| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 55 |  | #include "math/Vector3.hpp" | 
| 56 |  | #include "primitives/Molecule.hpp" | 
| 57 |  | #include "primitives/StuntDouble.hpp" | 
| 57 | – | #include "UseTheForce/fCutoffPolicy.h" | 
| 58 | – | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 59 | – | #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" | 
| 60 | – | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" | 
| 61 | – | #include "UseTheForce/doForces_interface.h" | 
| 62 | – | #include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 63 | – | #include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 64 | – | #include "UseTheForce/DarkSide/switcheroo_interface.h" | 
| 58 |  | #include "utils/MemoryUtils.hpp" | 
| 59 |  | #include "utils/simError.h" | 
| 60 |  | #include "selection/SelectionManager.hpp" | 
| 61 |  | #include "io/ForceFieldOptions.hpp" | 
| 62 | < | #include "UseTheForce/ForceField.hpp" | 
| 63 | < |  | 
| 71 | < |  | 
| 62 | > | #include "brains/ForceField.hpp" | 
| 63 | > | #include "nonbonded/SwitchingFunction.hpp" | 
| 64 |  | #ifdef IS_MPI | 
| 65 | < | #include "UseTheForce/mpiComponentPlan.h" | 
| 66 | < | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 75 | < | #endif | 
| 65 | > | #include <mpi.h> | 
| 66 | > | #endif | 
| 67 |  |  | 
| 68 | + | using namespace std; | 
| 69 |  | namespace OpenMD { | 
| 78 | – | std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { | 
| 79 | – | std::map<int, std::set<int> >::iterator i = container.find(index); | 
| 80 | – | std::set<int> result; | 
| 81 | – | if (i != container.end()) { | 
| 82 | – | result = i->second; | 
| 83 | – | } | 
| 84 | – |  | 
| 85 | – | return result; | 
| 86 | – | } | 
| 70 |  |  | 
| 71 |  | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 72 |  | forceField_(ff), simParams_(simParams), | 
| 73 |  | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 |  | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), | 
| 76 |  | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 77 |  | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 78 | < | nConstraints_(0), sman_(NULL), fortranInitialized_(false), | 
| 79 | < | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), | 
| 79 | > | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 80 | > |  | 
| 81 | > | MoleculeStamp* molStamp; | 
| 82 | > | int nMolWithSameStamp; | 
| 83 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 84 | > | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 85 | > | CutoffGroupStamp* cgStamp; | 
| 86 | > | RigidBodyStamp* rbStamp; | 
| 87 | > | int nRigidAtoms = 0; | 
| 88 | > |  | 
| 89 | > | vector<Component*> components = simParams->getComponents(); | 
| 90 | > |  | 
| 91 | > | for (vector<Component*>::iterator i = components.begin(); | 
| 92 | > | i !=components.end(); ++i) { | 
| 93 | > | molStamp = (*i)->getMoleculeStamp(); | 
| 94 | > | if ( (*i)->haveRegion() ) { | 
| 95 | > | molStamp->setRegion( (*i)->getRegion() ); | 
| 96 | > | } else { | 
| 97 | > | // set the region to a disallowed value: | 
| 98 | > | molStamp->setRegion( -1 ); | 
| 99 | > | } | 
| 100 |  |  | 
| 101 | < |  | 
| 99 | < | MoleculeStamp* molStamp; | 
| 100 | < | int nMolWithSameStamp; | 
| 101 | < | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 102 | < | int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 103 | < | CutoffGroupStamp* cgStamp; | 
| 104 | < | RigidBodyStamp* rbStamp; | 
| 105 | < | int nRigidAtoms = 0; | 
| 106 | < |  | 
| 107 | < | std::vector<Component*> components = simParams->getComponents(); | 
| 101 | > | nMolWithSameStamp = (*i)->getNMol(); | 
| 102 |  |  | 
| 103 | < | for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 104 | < | molStamp = (*i)->getMoleculeStamp(); | 
| 105 | < | nMolWithSameStamp = (*i)->getNMol(); | 
| 106 | < |  | 
| 107 | < | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 108 | < |  | 
| 109 | < | //calculate atoms in molecules | 
| 110 | < | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 111 | < |  | 
| 112 | < | //calculate atoms in cutoff groups | 
| 113 | < | int nAtomsInGroups = 0; | 
| 114 | < | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 121 | < |  | 
| 122 | < | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 123 | < | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 124 | < | nAtomsInGroups += cgStamp->getNMembers(); | 
| 125 | < | } | 
| 126 | < |  | 
| 127 | < | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 128 | < |  | 
| 129 | < | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 130 | < |  | 
| 131 | < | //calculate atoms in rigid bodies | 
| 132 | < | int nAtomsInRigidBodies = 0; | 
| 133 | < | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 134 | < |  | 
| 135 | < | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 136 | < | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 137 | < | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 138 | < | } | 
| 139 | < |  | 
| 140 | < | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 141 | < | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 142 | < |  | 
| 103 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 104 | > |  | 
| 105 | > | //calculate atoms in molecules | 
| 106 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 107 | > |  | 
| 108 | > | //calculate atoms in cutoff groups | 
| 109 | > | int nAtomsInGroups = 0; | 
| 110 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 111 | > |  | 
| 112 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 113 | > | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 114 | > | nAtomsInGroups += cgStamp->getNMembers(); | 
| 115 |  | } | 
| 116 | < |  | 
| 117 | < | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 118 | < | //group therefore the total number of cutoff groups in the system is | 
| 119 | < | //equal to the total number of atoms minus number of atoms belong to | 
| 120 | < | //cutoff group defined in meta-data file plus the number of cutoff | 
| 121 | < | //groups defined in meta-data file | 
| 122 | < | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 123 | < |  | 
| 124 | < | //every free atom (atom does not belong to rigid bodies) is an | 
| 125 | < | //integrable object therefore the total number of integrable objects | 
| 126 | < | //in the system is equal to the total number of atoms minus number of | 
| 127 | < | //atoms belong to rigid body defined in meta-data file plus the number | 
| 128 | < | //of rigid bodies defined in meta-data file | 
| 129 | < | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 130 | < | + nGlobalRigidBodies_; | 
| 131 | < |  | 
| 132 | < | nGlobalMols_ = molStampIds_.size(); | 
| 161 | < | molToProcMap_.resize(nGlobalMols_); | 
| 116 | > |  | 
| 117 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 118 | > |  | 
| 119 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 120 | > |  | 
| 121 | > | //calculate atoms in rigid bodies | 
| 122 | > | int nAtomsInRigidBodies = 0; | 
| 123 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 124 | > |  | 
| 125 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 126 | > | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 127 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 128 | > | } | 
| 129 | > |  | 
| 130 | > | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 131 | > | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 132 | > |  | 
| 133 |  | } | 
| 134 | + |  | 
| 135 | + | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 136 | + | //group therefore the total number of cutoff groups in the system is | 
| 137 | + | //equal to the total number of atoms minus number of atoms belong to | 
| 138 | + | //cutoff group defined in meta-data file plus the number of cutoff | 
| 139 | + | //groups defined in meta-data file | 
| 140 |  |  | 
| 141 | + | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 142 | + |  | 
| 143 | + | //every free atom (atom does not belong to rigid bodies) is an | 
| 144 | + | //integrable object therefore the total number of integrable objects | 
| 145 | + | //in the system is equal to the total number of atoms minus number of | 
| 146 | + | //atoms belong to rigid body defined in meta-data file plus the number | 
| 147 | + | //of rigid bodies defined in meta-data file | 
| 148 | + | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 149 | + | + nGlobalRigidBodies_; | 
| 150 | + |  | 
| 151 | + | nGlobalMols_ = molStampIds_.size(); | 
| 152 | + | molToProcMap_.resize(nGlobalMols_); | 
| 153 | + | } | 
| 154 | + |  | 
| 155 |  | SimInfo::~SimInfo() { | 
| 156 | < | std::map<int, Molecule*>::iterator i; | 
