| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 |  | 
| 52 | #include "brains/SimInfo.hpp" | 
| 53 | #include "math/Vector3.hpp" | 
| 54 | #include "primitives/Molecule.hpp" | 
| 55 | #include "UseTheForce/doForces_interface.h" | 
| 56 | #include "UseTheForce/notifyCutoffs_interface.h" | 
| 57 | #include "utils/MemoryUtils.hpp" | 
| 58 | #include "utils/simError.h" | 
| 59 | #include "selection/SelectionManager.hpp" | 
| 60 |  | 
| 61 | #ifdef IS_MPI | 
| 62 | #include "UseTheForce/mpiComponentPlan.h" | 
| 63 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 64 | #endif | 
| 65 |  | 
| 66 | namespace oopse { | 
| 67 |  | 
| 68 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, | 
| 69 | ForceField* ff, Globals* simParams) : | 
| 70 | forceField_(ff), simParams_(simParams), | 
| 71 | ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 72 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 73 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 74 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0), | 
| 75 | nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0), | 
| 76 | sman_(NULL), fortranInitialized_(false), selectMan_(NULL) { | 
| 77 |  | 
| 78 |  | 
| 79 | std::vector<std::pair<MoleculeStamp*, int> >::iterator i; | 
| 80 | MoleculeStamp* molStamp; | 
| 81 | int nMolWithSameStamp; | 
| 82 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 83 | int nGroups = 0;          //total cutoff groups defined in meta-data file | 
| 84 | CutoffGroupStamp* cgStamp; | 
| 85 | RigidBodyStamp* rbStamp; | 
| 86 | int nRigidAtoms = 0; | 
| 87 |  | 
| 88 | for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { | 
| 89 | molStamp = i->first; | 
| 90 | nMolWithSameStamp = i->second; | 
| 91 |  | 
| 92 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 93 |  | 
| 94 | //calculate atoms in molecules | 
| 95 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 96 |  | 
| 97 |  | 
| 98 | //calculate atoms in cutoff groups | 
| 99 | int nAtomsInGroups = 0; | 
| 100 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 101 |  | 
| 102 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 103 | cgStamp = molStamp->getCutoffGroup(j); | 
| 104 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 105 | } | 
| 106 |  | 
| 107 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 108 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 109 |  | 
| 110 | //calculate atoms in rigid bodies | 
| 111 | int nAtomsInRigidBodies = 0; | 
| 112 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 113 |  | 
| 114 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 115 | rbStamp = molStamp->getRigidBody(j); | 
| 116 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 117 | } | 
| 118 |  | 
| 119 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 120 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 121 |  | 
| 122 | } | 
| 123 |  | 
| 124 | //every free atom (atom does not belong to cutoff groups) is a cutoff group | 
| 125 | //therefore the total number of cutoff groups in the system is equal to | 
| 126 | //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data | 
| 127 | //file plus the number of cutoff groups defined in meta-data file | 
| 128 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 129 |  | 
| 130 | //every free atom (atom does not belong to rigid bodies) is an integrable object | 
| 131 | //therefore the total number of  integrable objects in the system is equal to | 
| 132 | //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data | 
| 133 | //file plus the number of  rigid bodies defined in meta-data file | 
| 134 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; | 
