
| 1323 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1324 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1325 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1326 |  | 
| 1327 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1328 |  | 
| 1329 | } | 
| 1330 |  | 
| 1331 |  | 
| 1332 | inertiaTensor(0,0) = yy + zz; | 
| 1333 | inertiaTensor(0,1) = -xy; | 
| 1334 | inertiaTensor(0,2) = -xz; | 
| 1335 | inertiaTensor(1,0) = -xy; | 
| 1336 | inertiaTensor(1,1) = xx + zz; | 
| 1337 | inertiaTensor(1,2) = -yz; | 
| 1338 | inertiaTensor(2,0) = -xz; | 
| 1339 | inertiaTensor(2,1) = -yz; | 
| 1340 | inertiaTensor(2,2) = xx + yy; | 
| 1341 |  | 
| 1342 | #ifdef IS_MPI | 
| 1343 | Mat3x3d tmpI(inertiaTensor); | 
| 1344 | Vector3d tmpAngMom; | 
| 1345 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1346 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1347 | #endif | 
| 1348 |  | 
| 1349 | return; | 
| 1350 | } | 
| 1351 |  | 
| 1352 | //Returns the angular momentum of the system | 
| 1353 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1354 |  | 
| 1355 | Vector3d com(0.0); | 
| 1356 | Vector3d comVel(0.0); | 
| 1357 | Vector3d angularMomentum(0.0); | 
| 1358 |  | 
| 1359 | getComAll(com,comVel); | 
| 1360 |  | 
| 1361 | SimInfo::MoleculeIterator i; | 
| 1362 | Molecule* mol; | 
| 1363 |  | 
| 1364 | Vector3d thisr(0.0); | 
| 1365 | Vector3d thisp(0.0); | 
| 1366 |  | 
| 1367 | double thisMass; | 
| 1368 |  | 
| 1369 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1370 | thisMass = mol->getMass(); | 
| 1371 | thisr = mol->getCom()-com; | 
| 1372 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1373 |  | 
| 1374 | angularMomentum += cross( thisr, thisp ); | 
| 1375 |  | 
| 1376 | } | 
| 1377 |  | 
| 1378 | #ifdef IS_MPI | 
| 1379 | Vector3d tmpAngMom; | 
| 1380 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 1381 | #endif | 
| 1382 |  | 
| 1383 | return angularMomentum; | 
| 1384 | } | 
| 1385 |  | 
| 1386 |  | 
| 1387 | }//end namespace oopse | 
| 1388 |  |