| 156 | > | map<int, Molecule*>::iterator i; | 
| 157 |  | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 158 |  | delete i->second; | 
| 159 |  | } | 
| 164 |  | delete forceField_; | 
| 165 |  | } | 
| 166 |  |  | 
| 176 | – | int SimInfo::getNGlobalConstraints() { | 
| 177 | – | int nGlobalConstraints; | 
| 178 | – | #ifdef IS_MPI | 
| 179 | – | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 180 | – | MPI_COMM_WORLD); | 
| 181 | – | #else | 
| 182 | – | nGlobalConstraints =  nConstraints_; | 
| 183 | – | #endif | 
| 184 | – | return nGlobalConstraints; | 
| 185 | – | } | 
| 167 |  |  | 
| 168 |  | bool SimInfo::addMolecule(Molecule* mol) { | 
| 169 |  | MoleculeIterator i; | 
| 170 | < |  | 
| 170 | > |  | 
| 171 |  | i = molecules_.find(mol->getGlobalIndex()); | 
| 172 |  | if (i == molecules_.end() ) { | 
| 173 | < |  | 
| 174 | < | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 175 | < |  | 
| 173 | > |  | 
| 174 | > | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 175 | > |  | 
| 176 |  | nAtoms_ += mol->getNAtoms(); | 
| 177 |  | nBonds_ += mol->getNBonds(); | 
| 178 |  | nBends_ += mol->getNBends(); | 
| 182 |  | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 183 |  | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 184 |  | nConstraints_ += mol->getNConstraintPairs(); | 
| 185 | < |  | 
| 185 | > |  | 
| 186 |  | addInteractionPairs(mol); | 
| 187 | < |  | 
| 187 | > |  | 
| 188 |  | return true; | 
| 189 |  | } else { | 
| 190 |  | return false; | 
| 191 |  | } | 
| 192 |  | } | 
| 193 | < |  | 
| 193 | > |  | 
| 194 |  | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 195 |  | MoleculeIterator i; | 
| 196 |  | i = molecules_.find(mol->getGlobalIndex()); | 
| 218 |  | } else { | 
| 219 |  | return false; | 
| 220 |  | } | 
| 240 | – |  | 
| 241 | – |  | 
| 221 |  | } | 
| 222 |  |  | 
| 223 |  |  | 
| 233 |  |  | 
| 234 |  |  | 
| 235 |  | void SimInfo::calcNdf() { | 
| 236 | < | int ndf_local; | 
| 236 | > | int ndf_local, nfq_local; | 
| 237 |  | MoleculeIterator i; | 
| 238 | < | std::vector<StuntDouble*>::iterator j; | 
| 238 | > | vector<StuntDouble*>::iterator j; | 
| 239 | > | vector<Atom*>::iterator k; | 
| 240 | > |  | 
| 241 |  | Molecule* mol; | 
| 242 | < | StuntDouble* integrableObject; | 
| 242 | > | StuntDouble* sd; | 
| 243 | > | Atom* atom; | 
| 244 |  |  | 
| 245 |  | ndf_local = 0; | 
| 246 | + | nfq_local = 0; | 
| 247 |  |  | 
| 248 |  | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 266 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 267 | – | integrableObject = mol->nextIntegrableObject(j)) { | 
| 249 |  |  | 
| 250 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 251 | + | sd = mol->nextIntegrableObject(j)) { | 
| 252 | + |  | 
| 253 |  | ndf_local += 3; | 
| 254 |  |  | 
| 255 | < | if (integrableObject->isDirectional()) { | 
| 256 | < | if (integrableObject->isLinear()) { | 
| 255 | > | if (sd->isDirectional()) { | 
| 256 | > | if (sd->isLinear()) { | 
| 257 |  | ndf_local += 2; | 
| 258 |  | } else { | 
| 259 |  | ndf_local += 3; | 
| 260 |  | } | 
| 261 |  | } | 
| 278 | – |  | 
| 262 |  | } | 
| 263 | + |  | 
| 264 | + | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | 
| 265 | + | atom = mol->nextFluctuatingCharge(k)) { | 
| 266 | + | if (atom->isFluctuatingCharge()) { | 
| 267 | + | nfq_local++; | 
| 268 | + | } | 
| 269 | + | } | 
| 270 |  | } | 
| 271 |  |  | 
| 272 | + | ndfLocal_ = ndf_local; | 
| 273 | + |  | 
| 274 |  | // n_constraints is local, so subtract them on each processor | 
| 275 |  | ndf_local -= nConstraints_; | 
| 276 |  |  | 
| 277 |  | #ifdef IS_MPI | 
| 278 | < | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 278 | > | MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); | 
| 279 | > | MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, | 
| 280 | > | MPI::INT, MPI::SUM); | 
| 281 |  | #else | 
| 282 |  | ndf_ = ndf_local; | 
| 283 | + | nGlobalFluctuatingCharges_ = nfq_local; | 
| 284 |  | #endif | 
| 285 |  |  | 
| 286 |  | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 291 |  |  | 
| 292 |  | int SimInfo::getFdf() { | 
| 293 |  | #ifdef IS_MPI | 
| 294 | < | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 294 | > | MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); | 
| 295 |  | #else | 
| 296 |  | fdf_ = fdf_local; | 
| 297 |  | #endif | 
| 298 |  | return fdf_; | 
| 299 |  | } | 
| 300 | + |  | 
| 301 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ | 
| 302 | + | int nLocalCutoffAtoms = 0; | 
| 303 | + | Molecule* mol; | 
| 304 | + | MoleculeIterator mi; | 
| 305 | + | CutoffGroup* cg; | 
| 306 | + | Molecule::CutoffGroupIterator ci; | 
| 307 |  |  | 
| 308 | + | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 309 | + |  | 
| 310 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 311 | + | cg = mol->nextCutoffGroup(ci)) { | 
| 312 | + | nLocalCutoffAtoms += cg->getNumAtom(); | 
| 313 | + |  | 
| 314 | + | } | 
| 315 | + | } | 
| 316 | + |  | 
| 317 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; | 
| 318 | + | } | 
| 319 | + |  | 
| 320 |  | void SimInfo::calcNdfRaw() { | 
| 321 |  | int ndfRaw_local; | 
| 322 |  |  | 
| 323 |  | MoleculeIterator i; | 
| 324 | < | std::vector<StuntDouble*>::iterator j; | 
| 324 | > | vector<StuntDouble*>::iterator j; | 
| 325 |  | Molecule* mol; | 
| 326 | < | StuntDouble* integrableObject; | 
| 326 | > | StuntDouble* sd; | 
| 327 |  |  | 
| 328 |  | // Raw degrees of freedom that we have to set | 
| 329 |  | ndfRaw_local = 0; | 
| 330 |  |  | 
| 331 |  | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 318 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 319 | – | integrableObject = mol->nextIntegrableObject(j)) { | 
| 332 |  |  | 
| 333 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 334 | + | sd = mol->nextIntegrableObject(j)) { | 
| 335 | + |  | 
| 336 |  | ndfRaw_local += 3; | 
| 337 |  |  | 
| 338 | < | if (integrableObject->isDirectional()) { | 
| 339 | < | if (integrableObject->isLinear()) { | 
| 338 | > | if (sd->isDirectional()) { | 
| 339 | > | if (sd->isLinear()) { | 
| 340 |  | ndfRaw_local += 2; | 
| 341 |  | } else { | 
| 342 |  | ndfRaw_local += 3; | 
| 347 |  | } | 
| 348 |  |  | 
| 349 |  | #ifdef IS_MPI | 
| 350 | < | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 350 | > | MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); | 
| 351 |  | #else | 
| 352 |  | ndfRaw_ = ndfRaw_local; | 
| 353 |  | #endif | 
| 360 |  |  | 
| 361 |  |  | 
| 362 |  | #ifdef IS_MPI | 
| 363 | < | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 363 | > | MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, | 
| 364 | > | MPI::INT, MPI::SUM); | 
| 365 |  | #else | 
| 366 |  | ndfTrans_ = ndfTrans_local; | 
| 367 |  | #endif | 
| 372 |  |  | 
| 373 |  | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 374 |  | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 375 | < | std::vector<Bond*>::iterator bondIter; | 
| 376 | < | std::vector<Bend*>::iterator bendIter; | 
| 377 | < | std::vector<Torsion*>::iterator torsionIter; | 
| 378 | < | std::vector<Inversion*>::iterator inversionIter; | 
| 375 | > | vector<Atom*>::iterator atomIter; | 
| 376 | > | vector<Bond*>::iterator bondIter; | 
| 377 | > | vector<Bend*>::iterator bendIter; | 
| 378 | > | vector<Torsion*>::iterator torsionIter; | 
| 379 | > | vector<Inversion*>::iterator inversionIter; | 
| 380 | > | Atom* atom; | 
| 381 |  | Bond* bond; | 
| 382 |  | Bend* bend; | 
| 383 |  | Torsion* torsion; | 
| 395 |  | // always be excluded.  These are done at the bottom of this | 
| 396 |  | // function. | 
| 397 |  |  | 
| 398 | < | std::map<int, std::set<int> > atomGroups; | 
| 398 | > | map<int, set<int> > atomGroups; | 
| 399 |  | Molecule::RigidBodyIterator rbIter; | 
| 400 |  | RigidBody* rb; | 
| 401 |  | Molecule::IntegrableObjectIterator ii; | 
| 402 | < | StuntDouble* integrableObject; | 
| 402 | > | StuntDouble* sd; | 
| 403 |  |  | 
| 404 | < | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 405 | < | integrableObject != NULL; | 
| 388 | < | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 404 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 405 | > | sd = mol->nextIntegrableObject(ii)) { | 
| 406 |  |  | 
| 407 | < | if (integrableObject->isRigidBody()) { | 
| 408 | < | rb = static_cast<RigidBody*>(integrableObject); | 
| 409 | < | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 410 | < | std::set<int> rigidAtoms; | 
| 407 | > | if (sd->isRigidBody()) { | 
| 408 | > | rb = static_cast<RigidBody*>(sd); | 
| 409 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 410 | > | set<int> rigidAtoms; | 