| 135 |  | 
| 136 | nGlobalMols_ = molStampIds_.size(); | 
| 137 |  | 
| 138 | #ifdef IS_MPI | 
| 139 | molToProcMap_.resize(nGlobalMols_); | 
| 140 | #endif | 
| 141 |  | 
| 142 | selectMan_ = new SelectionManager(this); | 
| 143 | selectMan_->selectAll(); | 
| 144 | } | 
| 145 |  | 
| 146 | SimInfo::~SimInfo() { | 
| 147 | //MemoryUtils::deleteVectorOfPointer(molecules_); | 
| 148 |  | 
| 149 | MemoryUtils::deleteVectorOfPointer(moleculeStamps_); | 
| 150 |  | 
| 151 | delete sman_; | 
| 152 | delete simParams_; | 
| 153 | delete forceField_; | 
| 154 | delete selectMan_; | 
| 155 | } | 
| 156 |  | 
| 157 | int SimInfo::getNGlobalConstraints() { | 
| 158 | int nGlobalConstraints; | 
| 159 | #ifdef IS_MPI | 
| 160 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 161 | MPI_COMM_WORLD); | 
| 162 | #else | 
| 163 | nGlobalConstraints =  nConstraints_; | 
| 164 | #endif | 
| 165 | return nGlobalConstraints; | 
| 166 | } | 
| 167 |  | 
| 168 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 169 | MoleculeIterator i; | 
| 170 |  | 
| 171 | i = molecules_.find(mol->getGlobalIndex()); | 
| 172 | if (i == molecules_.end() ) { | 
| 173 |  | 
| 174 | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 175 |  | 
| 176 | nAtoms_ += mol->getNAtoms(); | 
| 177 | nBonds_ += mol->getNBonds(); | 
| 178 | nBends_ += mol->getNBends(); | 
| 179 | nTorsions_ += mol->getNTorsions(); | 
| 180 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 181 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 182 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 183 | nConstraints_ += mol->getNConstraintPairs(); | 
| 184 |  | 
| 185 | addExcludePairs(mol); | 
| 186 |  | 
| 187 | return true; | 
| 188 | } else { | 
| 189 | return false; | 
| 190 | } | 
| 191 | } | 
| 192 |  | 
| 193 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 194 | MoleculeIterator i; | 
| 195 | i = molecules_.find(mol->getGlobalIndex()); | 
| 196 |  | 
| 197 | if (i != molecules_.end() ) { | 
| 198 |  | 
| 199 | assert(mol == i->second); | 
| 200 |  | 
| 201 | nAtoms_ -= mol->getNAtoms(); | 
| 202 | nBonds_ -= mol->getNBonds(); | 
| 203 | nBends_ -= mol->getNBends(); | 
| 204 | nTorsions_ -= mol->getNTorsions(); | 
| 205 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 206 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 207 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 208 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 209 |  | 
| 210 | removeExcludePairs(mol); | 
| 211 | molecules_.erase(mol->getGlobalIndex()); | 
| 212 |  | 
| 213 | delete mol; | 
| 214 |  | 
| 215 | return true; | 
| 216 | } else { | 
| 217 | return false; | 
| 218 | } | 
| 219 |  | 
| 220 |  | 
| 221 | } | 
| 222 |  | 
| 223 |  | 
| 224 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 225 | i = molecules_.begin(); | 
| 226 | return i == molecules_.end() ? NULL : i->second; | 
| 227 | } | 
| 228 |  | 
| 229 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 230 | ++i; | 
| 231 | return i == molecules_.end() ? NULL : i->second; | 
| 232 | } | 
| 233 |  | 
| 234 |  | 
| 235 | void SimInfo::calcNdf() { | 
| 236 | int ndf_local; | 
| 237 | MoleculeIterator i; | 
| 238 | std::vector<StuntDouble*>::iterator j; | 
| 239 | Molecule* mol; | 
| 240 | StuntDouble* integrableObject; | 
| 241 |  | 
| 242 | ndf_local = 0; | 
| 243 |  | 
| 244 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 245 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 246 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 247 |  | 
| 248 | ndf_local += 3; | 
| 249 |  | 
| 250 | if (integrableObject->isDirectional()) { | 
| 251 | if (integrableObject->isLinear()) { | 