| 411 |  | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 412 |  | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 413 |  | } | 
| 414 |  | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 415 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 415 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 416 |  | } | 
| 417 |  | } else { | 
| 418 | < | std::set<int> oneAtomSet; | 
| 419 | < | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 420 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 418 | > | set<int> oneAtomSet; | 
| 419 | > | oneAtomSet.insert(sd->getGlobalIndex()); | 
| 420 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); | 
| 421 |  | } | 
| 422 |  | } | 
| 423 | + |  | 
| 424 |  |  | 
| 425 |  | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 426 |  | bond = mol->nextBond(bondIter)) { | 
| 521 |  |  | 
| 522 |  | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 523 |  | rb = mol->nextRigidBody(rbIter)) { | 
| 524 | < | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 524 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 525 |  | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 526 |  | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 527 |  | a = atoms[i]->getGlobalIndex(); | 
| 535 |  |  | 
| 536 |  | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 537 |  | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 538 | < | std::vector<Bond*>::iterator bondIter; | 
| 539 | < | std::vector<Bend*>::iterator bendIter; | 
| 540 | < | std::vector<Torsion*>::iterator torsionIter; | 
| 541 | < | std::vector<Inversion*>::iterator inversionIter; | 
| 538 | > | vector<Bond*>::iterator bondIter; | 
| 539 | > | vector<Bend*>::iterator bendIter; | 
| 540 | > | vector<Torsion*>::iterator torsionIter; | 
| 541 | > | vector<Inversion*>::iterator inversionIter; | 
| 542 |  | Bond* bond; | 
| 543 |  | Bend* bend; | 
| 544 |  | Torsion* torsion; | 
| 548 |  | int c; | 
| 549 |  | int d; | 
| 550 |  |  | 
| 551 | < | std::map<int, std::set<int> > atomGroups; | 
| 551 | > | map<int, set<int> > atomGroups; | 
| 552 |  | Molecule::RigidBodyIterator rbIter; | 
| 553 |  | RigidBody* rb; | 
| 554 |  | Molecule::IntegrableObjectIterator ii; | 
| 555 | < | StuntDouble* integrableObject; | 
| 555 | > | StuntDouble* sd; | 
| 556 |  |  | 
| 557 | < | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 558 | < | integrableObject != NULL; | 
| 541 | < | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 557 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; | 
| 558 | > | sd = mol->nextIntegrableObject(ii)) { | 
| 559 |  |  | 
| 560 | < | if (integrableObject->isRigidBody()) { | 
| 561 | < | rb = static_cast<RigidBody*>(integrableObject); | 
| 562 | < | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 563 | < | std::set<int> rigidAtoms; | 
| 560 | > | if (sd->isRigidBody()) { | 
| 561 | > | rb = static_cast<RigidBody*>(sd); | 
| 562 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 563 | > | set<int> rigidAtoms; | 
| 564 |  | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 565 |  | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 566 |  | } | 
| 567 |  | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 568 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 568 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 569 |  | } | 
| 570 |  | } else { | 
| 571 | < | std::set<int> oneAtomSet; | 
| 572 | < | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 573 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 571 | > | set<int> oneAtomSet; | 
| 572 | > | oneAtomSet.insert(sd->getGlobalIndex()); | 
| 573 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); | 
| 574 |  | } | 
| 575 |  | } | 
| 576 |  |  | 
| 673 |  |  | 
| 674 |  | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 675 |  | rb = mol->nextRigidBody(rbIter)) { | 
| 676 | < | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 676 | > | vector<Atom*> atoms = rb->getAtoms(); | 
| 677 |  | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 678 |  | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 679 |  | a = atoms[i]->getGlobalIndex(); | 
| 696 |  | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 697 |  | } | 
| 698 |  |  | 
| 682 | – | void SimInfo::update() { | 
| 699 |  |  | 
| 700 | < | setupSimType(); | 
| 701 | < |  | 
| 702 | < | #ifdef IS_MPI | 
| 703 | < | setupFortranParallel(); | 
| 704 | < | #endif | 
| 705 | < |  | 
| 706 | < | setupFortranSim(); | 
| 707 | < |  | 
| 708 | < | //setup fortran force field | 
| 693 | < | /** @deprecate */ | 
| 694 | < | int isError = 0; | 
| 695 | < |  | 
| 696 | < | setupCutoff(); | 
| 697 | < |  | 
| 698 | < | setupElectrostaticSummationMethod( isError ); | 
| 699 | < | setupSwitchingFunction(); | 
| 700 | < | setupAccumulateBoxDipole(); | 
| 701 | < |  | 
| 702 | < | if(isError){ | 
| 703 | < | sprintf( painCave.errMsg, | 
| 704 | < | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 705 | < | painCave.isFatal = 1; | 
| 706 | < | simError(); | 
| 707 | < | } | 
| 708 | < |  | 
| 700 | > | /** | 
| 701 | > | * update | 
| 702 | > | * | 
| 703 | > | *  Performs the global checks and variable settings after the | 
| 704 | > | *  objects have been created. | 
| 705 | > | * | 
| 706 | > | */ | 
| 707 | > | void SimInfo::update() { | 
| 708 | > | setupSimVariables(); | 
| 709 |  | calcNdf(); | 
| 710 |  | calcNdfRaw(); | 
| 711 |  | calcNdfTrans(); | 
| 712 | – |  | 
| 713 | – | fortranInitialized_ = true; | 
| 712 |  | } | 
| 713 | < |  | 
| 714 | < | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 713 | > |  | 
| 714 | > | /** | 
| 715 | > | * getSimulatedAtomTypes | 
| 716 | > | * | 
| 717 | > | * Returns an STL set of AtomType* that are actually present in this | 
| 718 | > | * simulation.  Must query all processors to assemble this information. | 
| 719 | > | * | 
| 720 | > | */ | 
| 721 | > | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 722 |  | SimInfo::MoleculeIterator mi; | 
| 723 |  | Molecule* mol; | 
| 724 |  | Molecule::AtomIterator ai; | 
| 725 |  | Atom* atom; | 
| 726 | < | std::set<AtomType*> atomTypes; | 
| 727 | < |  | 
| 726 | > | set<AtomType*> atomTypes; | 
| 727 | > |  | 
| 728 |  | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 729 | < |  | 
| 730 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 729 | > | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 730 | > | atom = mol->nextAtom(ai)) { | 
| 731 |  | atomTypes.insert(atom->getAtomType()); | 
| 732 | < | } | 
| 733 | < |  | 
| 729 | < | } | 
| 730 | < |  | 
| 731 | < | return atomTypes; | 
| 732 | < | } | 
| 733 | < |  | 
| 734 | < | void SimInfo::setupSimType() { | 
| 735 | < | std::set<AtomType*>::iterator i; | 
| 736 | < | std::set<AtomType*> atomTypes; | 
| 737 | < | atomTypes = getUniqueAtomTypes(); | 
| 732 | > | } | 
| 733 | > | } | 
| 734 |  |  | 
| 735 | < | int useLennardJones = 0; | 
| 740 | < | int useElectrostatic = 0; | 
| 741 | < | int useEAM = 0; | 
| 742 | < | int useSC = 0; | 
| 743 | < | int useCharge = 0; | 
| 744 | < | int useDirectional = 0; | 
| 745 | < | int useDipole = 0; | 
| 746 | < | int useGayBerne = 0; | 
| 747 | < | int useSticky = 0; | 
| 748 | < | int useStickyPower = 0; | 
| 749 | < | int useShape = 0; | 
| 750 | < | int useFLARB = 0; //it is not in AtomType yet | 
| 751 | < | int useDirectionalAtom = 0; | 
| 752 | < | int useElectrostatics = 0; | 
| 753 | < | //usePBC and useRF are from simParams | 
| 754 | < | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 755 | < | int useRF; | 
| 756 | < | int useSF; | 
| 757 | < | int useSP; | 
| 758 | < | int useBoxDipole; | 
| 735 | > | #ifdef IS_MPI | 
| 736 |  |  | 
| 737 | < | std::string myMethod; | 
| 738 | < |  | 
| 762 | < | // set the useRF logical | 
| 763 | < | useRF = 0; | 
| 764 | < | useSF = 0; | 
| 765 | < | useSP = 0; | 
| 766 | < | useBoxDipole = 0; | 
| 767 | < |  | 
| 768 | < |  | 
| 769 | < | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 770 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 771 | < | toUpper(myMethod); | 
| 772 | < | if (myMethod == "REACTION_FIELD"){ | 
| 773 | < | useRF = 1; | 
| 774 | < | } else if (myMethod == "SHIFTED_FORCE"){ | 
| 775 | < | useSF = 1; | 
| 776 | < | } else if (myMethod == "SHIFTED_POTENTIAL"){ | 
| 777 | < | useSP = 1; | 
| 778 | < | } | 
| 779 | < | } | 
| 737 | > | // loop over the found atom types on this processor, and add their | 
| 738 | > | // numerical idents to a vector: | 
| 739 |  |  | 
| 740 | < | if (simParams_->haveAccumulateBoxDipole()) | 
| 741 | < | if (simParams_->getAccumulateBoxDipole()) | 
| 742 | < | useBoxDipole = 1; | 
| 740 | > | vector<int> foundTypes; | 
| 741 | > | set<AtomType*>::iterator i; | 
| 742 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | 
| 743 | > | foundTypes.push_back( (*i)->getIdent() ); | 
| 744 |  |  | 
| 745 | < | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 745 | > | // count_local holds the number of found types on this processor | 
| 746 | > | int count_local = foundTypes.size(); | 
| 747 |  |  | 
| 748 | < | //loop over all of the atom types | 
| 788 | < | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 789 | < | useLennardJones |= (*i)->isLennardJones(); | 
| 790 | < | useElectrostatic |= (*i)->isElectrostatic(); | 
| 791 | < | useEAM |= (*i)->isEAM(); | 
| 792 | < | useSC |= (*i)->isSC(); | 
| 793 | < | useCharge |= (*i)->isCharge(); | 
| 794 | < | useDirectional |= (*i)->isDirectional(); | 
| 795 | < | useDipole |= (*i)->isDipole(); | 
| 796 | < | useGayBerne |= (*i)->isGayBerne(); | 
| 797 | < | useSticky |= (*i)->isSticky(); | 
| 798 | < | useStickyPower |= (*i)->isStickyPower(); | 
| 799 | < | useShape |= (*i)->isShape(); | 
| 800 | < | } | 
| 748 | > | int nproc = MPI::COMM_WORLD.Get_size(); | 
| 749 |  |  | 
| 750 | < | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 751 | < | useDirectionalAtom = 1; | 
| 752 | < | } | 
| 750 | > | // we need arrays to hold the counts and displacement vectors for | 
| 751 | > | // all processors | 
| 752 | > | vector<int> counts(nproc, 0); | 
| 753 | > | vector<int> disps(nproc, 0); | 
| 754 |  |  | 
| 755 | < | if (useCharge || useDipole) { | 
| 756 | < | useElectrostatics = 1; | 
| 755 | > | // fill the counts array | 
| 756 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 757 | > | 1, MPI::INT); | 
| 758 | > |  | 
| 759 | > | // use the processor counts to compute the displacement array | 
| 760 | > | disps[0] = 0; | 
| 761 | > | int totalCount = counts[0]; | 
| 762 | > | for (int iproc = 1; iproc < nproc; iproc++) { | 
| 763 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 764 | > | totalCount += counts[iproc]; | 
| 765 |  | } | 
| 766 |  |  | 
| 767 | < | #ifdef IS_MPI | 
| 768 | < | int temp; | 
| 767 | > | // we need a (possibly redundant) set of all found types: | 
| 768 | > | vector<int> ftGlobal(totalCount); | 
| 769 | > |  | 
| 770 | > | // now spray out the foundTypes to all the other processors: | 
| 771 | > | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | 
| 772 | > | &ftGlobal[0], &counts[0], &disps[0], | 
| 773 | > | MPI::INT); | 
| 774 |  |  | 
| 775 | < | temp = usePBC; | 
| 814 | < | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 775 | > | vector<int>::iterator j; | 
| 776 |  |  | 
| 777 | < | temp = useDirectionalAtom; | 
| 778 | < | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 777 | > | // foundIdents is a stl set, so inserting an already found ident | 
| 778 | > | // will have no effect. | 
| 779 | > | set<int> foundIdents; | 
| 780 |  |  | 
| 781 | < | temp = useLennardJones; | 
| 782 | < | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 781 | > | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 782 | > | foundIdents.insert((*j)); | 
| 783 | > |  | 
| 784 | > | // now iterate over the foundIdents and get the actual atom types | 
| 785 | > | // that correspond to these: | 
| 786 | > | set<int>::iterator it; | 
| 787 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 788 | > | atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 789 | > |  | 
| 790 | > | #endif | 
| 791 |  |  | 
| 792 | < | temp = useElectrostatics; | 
| 793 | < | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 792 | > | return atomTypes; | 
| 793 | > | } | 
| 794 |  |  | 
| 825 | – | temp = useCharge; | 
| 826 | – | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 795 |  |  | 
| 796 | < | temp = useDipole; | 
| 797 | < | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 796 | > | int getGlobalCountOfType(AtomType* atype) { | 
| 797 | > | /* | 
| 798 | > | set<AtomType*> atypes = getSimulatedAtomTypes(); | 
| 799 | > | map<AtomType*, int> counts_; | 
| 800 |  |  | 
| 801 | < | temp = useSticky; | 
| 802 | < | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 801 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 802 | > | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 803 | > | atom = mol->nextAtom(ai)) { | 
| 804 | > | atom->getAtomType(); | 
| 805 | > | } | 
| 806 | > | } | 
| 807 | > | */ | 
| 808 | > | return 0; | 
| 809 | > | } | 
| 810 |  |  | 
| 811 | < | temp = useStickyPower; | 
| 812 | < | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 811 | > | void SimInfo::setupSimVariables() { | 
| 812 | > | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 813 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole | 
| 814 | > | // parameter is true | 
| 815 | > | calcBoxDipole_ = false; | 
| 816 | > | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 817 | > | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 818 | > | calcBoxDipole_ = true; | 
| 819 | > | } | 
| 820 |  |  | 
| 821 | < | temp = useGayBerne; | 
| 822 | < | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 821 | > | set<AtomType*>::iterator i; | 
| 822 | > | set<AtomType*> atomTypes; | 
| 823 | > | atomTypes = getSimulatedAtomTypes(); | 
| 824 | > | bool usesElectrostatic = false; | 
| 825 | > | bool usesMetallic = false; | 
| 826 | > | bool usesDirectional = false; | 
| 827 | > | bool usesFluctuatingCharges =  false; | 
| 828 | > | //loop over all of the atom types | 
| 829 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 830 | > | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 831 | > | usesMetallic |= (*i)->isMetal(); | 
| 832 | > | usesDirectional |= (*i)->isDirectional(); | 
| 833 | > | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | 
| 834 | > | } | 
| 835 |  |  | 
| 836 | < | temp = useEAM; | 
| 837 | < | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 838 | < |  | 
| 839 | < | temp = useSC; | 
| 840 | < | MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 836 | > | #ifdef IS_MPI | 
| 837 | > | bool temp; | 
| 838 | > | temp = usesDirectional; | 
| 839 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, | 
| 840 | > | MPI::LOR); | 
| 841 | > |  | 
| 842 | > | temp = usesMetallic; | 
| 843 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, | 
| 844 | > | MPI::LOR); | 
| 845 |  |  | 
| 846 | < | temp = useShape; | 
| 847 | < | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 846 | > | temp = usesElectrostatic; | 
| 847 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, | 
| 848 | > | MPI::LOR); | 
| 849 |  |  | 
| 850 | < | temp = useFLARB; | 
| 851 | < | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 850 | > | temp = usesFluctuatingCharges; | 
| 851 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, | 
| 852 | > | MPI::LOR); | 
| 853 | > | #else | 
| 854 |  |  | 
| 855 | < | temp = useRF; | 
| 856 | < | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 855 | > | usesDirectionalAtoms_ = usesDirectional; | 
| 856 | > | usesMetallicAtoms_ = usesMetallic; | 
| 857 | > | usesElectrostaticAtoms_ = usesElectrostatic; | 
| 858 | > | usesFluctuatingCharges_ = usesFluctuatingCharges; | 
| 859 |  |  | 
| 860 | < | temp = useSF; | 
| 861 | < | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 860 | > | #endif | 
| 861 | > |  | 
| 862 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; | 
| 863 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 864 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 865 | > | } | 
| 866 |  |  | 
| 858 | – | temp = useSP; | 
| 859 | – | MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 867 |  |  | 
| 868 | < | temp = useBoxDipole; | 
| 869 | < | MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 868 | > | vector<int> SimInfo::getGlobalAtomIndices() { | 
| 869 | > | SimInfo::MoleculeIterator mi; | 
| 870 | > | Molecule* mol; | 
| 871 | > | Molecule::AtomIterator ai; | 
| 872 | > | Atom* atom; | 
| 873 |  |  | 
| 874 | < | temp = useAtomicVirial_; | 
| 875 | < | MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 874 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); | 
| 875 | > |  | 
| 876 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 877 | > |  | 
| 878 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 879 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); | 
| 880 | > | } | 
| 881 | > | } | 
| 882 | > | return GlobalAtomIndices; | 
| 883 | > | } | 
| 884 |  |  | 
| 867 | – | #endif | 
| 885 |  |  | 
| 886 | < | fInfo_.SIM_uses_PBC = usePBC; | 