| 252 | ndf_local += 2; | 
| 253 | } else { | 
| 254 | ndf_local += 3; | 
| 255 | } | 
| 256 | } | 
| 257 |  | 
| 258 | }//end for (integrableObject) | 
| 259 | }// end for (mol) | 
| 260 |  | 
| 261 | // n_constraints is local, so subtract them on each processor | 
| 262 | ndf_local -= nConstraints_; | 
| 263 |  | 
| 264 | #ifdef IS_MPI | 
| 265 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 266 | #else | 
| 267 | ndf_ = ndf_local; | 
| 268 | #endif | 
| 269 |  | 
| 270 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 271 | // entire system: | 
| 272 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 273 |  | 
| 274 | } | 
| 275 |  | 
| 276 | void SimInfo::calcNdfRaw() { | 
| 277 | int ndfRaw_local; | 
| 278 |  | 
| 279 | MoleculeIterator i; | 
| 280 | std::vector<StuntDouble*>::iterator j; | 
| 281 | Molecule* mol; | 
| 282 | StuntDouble* integrableObject; | 
| 283 |  | 
| 284 | // Raw degrees of freedom that we have to set | 
| 285 | ndfRaw_local = 0; | 
| 286 |  | 
| 287 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 288 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 289 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 290 |  | 
| 291 | ndfRaw_local += 3; | 
| 292 |  | 
| 293 | if (integrableObject->isDirectional()) { | 
| 294 | if (integrableObject->isLinear()) { | 
| 295 | ndfRaw_local += 2; | 
| 296 | } else { | 
| 297 | ndfRaw_local += 3; | 
| 298 | } | 
| 299 | } | 
| 300 |  | 
| 301 | } | 
| 302 | } | 
| 303 |  | 
| 304 | #ifdef IS_MPI | 
| 305 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 306 | #else | 
| 307 | ndfRaw_ = ndfRaw_local; | 
| 308 | #endif | 
| 309 | } | 
| 310 |  | 
| 311 | void SimInfo::calcNdfTrans() { | 
| 312 | int ndfTrans_local; | 
| 313 |  | 
| 314 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 315 |  | 
| 316 |  | 
| 317 | #ifdef IS_MPI | 
| 318 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 319 | #else | 
| 320 | ndfTrans_ = ndfTrans_local; | 
| 321 | #endif | 
| 322 |  | 
| 323 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 324 |  | 
| 325 | } | 
| 326 |  | 
| 327 | void SimInfo::addExcludePairs(Molecule* mol) { | 
| 328 | std::vector<Bond*>::iterator bondIter; | 
| 329 | std::vector<Bend*>::iterator bendIter; | 
| 330 | std::vector<Torsion*>::iterator torsionIter; | 
| 331 | Bond* bond; | 
| 332 | Bend* bend; | 
| 333 | Torsion* torsion; | 
| 334 | int a; | 
| 335 | int b; | 
| 336 | int c; | 
| 337 | int d; | 
| 338 |  | 
| 339 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 340 | a = bond->getAtomA()->getGlobalIndex(); | 
| 341 | b = bond->getAtomB()->getGlobalIndex(); | 
| 342 | exclude_.addPair(a, b); | 
| 343 | } | 
| 344 |  | 
| 345 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 346 | a = bend->getAtomA()->getGlobalIndex(); | 
| 347 | b = bend->getAtomB()->getGlobalIndex(); | 
| 348 | c = bend->getAtomC()->getGlobalIndex(); | 
| 349 |  | 
| 350 | exclude_.addPair(a, b); | 
| 351 | exclude_.addPair(a, c); | 
| 352 | exclude_.addPair(b, c); | 
| 353 | } | 
| 354 |  | 
| 355 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 356 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 357 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 358 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 359 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 360 |  | 
| 361 | exclude_.addPair(a, b); | 
| 362 | exclude_.addPair(a, c); | 
| 363 | exclude_.addPair(a, d); | 
| 364 | exclude_.addPair(b, c); | 
| 365 | exclude_.addPair(b, d); | 
| 366 | exclude_.addPair(c, d); | 
| 367 | } | 
| 368 |  | 
| 369 |  | 
| 370 | } | 
| 371 |  | 
| 372 | void SimInfo::removeExcludePairs(Molecule* mol) { | 
| 373 | std::vector<Bond*>::iterator bondIter; | 
| 374 | std::vector<Bend*>::iterator bendIter; | 
| 375 | std::vector<Torsion*>::iterator torsionIter; | 
| 376 | Bond* bond; | 
| 377 | Bend* bend; | 
| 378 | Torsion* torsion; | 
| 379 | int a; | 
| 380 | int b; | 
| 381 | int c; | 
| 382 | int d; | 
| 383 |  | 
| 384 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 385 | a = bond->getAtomA()->getGlobalIndex(); | 
| 386 | b = bond->getAtomB()->getGlobalIndex(); | 
| 387 | exclude_.removePair(a, b); | 
| 388 | } | 
| 389 |  | 
| 390 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 391 | a = bend->getAtomA()->getGlobalIndex(); | 
| 392 | b = bend->getAtomB()->getGlobalIndex(); | 
| 393 | c = bend->getAtomC()->getGlobalIndex(); | 
| 394 |  | 
| 395 | exclude_.removePair(a, b); | 
| 396 | exclude_.removePair(a, c); | 
| 397 | exclude_.removePair(b, c); | 
| 398 | } | 
| 399 |  | 
| 400 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 401 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 402 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 403 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 404 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 405 |  | 
| 406 | exclude_.removePair(a, b); | 
| 407 | exclude_.removePair(a, c); | 
| 408 | exclude_.removePair(a, d); | 
| 409 | exclude_.removePair(b, c); | 
| 410 | exclude_.removePair(b, d); | 
| 411 | exclude_.removePair(c, d); | 
| 412 | } | 
| 413 |  | 
| 414 | } | 
| 415 |  | 
| 416 |  | 
| 417 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 418 | int curStampId; | 
| 419 |  | 
| 420 | //index from 0 | 
| 421 | curStampId = moleculeStamps_.size(); | 
| 422 |  | 
| 423 | moleculeStamps_.push_back(molStamp); | 
| 424 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 425 | } | 
| 426 |  | 
| 427 | void SimInfo::update() { | 
| 428 |  | 
| 429 | setupSimType(); | 
| 430 |  | 
| 431 | #ifdef IS_MPI | 
| 432 | setupFortranParallel(); | 
| 433 | #endif | 
| 434 |  | 
| 435 | setupFortranSim(); | 
| 436 |  | 
| 437 | //setup fortran force field | 
| 438 | /** @deprecate */ | 
| 439 | int isError = 0; | 
| 440 | initFortranFF( &fInfo_.SIM_uses_RF , &isError ); | 
| 441 | if(isError){ | 
| 442 | sprintf( painCave.errMsg, | 
| 443 | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 444 | painCave.isFatal = 1; | 
| 445 | simError(); | 
| 446 | } | 
| 447 |  | 
| 448 |  | 
| 449 | setupCutoff(); | 
| 450 |  | 
| 451 | calcNdf(); | 
| 452 | calcNdfRaw(); | 
| 453 | calcNdfTrans(); | 
| 454 |  | 
| 455 | fortranInitialized_ = true; | 
| 456 | } | 
| 457 |  | 
| 458 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 459 | SimInfo::MoleculeIterator mi; | 
| 460 | Molecule* mol; | 
| 461 | Molecule::AtomIterator ai; | 
| 462 | Atom* atom; | 
| 463 | std::set<AtomType*> atomTypes; | 
| 464 |  | 
| 465 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 466 |  | 
| 467 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 468 | atomTypes.insert(atom->getAtomType()); | 
| 469 | } | 
| 470 |  | 
| 471 | } | 
| 472 |  | 
| 473 | return atomTypes; | 
| 474 | } | 
| 475 |  | 
| 476 | void SimInfo::setupSimType() { | 
| 477 | std::set<AtomType*>::iterator i; | 
| 478 | std::set<AtomType*> atomTypes; | 
| 479 | atomTypes = getUniqueAtomTypes(); | 
| 480 |  | 
| 481 | int useLennardJones = 0; | 
| 482 | int useElectrostatic = 0; | 
| 483 | int useEAM = 0; | 
| 484 | int useCharge = 0; | 
| 485 | int useDirectional = 0; | 
| 486 | int useDipole = 0; | 
| 487 | int useGayBerne = 0; | 
| 488 | int useSticky = 0; | 
| 489 | int useShape = 0; | 
| 490 | int useFLARB = 0; //it is not in AtomType yet | 