| 887 | < | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 888 | < | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 889 | < | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 890 | < | fInfo_.SIM_uses_Charges = useCharge; | 
| 874 | < | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 875 | < | fInfo_.SIM_uses_Sticky = useSticky; | 
| 876 | < | fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 877 | < | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 878 | < | fInfo_.SIM_uses_EAM = useEAM; | 
| 879 | < | fInfo_.SIM_uses_SC = useSC; | 
| 880 | < | fInfo_.SIM_uses_Shapes = useShape; | 
| 881 | < | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 882 | < | fInfo_.SIM_uses_RF = useRF; | 
| 883 | < | fInfo_.SIM_uses_SF = useSF; | 
| 884 | < | fInfo_.SIM_uses_SP = useSP; | 
| 885 | < | fInfo_.SIM_uses_BoxDipole = useBoxDipole; | 
| 886 | < | fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; | 
| 887 | < | } | 
| 886 | > | vector<int> SimInfo::getGlobalGroupIndices() { | 
| 887 | > | SimInfo::MoleculeIterator mi; | 
| 888 | > | Molecule* mol; | 
| 889 | > | Molecule::CutoffGroupIterator ci; | 
| 890 | > | CutoffGroup* cg; | 
| 891 |  |  | 
| 892 | < | void SimInfo::setupFortranSim() { | 
| 890 | < | int isError; | 
| 891 | < | int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 892 | < | std::vector<int> fortranGlobalGroupMembership; | 
| 892 | > | vector<int> GlobalGroupIndices; | 
| 893 |  |  | 
| 894 | < | isError = 0; | 
| 895 | < |  | 
| 896 | < | //globalGroupMembership_ is filled by SimCreator | 
| 897 | < | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 898 | < | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 894 | > | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 895 | > |  | 
| 896 | > | //local index of cutoff group is trivial, it only depends on the | 
| 897 | > | //order of travesing | 
| 898 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 899 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 900 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); | 
| 901 | > | } | 
| 902 |  | } | 
| 903 | + | return GlobalGroupIndices; | 
| 904 | + | } | 
| 905 |  |  | 
| 906 | + |  | 
| 907 | + | void SimInfo::prepareTopology() { | 
| 908 | + |  | 
| 909 |  | //calculate mass ratio of cutoff group | 
| 902 | – | std::vector<RealType> mfact; | 
| 910 |  | SimInfo::MoleculeIterator mi; | 
| 911 |  | Molecule* mol; | 
| 912 |  | Molecule::CutoffGroupIterator ci; | 
| 915 |  | Atom* atom; | 
| 916 |  | RealType totalMass; | 
| 917 |  |  | 
| 918 | < | //to avoid memory reallocation, reserve enough space for mfact | 
| 919 | < | mfact.reserve(getNCutoffGroups()); | 
| 918 | > | /** | 
| 919 | > | * The mass factor is the relative mass of an atom to the total | 
| 920 | > | * mass of the cutoff group it belongs to.  By default, all atoms | 
| 921 | > | * are their own cutoff groups, and therefore have mass factors of | 
| 922 | > | * 1.  We need some special handling for massless atoms, which | 
| 923 | > | * will be treated as carrying the entire mass of the cutoff | 
| 924 | > | * group. | 
| 925 | > | */ | 
| 926 | > | massFactors_.clear(); | 
| 927 | > | massFactors_.resize(getNAtoms(), 1.0); | 
| 928 |  |  | 
| 929 |  | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 930 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 930 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 931 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 932 |  |  | 
| 933 |  | totalMass = cg->getMass(); | 
| 934 |  | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 935 |  | // Check for massless groups - set mfact to 1 if true | 
| 936 | < | if (totalMass != 0) | 
| 937 | < | mfact.push_back(atom->getMass()/totalMass); | 
| 936 | > | if (totalMass != 0) | 
| 937 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; | 
| 938 |  | else | 
| 939 | < | mfact.push_back( 1.0 ); | 
| 939 | > | massFactors_[atom->getLocalIndex()] = 1.0; | 
| 940 |  | } | 
| 941 |  | } | 
| 942 |  | } | 
| 943 |  |  | 
| 944 | < | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 929 | < | std::vector<int> identArray; | 
| 944 | > | // Build the identArray_ and regions_ | 
| 945 |  |  | 
| 946 | < | //to avoid memory reallocation, reserve enough space identArray | 
| 947 | < | identArray.reserve(getNAtoms()); | 
| 948 | < |  | 
| 949 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 946 | > | identArray_.clear(); | 
| 947 | > | identArray_.reserve(getNAtoms()); | 
| 948 | > | regions_.clear(); | 
| 949 | > | regions_.reserve(getNAtoms()); | 
| 950 | > |  | 
| 951 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 952 | > | int reg = mol->getRegion(); | 
| 953 |  | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 954 | < | identArray.push_back(atom->getIdent()); | 
| 954 | > | identArray_.push_back(atom->getIdent()); | 
| 955 | > | regions_.push_back(reg); | 
| 956 |  | } | 
| 957 |  | } | 
| 958 | + |  | 
| 959 | + | topologyDone_ = true; | 
| 960 | + | } | 
| 961 |  |  | 
| 962 | < | //fill molMembershipArray | 
| 963 | < | //molMembershipArray is filled by SimCreator | 
| 964 | < | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 943 | < | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 944 | < | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 945 | < | } | 
| 946 | < |  | 
| 947 | < | //setup fortran simulation | 
| 962 | > | void SimInfo::addProperty(GenericData* genData) { | 
| 963 | > | properties_.addProperty(genData); | 
| 964 | > | } | 
| 965 |  |  | 
| 966 | < | nExclude = excludedInteractions_.getSize(); | 
| 967 | < | nOneTwo = oneTwoInteractions_.getSize(); | 
| 968 | < | nOneThree = oneThreeInteractions_.getSize(); | 
| 952 | < | nOneFour = oneFourInteractions_.getSize(); | 
| 966 | > | void SimInfo::removeProperty(const string& propName) { | 
| 967 | > | properties_.removeProperty(propName); | 
| 968 | > | } | 
| 969 |  |  | 
| 970 | < | int* excludeList = excludedInteractions_.getPairList(); | 
| 971 | < | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 972 | < | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 957 | < | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 970 | > | void SimInfo::clearProperties() { | 
| 971 | > | properties_.clearProperties(); | 
| 972 | > | } | 
| 973 |  |  | 
| 974 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], | 
| 975 | < | &nExclude, excludeList, | 
| 976 | < | &nOneTwo, oneTwoList, | 
| 962 | < | &nOneThree, oneThreeList, | 
| 963 | < | &nOneFour, oneFourList, | 
| 964 | < | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, | 
| 965 | < | &fortranGlobalGroupMembership[0], &isError); | 
| 966 | < |  | 
| 967 | < | if( isError ){ | 
| 974 | > | vector<string> SimInfo::getPropertyNames() { | 
| 975 | > | return properties_.getPropertyNames(); | 
| 976 | > | } | 
| 977 |  |  | 
| 978 | < | sprintf( painCave.errMsg, | 
| 979 | < | "There was an error setting the simulation information in fortran.\n" ); | 
| 980 | < | painCave.isFatal = 1; | 
| 972 | < | painCave.severity = OPENMD_ERROR; | 
| 973 | < | simError(); | 
| 974 | < | } | 
| 975 | < |  | 
| 976 | < |  | 
| 977 | < | sprintf( checkPointMsg, | 
| 978 | < | "succesfully sent the simulation information to fortran.\n"); | 
| 979 | < |  | 
| 980 | < | errorCheckPoint(); | 
| 981 | < |  | 
| 982 | < | // Setup number of neighbors in neighbor list if present | 
| 983 | < | if (simParams_->haveNeighborListNeighbors()) { | 
| 984 | < | int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 985 | < | setNeighbors(&nlistNeighbors); | 
| 986 | < | } | 
| 987 | < |  | 
| 978 | > | vector<GenericData*> SimInfo::getProperties() { | 
| 979 | > | return properties_.getProperties(); | 
| 980 | > | } | 
| 981 |  |  | 
| 982 | + | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 983 | + | return properties_.getPropertyByName(propName); | 
| 984 |  | } | 
| 985 |  |  | 
| 986 | + | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 987 | + | if (sman_ == sman) { | 
| 988 | + | return; | 
| 989 | + | } | 
| 990 | + | delete sman_; | 
| 991 | + | sman_ = sman; | 
| 992 |  |  | 
| 992 | – | void SimInfo::setupFortranParallel() { | 
| 993 | – | #ifdef IS_MPI | 
| 994 | – | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 995 | – | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 996 | – | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 997 | – | SimInfo::MoleculeIterator mi; | 
| 998 | – | Molecule::AtomIterator ai; | 
| 999 | – | Molecule::CutoffGroupIterator ci; | 
| 993 |  | Molecule* mol; | 
| 994 | + | RigidBody* rb; | 
| 995 |  | Atom* atom; | 
| 996 |  | CutoffGroup* cg; | 
| 997 | < | mpiSimData parallelData; | 
| 998 | < | int isError; | 
| 999 | < |  | 