| 491 | int useDirectionalAtom = 0; | 
| 492 | int useElectrostatics = 0; | 
| 493 | //usePBC and useRF are from simParams | 
| 494 | int usePBC = simParams_->getPBC(); | 
| 495 | int useRF = simParams_->getUseRF(); | 
| 496 |  | 
| 497 | //loop over all of the atom types | 
| 498 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 499 | useLennardJones |= (*i)->isLennardJones(); | 
| 500 | useElectrostatic |= (*i)->isElectrostatic(); | 
| 501 | useEAM |= (*i)->isEAM(); | 
| 502 | useCharge |= (*i)->isCharge(); | 
| 503 | useDirectional |= (*i)->isDirectional(); | 
| 504 | useDipole |= (*i)->isDipole(); | 
| 505 | useGayBerne |= (*i)->isGayBerne(); | 
| 506 | useSticky |= (*i)->isSticky(); | 
| 507 | useShape |= (*i)->isShape(); | 
| 508 | } | 
| 509 |  | 
| 510 | if (useSticky || useDipole || useGayBerne || useShape) { | 
| 511 | useDirectionalAtom = 1; | 
| 512 | } | 
| 513 |  | 
| 514 | if (useCharge || useDipole) { | 
| 515 | useElectrostatics = 1; | 
| 516 | } | 
| 517 |  | 
| 518 | #ifdef IS_MPI | 
| 519 | int temp; | 
| 520 |  | 
| 521 | temp = usePBC; | 
| 522 | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 523 |  | 
| 524 | temp = useDirectionalAtom; | 
| 525 | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 526 |  | 
| 527 | temp = useLennardJones; | 
| 528 | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 529 |  | 
| 530 | temp = useElectrostatics; | 
| 531 | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 532 |  | 
| 533 | temp = useCharge; | 
| 534 | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 535 |  | 
| 536 | temp = useDipole; | 
| 537 | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 538 |  | 
| 539 | temp = useSticky; | 
| 540 | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 541 |  | 
| 542 | temp = useGayBerne; | 
| 543 | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 544 |  | 
| 545 | temp = useEAM; | 
| 546 | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 547 |  | 
| 548 | temp = useShape; | 
| 549 | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 550 |  | 
| 551 | temp = useFLARB; | 
| 552 | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 553 |  | 
| 554 | temp = useRF; | 
| 555 | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 556 |  | 
| 557 | #endif | 
| 558 |  | 
| 559 | fInfo_.SIM_uses_PBC = usePBC; | 
| 560 | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 561 | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 562 | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 563 | fInfo_.SIM_uses_Charges = useCharge; | 
| 564 | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 565 | fInfo_.SIM_uses_Sticky = useSticky; | 
| 566 | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 567 | fInfo_.SIM_uses_EAM = useEAM; | 
| 568 | fInfo_.SIM_uses_Shapes = useShape; | 
| 569 | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 570 | fInfo_.SIM_uses_RF = useRF; | 
| 571 |  | 
| 572 | if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { | 
| 573 |  | 
| 574 | if (simParams_->haveDielectric()) { | 
| 575 | fInfo_.dielect = simParams_->getDielectric(); | 
| 576 | } else { | 
| 577 | sprintf(painCave.errMsg, | 
| 578 | "SimSetup Error: No Dielectric constant was set.\n" | 
| 579 | "\tYou are trying to use Reaction Field without" | 
| 580 | "\tsetting a dielectric constant!\n"); | 
| 581 | painCave.isFatal = 1; | 
| 582 | simError(); | 
| 583 | } | 
| 584 |  | 
| 585 | } else { | 
| 586 | fInfo_.dielect = 0.0; | 
| 587 | } | 
| 588 |  | 
| 589 | } | 
| 590 |  | 
| 591 | void SimInfo::setupFortranSim() { | 
| 592 | int isError; | 
| 593 | int nExclude; | 
| 594 | std::vector<int> fortranGlobalGroupMembership; | 
| 595 |  | 
| 596 | nExclude = exclude_.getSize(); | 
| 597 | isError = 0; | 
| 598 |  | 
| 599 | //globalGroupMembership_ is filled by SimCreator | 
| 600 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 601 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 602 | } | 
| 603 |  | 
| 604 | //calculate mass ratio of cutoff group | 
| 605 | std::vector<double> mfact; | 
| 606 | SimInfo::MoleculeIterator mi; | 
| 607 | Molecule* mol; | 
| 608 | Molecule::CutoffGroupIterator ci; | 
| 609 | CutoffGroup* cg; | 
| 610 | Molecule::AtomIterator ai; | 
| 611 | Atom* atom; | 
| 612 | double totalMass; | 
| 613 |  | 
| 614 | //to avoid memory reallocation, reserve enough space for mfact | 
| 615 | mfact.reserve(getNCutoffGroups()); | 
| 616 |  | 
| 617 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 618 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 619 |  | 
| 620 | totalMass = cg->getMass(); | 
| 621 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 622 | mfact.push_back(atom->getMass()/totalMass); | 
| 623 | } | 
| 624 |  | 
| 625 | } | 
| 626 | } | 
| 627 |  | 
| 628 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 629 | std::vector<int> identArray; | 
| 630 |  | 
| 631 | //to avoid memory reallocation, reserve enough space identArray | 
| 632 | identArray.reserve(getNAtoms()); | 
| 633 |  | 
| 634 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 635 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 636 | identArray.push_back(atom->getIdent()); | 
| 637 | } | 
| 638 | } | 
| 639 |  | 
| 640 | //fill molMembershipArray | 
| 641 | //molMembershipArray is filled by SimCreator | 
| 642 | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 643 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 644 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 645 | } | 
| 646 |  | 
| 647 | //setup fortran simulation | 
| 648 | //gloalExcludes and molMembershipArray should go away (They are never used) | 
| 649 | //why the hell fortran need to know molecule? | 
| 650 | //OOPSE = Object-Obfuscated Parallel Simulation Engine | 
| 651 | int nGlobalExcludes = 0; | 
| 652 | int* globalExcludes = NULL; | 
| 653 | int* excludeList = exclude_.getExcludeList(); | 
| 654 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , | 
| 655 | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], | 
| 656 | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); | 
| 657 |  | 
| 658 | if( isError ){ | 
| 659 |  | 
| 660 | sprintf( painCave.errMsg, | 
| 661 | "There was an error setting the simulation information in fortran.\n" ); | 
| 662 | painCave.isFatal = 1; | 
| 663 | painCave.severity = OOPSE_ERROR; | 
| 664 | simError(); | 
| 665 | } | 
| 666 |  | 
| 667 | #ifdef IS_MPI | 
| 668 | sprintf( checkPointMsg, | 
| 669 | "succesfully sent the simulation information to fortran.\n"); | 
| 670 | MPIcheckPoint(); | 
| 671 | #endif // is_mpi | 
| 672 | } | 
| 673 |  | 
| 674 |  | 
| 675 | #ifdef IS_MPI | 
| 676 | void SimInfo::setupFortranParallel() { | 
| 677 |  | 
| 678 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 679 | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 680 | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 681 | SimInfo::MoleculeIterator mi; | 
| 682 | Molecule::AtomIterator ai; | 
| 683 | Molecule::CutoffGroupIterator ci; | 
| 684 | Molecule* mol; | 
| 685 | Atom* atom; | 
| 686 | CutoffGroup* cg; | 
| 687 | mpiSimData parallelData; | 
| 688 | int isError; | 
| 689 |  | 
| 690 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 691 |  | 
| 692 | //local index(index in DataStorge) of atom is important | 