| 1000 | < | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 1001 | < |  | 
| 1002 | < | //local index(index in DataStorge) of atom is important | 
| 1009 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 1010 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 1011 | < | } | 
| 1012 | < |  | 
| 1013 | < | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 1014 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 1015 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 1016 | < | } | 
| 997 | > | SimInfo::MoleculeIterator mi; | 
| 998 | > | Molecule::RigidBodyIterator rbIter; | 
| 999 | > | Molecule::AtomIterator atomIter; | 
| 1000 | > | Molecule::CutoffGroupIterator cgIter; | 
| 1001 | > |  | 
| 1002 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1003 |  |  | 
| 1004 | < | } | 
| 1005 | < |  | 
| 1006 | < | //fill up mpiSimData struct | 
| 1021 | < | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 1022 | < | parallelData.nMolLocal = getNMolecules(); | 
| 1023 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 1024 | < | parallelData.nAtomsLocal = getNAtoms(); | 
| 1025 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 1026 | < | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 1027 | < | parallelData.myNode = worldRank; | 
| 1028 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 1029 | < |  | 
| 1030 | < | //pass mpiSimData struct and index arrays to fortran | 
| 1031 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 1032 | < | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 1033 | < | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 1034 | < |  | 
| 1035 | < | if (isError) { | 
| 1036 | < | sprintf(painCave.errMsg, | 
| 1037 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 1038 | < | painCave.isFatal = 1; | 
| 1039 | < | simError(); | 
| 1040 | < | } | 
| 1041 | < |  | 
| 1042 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 1043 | < | errorCheckPoint(); | 
| 1044 | < |  | 
| 1045 | < | #endif | 
| 1046 | < | } | 
| 1047 | < |  | 
| 1048 | < | void SimInfo::setupCutoff() { | 
| 1049 | < |  | 
| 1050 | < | ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); | 
| 1051 | < |  | 
| 1052 | < | // Check the cutoff policy | 
| 1053 | < | int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default | 
| 1054 | < |  | 
| 1055 | < | // Set LJ shifting bools to false | 
| 1056 | < | ljsp_ = 0; | 
| 1057 | < | ljsf_ = 0; | 
| 1058 | < |  | 
| 1059 | < | std::string myPolicy; | 
| 1060 | < | if (forceFieldOptions_.haveCutoffPolicy()){ | 
| 1061 | < | myPolicy = forceFieldOptions_.getCutoffPolicy(); | 
| 1062 | < | }else if (simParams_->haveCutoffPolicy()) { | 
| 1063 | < | myPolicy = simParams_->getCutoffPolicy(); | 
| 1064 | < | } | 
| 1065 | < |  | 
| 1066 | < | if (!myPolicy.empty()){ | 
| 1067 | < | toUpper(myPolicy); | 
| 1068 | < | if (myPolicy == "MIX") { | 
| 1069 | < | cp = MIX_CUTOFF_POLICY; | 
| 1070 | < | } else { | 
| 1071 | < | if (myPolicy == "MAX") { | 
| 1072 | < | cp = MAX_CUTOFF_POLICY; | 
| 1073 | < | } else { | 
| 1074 | < | if (myPolicy == "TRADITIONAL") { | 
| 1075 | < | cp = TRADITIONAL_CUTOFF_POLICY; | 
| 1076 | < | } else { | 
| 1077 | < | // throw error | 
| 1078 | < | sprintf( painCave.errMsg, | 
| 1079 | < | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 1080 | < | painCave.isFatal = 1; | 
| 1081 | < | simError(); | 
| 1082 | < | } | 
| 1083 | < | } | 
| 1004 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; | 
| 1005 | > | atom = mol->nextAtom(atomIter)) { | 
| 1006 | > | atom->setSnapshotManager(sman_); | 
| 1007 |  | } | 
| 1085 | – | } | 
| 1086 | – | notifyFortranCutoffPolicy(&cp); | 
| 1087 | – |  | 
| 1088 | – | // Check the Skin Thickness for neighborlists | 
| 1089 | – | RealType skin; | 
| 1090 | – | if (simParams_->haveSkinThickness()) { | 
| 1091 | – | skin = simParams_->getSkinThickness(); | 
| 1092 | – | notifyFortranSkinThickness(&skin); | 
| 1093 | – | } | 
| 1008 |  |  | 
| 1009 | < | // Check if the cutoff was set explicitly: | 
| 1010 | < | if (simParams_->haveCutoffRadius()) { | 
| 1011 | < | rcut_ = simParams_->getCutoffRadius(); | 
| 1098 | < | if (simParams_->haveSwitchingRadius()) { | 
| 1099 | < | rsw_  = simParams_->getSwitchingRadius(); | 
| 1100 | < | } else { | 
| 1101 | < | if (fInfo_.SIM_uses_Charges | | 
| 1102 | < | fInfo_.SIM_uses_Dipoles | | 
| 1103 | < | fInfo_.SIM_uses_RF) { | 
| 1104 | < |  | 
| 1105 | < | rsw_ = 0.85 * rcut_; | 
| 1106 | < | sprintf(painCave.errMsg, | 
| 1107 | < | "SimCreator Warning: No value was set for the switchingRadius.\n" | 
| 1108 | < | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" | 
| 1109 | < | "\tswitchingRadius = %f. for this simulation\n", rsw_); | 
| 1110 | < | painCave.isFatal = 0; | 
| 1111 | < | simError(); | 
| 1112 | < | } else { | 
| 1113 | < | rsw_ = rcut_; | 
| 1114 | < | sprintf(painCave.errMsg, | 
| 1115 | < | "SimCreator Warning: No value was set for the switchingRadius.\n" | 
| 1116 | < | "\tOpenMD will use the same value as the cutoffRadius.\n" | 
| 1117 | < | "\tswitchingRadius = %f. for this simulation\n", rsw_); | 
| 1118 | < | painCave.isFatal = 0; | 
| 1119 | < | simError(); | 
| 1120 | < | } | 
| 1009 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 1010 | > | rb = mol->nextRigidBody(rbIter)) { | 
| 1011 | > | rb->setSnapshotManager(sman_); | 
| 1012 |  | } | 
| 1013 |  |  | 
| 1014 | < | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1015 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1016 | < | toUpper(myMethod); | 
| 1126 | < |  | 
| 1127 | < | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1128 | < | ljsp_ = 1; | 
| 1129 | < | } else if (myMethod == "SHIFTED_FORCE") { | 
| 1130 | < | ljsf_ = 1; | 
| 1131 | < | } | 
| 1014 | > | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; | 
| 1015 | > | cg = mol->nextCutoffGroup(cgIter)) { | 
| 1016 | > | cg->setSnapshotManager(sman_); | 
| 1017 |  | } | 
| 1018 | < |  | 
| 1019 | < | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); | 
| 1135 | < |  | 
| 1136 | < | } else { | 
| 1137 | < |  | 
| 1138 | < | // For electrostatic atoms, we'll assume a large safe value: | 
| 1139 | < | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 1140 | < | sprintf(painCave.errMsg, | 
| 1141 | < | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 1142 | < | "\tOpenMD will use a default value of 15.0 angstroms" | 
| 1143 | < | "\tfor the cutoffRadius.\n"); | 
| 1144 | < | painCave.isFatal = 0; | 
| 1145 | < | simError(); | 
| 1146 | < | rcut_ = 15.0; | 
| 1147 | < |  | 
| 1148 | < | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1149 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1150 | < | toUpper(myMethod); | 
| 1151 | < |  | 
| 1152 | < | // For the time being, we're tethering the LJ shifted behavior to the | 
| 1153 | < | // electrostaticSummationMethod keyword options | 
| 1154 | < | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1155 | < | ljsp_ = 1; | 
| 1156 | < | } else if (myMethod == "SHIFTED_FORCE") { | 
| 1157 | < | ljsf_ = 1; | 
| 1158 | < | } | 
| 1159 | < | if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { | 
| 1160 | < | if (simParams_->haveSwitchingRadius()){ | 
| 1161 | < | sprintf(painCave.errMsg, | 
| 1162 | < | "SimInfo Warning: A value was set for the switchingRadius\n" | 
| 1163 | < | "\teven though the electrostaticSummationMethod was\n" | 
| 1164 | < | "\tset to %s\n", myMethod.c_str()); | 
| 1165 | < | painCave.isFatal = 1; | 
| 1166 | < | simError(); | 
| 1167 | < | } | 
| 1168 | < | } | 
| 1169 | < | } | 
| 1170 | < |  | 
| 1171 | < | if (simParams_->haveSwitchingRadius()){ | 
| 1172 | < | rsw_ = simParams_->getSwitchingRadius(); | 
| 1173 | < | } else { | 
| 1174 | < | sprintf(painCave.errMsg, | 
| 1175 | < | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 1176 | < | "\tOpenMD will use a default value of\n" | 
| 1177 | < | "\t0.85 * cutoffRadius for the switchingRadius\n"); | 
| 1178 | < | painCave.isFatal = 0; | 
| 1179 | < | simError(); | 
| 1180 | < | rsw_ = 0.85 * rcut_; | 
| 1181 | < | } | 
| 1182 | < |  | 
| 1183 | < | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); | 
| 1184 | < |  | 
| 1185 | < | } else { | 
| 1186 | < | // We didn't set rcut explicitly, and we don't have electrostatic atoms, so | 
| 1187 | < | // We'll punt and let fortran figure out the cutoffs later. | 
| 1188 | < |  | 
| 1189 | < | notifyFortranYouAreOnYourOwn(); | 
| 1190 | < |  | 
| 1191 | < | } | 
| 1192 | < | } | 
| 1018 | > | } | 
| 1019 | > |  | 
| 1020 |  | } | 
| 1021 |  |  | 
| 1195 | – | void SimInfo::setupElectrostaticSummationMethod( int isError ) { | 
| 1196 | – |  | 