| 693 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 694 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 695 | } | 
| 696 |  | 
| 697 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 698 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 699 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 700 | } | 
| 701 |  | 
| 702 | } | 
| 703 |  | 
| 704 | //fill up mpiSimData struct | 
| 705 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 706 | parallelData.nMolLocal = getNMolecules(); | 
| 707 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 708 | parallelData.nAtomsLocal = getNAtoms(); | 
| 709 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 710 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 711 | parallelData.myNode = worldRank; | 
| 712 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 713 |  | 
| 714 | //pass mpiSimData struct and index arrays to fortran | 
| 715 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 716 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 717 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 718 |  | 
| 719 | if (isError) { | 
| 720 | sprintf(painCave.errMsg, | 
| 721 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 722 | painCave.isFatal = 1; | 
| 723 | simError(); | 
| 724 | } | 
| 725 |  | 
| 726 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 727 | MPIcheckPoint(); | 
| 728 |  | 
| 729 |  | 
| 730 | } | 
| 731 |  | 
| 732 | #endif | 
| 733 |  | 
| 734 | double SimInfo::calcMaxCutoffRadius() { | 
| 735 |  | 
| 736 |  | 
| 737 | std::set<AtomType*> atomTypes; | 
| 738 | std::set<AtomType*>::iterator i; | 
| 739 | std::vector<double> cutoffRadius; | 
| 740 |  | 
| 741 | //get the unique atom types | 
| 742 | atomTypes = getUniqueAtomTypes(); | 
| 743 |  | 
| 744 | //query the max cutoff radius among these atom types | 
| 745 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 746 | cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); | 
| 747 | } | 
| 748 |  | 
| 749 | double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); | 
| 750 | #ifdef IS_MPI | 
| 751 | //pick the max cutoff radius among the processors | 
| 752 | #endif | 
| 753 |  | 
| 754 | return maxCutoffRadius; | 
| 755 | } | 
| 756 |  | 
| 757 | void SimInfo::getCutoff(double& rcut, double& rsw) { | 
| 758 |  | 
| 759 | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 760 |  | 
| 761 | if (!simParams_->haveRcut()){ | 
| 762 | sprintf(painCave.errMsg, | 
| 763 | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 764 | "\tOOPSE will use a default value of 15.0 angstroms" | 
| 765 | "\tfor the cutoffRadius.\n"); | 
| 766 | painCave.isFatal = 0; | 
| 767 | simError(); | 
| 768 | rcut = 15.0; | 
| 769 | } else{ | 
| 770 | rcut = simParams_->getRcut(); | 
| 771 | } | 
| 772 |  | 
| 773 | if (!simParams_->haveRsw()){ | 
| 774 | sprintf(painCave.errMsg, | 
| 775 | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 776 | "\tOOPSE will use a default value of\n" | 
| 777 | "\t0.95 * cutoffRadius for the switchingRadius\n"); | 
| 778 | painCave.isFatal = 0; | 
| 779 | simError(); | 
| 780 | rsw = 0.95 * rcut; | 
| 781 | } else{ | 
| 782 | rsw = simParams_->getRsw(); | 
| 783 | } | 
| 784 |  | 
| 785 | } else { | 
| 786 | // if charge, dipole or reaction field is not used and the cutofff radius is not specified in | 
| 787 | //meta-data file, the maximum cutoff radius calculated from forcefiled will be used | 
| 788 |  | 
| 789 | if (simParams_->haveRcut()) { | 
| 790 | rcut = simParams_->getRcut(); | 
| 791 | } else { | 
| 792 | //set cutoff radius to the maximum cutoff radius based on atom types in the whole system | 
| 793 | rcut = calcMaxCutoffRadius(); | 
| 794 | } | 
| 795 |  | 