| 1197 | – | int errorOut; | 
| 1198 | – | int esm =  NONE; | 
| 1199 | – | int sm = UNDAMPED; | 
| 1200 | – | RealType alphaVal; | 
| 1201 | – | RealType dielectric; | 
| 1202 | – |  | 
| 1203 | – | errorOut = isError; | 
| 1022 |  |  | 
| 1023 | < | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1206 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1207 | < | toUpper(myMethod); | 
| 1208 | < | if (myMethod == "NONE") { | 
| 1209 | < | esm = NONE; | 
| 1210 | < | } else { | 
| 1211 | < | if (myMethod == "SWITCHING_FUNCTION") { | 
| 1212 | < | esm = SWITCHING_FUNCTION; | 
| 1213 | < | } else { | 
| 1214 | < | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1215 | < | esm = SHIFTED_POTENTIAL; | 
| 1216 | < | } else { | 
| 1217 | < | if (myMethod == "SHIFTED_FORCE") { | 
| 1218 | < | esm = SHIFTED_FORCE; | 
| 1219 | < | } else { | 
| 1220 | < | if (myMethod == "REACTION_FIELD") { | 
| 1221 | < | esm = REACTION_FIELD; | 
| 1222 | < | dielectric = simParams_->getDielectric(); | 
| 1223 | < | if (!simParams_->haveDielectric()) { | 
| 1224 | < | // throw warning | 
| 1225 | < | sprintf( painCave.errMsg, | 
| 1226 | < | "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" | 
| 1227 | < | "\tA default value of %f will be used for the dielectric.\n", dielectric); | 
| 1228 | < | painCave.isFatal = 0; | 
| 1229 | < | simError(); | 
| 1230 | < | } | 
| 1231 | < | } else { | 
| 1232 | < | // throw error | 
| 1233 | < | sprintf( painCave.errMsg, | 
| 1234 | < | "SimInfo error: Unknown electrostaticSummationMethod.\n" | 
| 1235 | < | "\t(Input file specified %s .)\n" | 
| 1236 | < | "\telectrostaticSummationMethod must be one of: \"none\",\n" | 
| 1237 | < | "\t\"shifted_potential\", \"shifted_force\", or \n" | 
| 1238 | < | "\t\"reaction_field\".\n", myMethod.c_str() ); | 
| 1239 | < | painCave.isFatal = 1; | 
| 1240 | < | simError(); | 
| 1241 | < | } | 
| 1242 | < | } | 
| 1243 | < | } | 
| 1244 | < | } | 
| 1245 | < | } | 
| 1246 | < | } | 
| 1247 | < |  | 
| 1248 | < | if (simParams_->haveElectrostaticScreeningMethod()) { | 
| 1249 | < | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); | 
| 1250 | < | toUpper(myScreen); | 
| 1251 | < | if (myScreen == "UNDAMPED") { | 
| 1252 | < | sm = UNDAMPED; | 
| 1253 | < | } else { | 
| 1254 | < | if (myScreen == "DAMPED") { | 
| 1255 | < | sm = DAMPED; | 
| 1256 | < | if (!simParams_->haveDampingAlpha()) { | 
| 1257 | < | // first set a cutoff dependent alpha value | 
| 1258 | < | // we assume alpha depends linearly with rcut from 0 to 20.5 ang | 
| 1259 | < | alphaVal = 0.5125 - rcut_* 0.025; | 
| 1260 | < | // for values rcut > 20.5, alpha is zero | 
| 1261 | < | if (alphaVal < 0) alphaVal = 0; | 
| 1262 | < |  | 
| 1263 | < | // throw warning | 
| 1264 | < | sprintf( painCave.errMsg, | 
| 1265 | < | "SimInfo warning: dampingAlpha was not specified in the input file.\n" | 
| 1266 | < | "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); | 
| 1267 | < | painCave.isFatal = 0; | 
| 1268 | < | simError(); | 
| 1269 | < | } else { | 
| 1270 | < | alphaVal = simParams_->getDampingAlpha(); | 
| 1271 | < | } | 
| 1272 | < |  | 
| 1273 | < | } else { | 
| 1274 | < | // throw error | 
| 1275 | < | sprintf( painCave.errMsg, | 
| 1276 | < | "SimInfo error: Unknown electrostaticScreeningMethod.\n" | 
| 1277 | < | "\t(Input file specified %s .)\n" | 
| 1278 | < | "\telectrostaticScreeningMethod must be one of: \"undamped\"\n" | 
| 1279 | < | "or \"damped\".\n", myScreen.c_str() ); | 
| 1280 | < | painCave.isFatal = 1; | 
| 1281 | < | simError(); | 
| 1282 | < | } | 
| 1283 | < | } | 
| 1284 | < | } | 
| 1285 | < |  | 
| 1286 | < | // let's pass some summation method variables to fortran | 
| 1287 | < | setElectrostaticSummationMethod( &esm ); | 
| 1288 | < | setFortranElectrostaticMethod( &esm ); | 
| 1289 | < | setScreeningMethod( &sm ); | 
| 1290 | < | setDampingAlpha( &alphaVal ); | 
| 1291 | < | setReactionFieldDielectric( &dielectric ); | 
| 1292 | < | initFortranFF( &errorOut ); | 
| 1293 | < | } | 
| 1023 | > | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1024 |  |  | 
| 1295 | – | void SimInfo::setupSwitchingFunction() { | 
| 1296 | – | int ft = CUBIC; | 
| 1297 | – |  | 
| 1298 | – | if (simParams_->haveSwitchingFunctionType()) { | 
| 1299 | – | std::string funcType = simParams_->getSwitchingFunctionType(); | 
| 1300 | – | toUpper(funcType); | 
| 1301 | – | if (funcType == "CUBIC") { | 
| 1302 | – | ft = CUBIC; | 
| 1303 | – | } else { | 
| 1304 | – | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 1305 | – | ft = FIFTH_ORDER_POLY; | 
| 1306 | – | } else { | 
| 1307 | – | // throw error | 
| 1308 | – | sprintf( painCave.errMsg, | 
| 1309 | – | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); | 
| 1310 | – | painCave.isFatal = 1; | 
| 1311 | – | simError(); | 
| 1312 | – | } | 
| 1313 | – | } | 
| 1314 | – | } | 
| 1315 | – |  | 
| 1316 | – | // send switching function notification to switcheroo | 
| 1317 | – | setFunctionType(&ft); | 
| 1318 | – |  | 
| 1319 | – | } | 
| 1320 | – |  | 
| 1321 | – | void SimInfo::setupAccumulateBoxDipole() { | 
| 1322 | – |  | 
| 1323 | – | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 1324 | – | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 1325 | – | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 1326 | – | setAccumulateBoxDipole(); | 
| 1327 | – | calcBoxDipole_ = true; | 
| 1328 | – | } | 
| 1329 | – |  | 
| 1330 | – | } | 
| 1331 | – |  | 
| 1332 | – | void SimInfo::addProperty(GenericData* genData) { | 
| 1333 | – | properties_.addProperty(genData); | 
| 1334 | – | } | 
| 1335 | – |  | 
| 1336 | – | void SimInfo::removeProperty(const std::string& propName) { | 
| 1337 | – | properties_.removeProperty(propName); | 
| 1338 | – | } | 
| 1339 | – |  | 
| 1340 | – | void SimInfo::clearProperties() { | 
| 1341 | – | properties_.clearProperties(); | 
| 1342 | – | } | 
| 1343 | – |  | 
| 1344 | – | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 1345 | – | return properties_.getPropertyNames(); | 
| 1346 | – | } | 
| 1347 | – |  | 
| 1348 | – | std::vector<GenericData*> SimInfo::getProperties() { | 
| 1349 | – | return properties_.getProperties(); | 
| 1350 | – | } | 
| 1351 | – |  | 
| 1352 | – | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 1353 | – | return properties_.getPropertyByName(propName); | 
| 1354 | – | } | 
| 1355 | – |  | 
| 1356 | – | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1357 | – | if (sman_ == sman) { | 
| 1358 | – | return; | 
| 1359 | – | } | 
| 1360 | – | delete sman_; | 
| 1361 | – | sman_ = sman; | 
| 1362 | – |  | 
| 1363 | – | Molecule* mol; | 
| 1364 | – | RigidBody* rb; | 
| 1365 | – | Atom* atom; | 
| 1366 | – | SimInfo::MoleculeIterator mi; | 
| 1367 | – | Molecule::RigidBodyIterator rbIter; | 
| 1368 | – | Molecule::AtomIterator atomIter;; | 
| 1369 | – |  | 
| 1370 | – | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1371 | – |  | 
| 1372 | – | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1373 | – | atom->setSnapshotManager(sman_); | 
| 1374 | – | } | 
| 1375 | – |  | 
| 1376 | – | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1377 | – | rb->setSnapshotManager(sman_); | 
| 1378 | – | } | 
| 1379 | – | } | 
| 1380 | – |  | 
| 1381 | – | } | 
| 1382 | – |  | 
| 1383 | – | Vector3d SimInfo::getComVel(){ | 
| 1384 | – | SimInfo::MoleculeIterator i; | 
| 1385 | – | Molecule* mol; | 
| 1386 | – |  | 
| 1387 | – | Vector3d comVel(0.0); | 
| 1388 | – | RealType totalMass = 0.0; | 
| 1389 | – |  | 
| 1390 | – |  | 
| 1391 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1392 | – | RealType mass = mol->getMass(); | 
| 1393 | – | totalMass += mass; | 
| 1394 | – | comVel += mass * mol->getComVel(); | 
| 1395 | – | } | 
| 1396 | – |  | 
| 1397 | – | #ifdef IS_MPI | 
| 1398 | – | RealType tmpMass = totalMass; | 
| 1399 | – | Vector3d tmpComVel(comVel); | 
| 1400 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1401 | – | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1402 | – | #endif | 
| 1403 | – |  | 
| 1404 | – | comVel /= totalMass; | 
| 1405 | – |  | 
| 1406 | – | return comVel; | 
| 1407 | – | } | 
| 1408 | – |  | 
| 1409 | – | Vector3d SimInfo::getCom(){ | 
| 1410 | – | SimInfo::MoleculeIterator i; | 
| 1411 | – | Molecule* mol; | 
| 1412 | – |  | 
| 1413 | – | Vector3d com(0.0); | 
| 1414 | – | RealType totalMass = 0.0; | 
| 1415 | – |  | 
| 1416 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1417 | – | RealType mass = mol->getMass(); | 
| 1418 | – | totalMass += mass; | 
| 1419 | – | com += mass * mol->getCom(); | 
| 1420 | – | } | 
| 1421 | – |  | 
| 1422 | – | #ifdef IS_MPI | 