| 796 | if (simParams_->haveRsw()) { | 
| 797 | rsw  = simParams_->getRsw(); | 
| 798 | } else { | 
| 799 | rsw = rcut; | 
| 800 | } | 
| 801 |  | 
| 802 | } | 
| 803 | } | 
| 804 |  | 
| 805 | void SimInfo::setupCutoff() { | 
| 806 | getCutoff(rcut_, rsw_); | 
| 807 | double rnblist = rcut_ + 1; // skin of neighbor list | 
| 808 |  | 
| 809 | //Pass these cutoff radius etc. to fortran. This function should be called once and only once | 
| 810 | notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); | 
| 811 | } | 
| 812 |  | 
| 813 | void SimInfo::addProperty(GenericData* genData) { | 
| 814 | properties_.addProperty(genData); | 
| 815 | } | 
| 816 |  | 
| 817 | void SimInfo::removeProperty(const std::string& propName) { | 
| 818 | properties_.removeProperty(propName); | 
| 819 | } | 
| 820 |  | 
| 821 | void SimInfo::clearProperties() { | 
| 822 | properties_.clearProperties(); | 
| 823 | } | 
| 824 |  | 
| 825 | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 826 | return properties_.getPropertyNames(); | 
| 827 | } | 
| 828 |  | 
| 829 | std::vector<GenericData*> SimInfo::getProperties() { | 
| 830 | return properties_.getProperties(); | 
| 831 | } | 
| 832 |  | 
| 833 | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 834 | return properties_.getPropertyByName(propName); | 
| 835 | } | 
| 836 |  | 
| 837 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 838 | sman_ = sman; | 
| 839 |  | 
| 840 | Molecule* mol; | 
| 841 | RigidBody* rb; | 
| 842 | Atom* atom; | 
| 843 | SimInfo::MoleculeIterator mi; | 
| 844 | Molecule::RigidBodyIterator rbIter; | 
| 845 | Molecule::AtomIterator atomIter;; | 
| 846 |  | 
| 847 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 848 |  | 
| 849 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 850 | atom->setSnapshotManager(sman_); | 
| 851 | } | 
| 852 |  | 
| 853 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 854 | rb->setSnapshotManager(sman_); | 
| 855 | } | 
| 856 | } | 
| 857 |  | 
| 858 | } | 
| 859 |  | 
| 860 | Vector3d SimInfo::getComVel(){ | 
| 861 | SimInfo::MoleculeIterator i; | 
| 862 | Molecule* mol; | 
| 863 |  | 
| 864 | Vector3d comVel(0.0); | 
| 865 | double totalMass = 0.0; | 
| 866 |  | 
| 867 |  | 
| 868 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 869 | double mass = mol->getMass(); | 
| 870 | totalMass += mass; | 
| 871 | comVel += mass * mol->getComVel(); | 
| 872 | } | 
| 873 |  | 
| 874 | #ifdef IS_MPI | 
| 875 | double tmpMass = totalMass; | 
| 876 | Vector3d tmpComVel(comVel); | 
| 877 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 878 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 879 | #endif | 
| 880 |  | 
| 881 | comVel /= totalMass; | 
| 882 |  | 
| 883 | return comVel; | 
| 884 | } | 
| 885 |  | 
| 886 | Vector3d SimInfo::getCom(){ | 
| 887 | SimInfo::MoleculeIterator i; | 
| 888 | Molecule* mol; | 
| 889 |  | 
| 890 | Vector3d com(0.0); | 
| 891 | double totalMass = 0.0; | 
| 892 |  | 
| 893 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 894 | double mass = mol->getMass(); | 
| 895 | totalMass += mass; | 
| 896 | com += mass * mol->getCom(); | 
| 897 | } | 
| 898 |  | 
| 899 | #ifdef IS_MPI | 
| 900 | double tmpMass = totalMass; | 
| 901 | Vector3d tmpCom(com); | 
| 902 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 903 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 904 | #endif | 
| 905 |  | 
| 906 | com /= totalMass; | 
| 907 |  | 
| 908 | return com; | 
| 909 |  | 
| 910 | } | 
| 911 |  | 
| 912 | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 913 |  | 
| 914 | return o; | 
| 915 | } | 
| 916 |  | 
| 917 | }//end namespace oopse | 
| 918 |  |