| 1423 | – | RealType tmpMass = totalMass; | 
| 1424 | – | Vector3d tmpCom(com); | 
| 1425 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1426 | – | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1427 | – | #endif | 
| 1428 | – |  | 
| 1429 | – | com /= totalMass; | 
| 1430 | – |  | 
| 1431 | – | return com; | 
| 1432 | – |  | 
| 1433 | – | } | 
| 1434 | – |  | 
| 1435 | – | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1436 | – |  | 
| 1025 |  | return o; | 
| 1026 |  | } | 
| 1027 |  |  | 
| 1028 | < |  | 
| 1441 | < | /* | 
| 1442 | < | Returns center of mass and center of mass velocity in one function call. | 
| 1443 | < | */ | 
| 1444 | < |  | 
| 1445 | < | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1446 | < | SimInfo::MoleculeIterator i; | 
| 1447 | < | Molecule* mol; | 
| 1448 | < |  | 
| 1449 | < |  | 
| 1450 | < | RealType totalMass = 0.0; | 
| 1451 | < |  | 
| 1452 | < |  | 
| 1453 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1454 | < | RealType mass = mol->getMass(); | 
| 1455 | < | totalMass += mass; | 
| 1456 | < | com += mass * mol->getCom(); | 
| 1457 | < | comVel += mass * mol->getComVel(); | 
| 1458 | < | } | 
| 1459 | < |  | 
| 1460 | < | #ifdef IS_MPI | 
| 1461 | < | RealType tmpMass = totalMass; | 
| 1462 | < | Vector3d tmpCom(com); | 
| 1463 | < | Vector3d tmpComVel(comVel); | 
| 1464 | < | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1465 | < | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1466 | < | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1467 | < | #endif | 
| 1468 | < |  | 
| 1469 | < | com /= totalMass; | 
| 1470 | < | comVel /= totalMass; | 
| 1471 | < | } | 
| 1472 | < |  | 
| 1473 | < | /* | 
| 1474 | < | Return intertia tensor for entire system and angular momentum Vector. | 
| 1475 | < |  | 
| 1476 | < |  | 
| 1477 | < | [  Ixx -Ixy  -Ixz ] | 
| 1478 | < | J =| -Iyx  Iyy  -Iyz | | 
| 1479 | < | [ -Izx -Iyz   Izz ] | 
| 1480 | < | */ | 
| 1481 | < |  | 
| 1482 | < | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1483 | < |  | 
| 1484 | < |  | 
| 1485 | < | RealType xx = 0.0; | 
| 1486 | < | RealType yy = 0.0; | 
| 1487 | < | RealType zz = 0.0; | 
| 1488 | < | RealType xy = 0.0; | 
| 1489 | < | RealType xz = 0.0; | 
| 1490 | < | RealType yz = 0.0; | 
| 1491 | < | Vector3d com(0.0); | 
| 1492 | < | Vector3d comVel(0.0); | 
| 1493 | < |  | 
| 1494 | < | getComAll(com, comVel); | 
| 1495 | < |  | 
| 1496 | < | SimInfo::MoleculeIterator i; | 
| 1497 | < | Molecule* mol; | 
| 1498 | < |  | 
| 1499 | < | Vector3d thisq(0.0); | 
| 1500 | < | Vector3d thisv(0.0); | 
| 1501 | < |  | 
| 1502 | < | RealType thisMass = 0.0; | 
| 1503 | < |  | 
| 1504 | < |  | 
| 1505 | < |  | 
| 1506 | < |  | 
| 1507 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1508 | < |  | 
| 1509 | < | thisq = mol->getCom()-com; | 
| 1510 | < | thisv = mol->getComVel()-comVel; | 
| 1511 | < | thisMass = mol->getMass(); | 
| 1512 | < | // Compute moment of intertia coefficients. | 
| 1513 | < | xx += thisq[0]*thisq[0]*thisMass; | 
| 1514 | < | yy += thisq[1]*thisq[1]*thisMass; | 
| 1515 | < | zz += thisq[2]*thisq[2]*thisMass; | 
| 1516 | < |  | 
| 1517 | < | // compute products of intertia | 
| 1518 | < | xy += thisq[0]*thisq[1]*thisMass; | 
| 1519 | < | xz += thisq[0]*thisq[2]*thisMass; | 
| 1520 | < | yz += thisq[1]*thisq[2]*thisMass; | 
| 1521 | < |  | 
| 1522 | < | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1523 | < |  | 
| 1524 | < | } | 
| 1525 | < |  | 
| 1526 | < |  | 
| 1527 | < | inertiaTensor(0,0) = yy + zz; | 
| 1528 | < | inertiaTensor(0,1) = -xy; | 
| 1529 | < | inertiaTensor(0,2) = -xz; | 
| 1530 | < | inertiaTensor(1,0) = -xy; | 
| 1531 | < | inertiaTensor(1,1) = xx + zz; | 
| 1532 | < | inertiaTensor(1,2) = -yz; | 
| 1533 | < | inertiaTensor(2,0) = -xz; | 
| 1534 | < | inertiaTensor(2,1) = -yz; | 
| 1535 | < | inertiaTensor(2,2) = xx + yy; | 
| 1536 | < |  | 
| 1537 | < | #ifdef IS_MPI | 
| 1538 | < | Mat3x3d tmpI(inertiaTensor); | 
| 1539 | < | Vector3d tmpAngMom; | 
| 1540 | < | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1541 | < | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1542 | < | #endif | 
| 1543 | < |  | 
| 1544 | < | return; | 
| 1545 | < | } | 
| 1546 | < |  | 
| 1547 | < | //Returns the angular momentum of the system | 
| 1548 | < | Vector3d SimInfo::getAngularMomentum(){ | 
| 1549 | < |  | 
| 1550 | < | Vector3d com(0.0); | 
| 1551 | < | Vector3d comVel(0.0); | 
| 1552 | < | Vector3d angularMomentum(0.0); | 
| 1553 | < |  | 
| 1554 | < | getComAll(com,comVel); | 
| 1555 | < |  | 
| 1556 | < | SimInfo::MoleculeIterator i; | 
| 1557 | < | Molecule* mol; | 
| 1558 | < |  | 
| 1559 | < | Vector3d thisr(0.0); | 
| 1560 | < | Vector3d thisp(0.0); | 
| 1561 | < |  | 
| 1562 | < | RealType thisMass; | 
| 1563 | < |  | 
| 1564 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1565 | < | thisMass = mol->getMass(); | 
| 1566 | < | thisr = mol->getCom()-com; | 
| 1567 | < | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1568 | < |  | 
| 1569 | < | angularMomentum += cross( thisr, thisp ); | 
| 1570 | < |  | 
| 1571 | < | } | 
| 1572 | < |  | 
| 1573 | < | #ifdef IS_MPI | 
| 1574 | < | Vector3d tmpAngMom; | 
| 1575 | < | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1576 | < | #endif | 
| 1577 | < |  | 
| 1578 | < | return angularMomentum; | 
| 1579 | < | } | 
| 1580 | < |  | 
| 1028 | > |  | 
| 1029 |  | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1030 | < | return IOIndexToIntegrableObject.at(index); | 
| 1030 | > | if (index >= int(IOIndexToIntegrableObject.size())) { | 
| 1031 | > | sprintf(painCave.errMsg, | 
| 1032 | > | "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" | 
| 1033 | > | "\tindex exceeds number of known objects!\n"); | 
| 1034 | > | painCave.isFatal = 1; | 
| 1035 | > | simError(); | 
| 1036 | > | return NULL; | 
| 1037 | > | } else | 
| 1038 | > | return IOIndexToIntegrableObject.at(index); | 
| 1039 |  | } | 
| 1040 |  |  | 
| 1041 | < | void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { | 
| 1041 | > | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1042 |  | IOIndexToIntegrableObject= v; | 
| 1043 |  | } | 
| 1044 |  |  | 
| 1045 | < | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1046 | < | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1047 | < | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1048 | < | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1049 | < | */ | 
| 1050 | < | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1051 | < | Mat3x3d intTensor; | 
| 1052 | < | RealType det; | 
| 1053 | < | Vector3d dummyAngMom; | 
| 1598 | < | RealType sysconstants; | 
| 1599 | < | RealType geomCnst; | 
| 1600 | < |  | 
| 1601 | < | geomCnst = 3.0/2.0; | 
| 1602 | < | /* Get the inertial tensor and angular momentum for free*/ | 
| 1603 | < | getInertiaTensor(intTensor,dummyAngMom); | 
| 1604 | < |  | 
| 1605 | < | det = intTensor.determinant(); | 
| 1606 | < | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1607 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1608 | < | return; | 
| 1045 | > | int SimInfo::getNGlobalConstraints() { | 
| 1046 | > | int nGlobalConstraints; | 
| 1047 | > | #ifdef IS_MPI | 
| 1048 | > | MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, | 
| 1049 | > | MPI::INT, MPI::SUM); | 
| 1050 | > | #else | 
| 1051 | > | nGlobalConstraints =  nConstraints_; | 
| 1052 | > | #endif | 
| 1053 | > | return nGlobalConstraints; | 
| 1054 |  | } | 
| 1055 |  |  | 
| 1611 | – | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1612 | – | Mat3x3d intTensor; | 
| 1613 | – | Vector3d dummyAngMom; | 
| 1614 | – | RealType sysconstants; | 
| 1615 | – | RealType geomCnst; | 
| 1616 | – |  | 
| 1617 | – | geomCnst = 3.0/2.0; | 
| 1618 | – | /* Get the inertial tensor and angular momentum for free*/ | 
| 1619 | – | getInertiaTensor(intTensor,dummyAngMom); | 
| 1620 | – |  | 
| 1621 | – | detI = intTensor.determinant(); | 
| 1622 | – | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1623 | – | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1624 | – | return; | 
| 1625 | – | } | 
| 1626 | – | /* | 
| 1627 | – | void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { | 
| 1628 | – | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1629 | – | sdByGlobalIndex_ = v; | 
| 1630 | – | } | 
| 1631 | – |  | 
| 1632 | – | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1633 | – | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1634 | – | return sdByGlobalIndex_.at(index); | 
| 1635 | – | } | 
| 1636 | – | */ | 
| 1056 |  | }//end namespace OpenMD | 
| 1057 |  |  |