| 1 | gezelter | 507 | /* | 
| 2 | chuckv | 1402 | * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. | 
| 3 | gezelter | 246 | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1879 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1782 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | gezelter | 246 | */ | 
| 42 |  |  |  | 
| 43 | gezelter | 507 | /** | 
| 44 |  |  | * @file Stats.cpp | 
| 45 |  |  | * @author tlin | 
| 46 |  |  | * @date 11/04/2004 | 
| 47 |  |  | * @time 14:26am | 
| 48 |  |  | * @version 1.0 | 
| 49 |  |  | */ | 
| 50 | gezelter | 246 |  | 
| 51 |  |  | #include "brains/Stats.hpp" | 
| 52 | gezelter | 1782 | #include "brains/Thermo.hpp" | 
| 53 | gezelter | 246 |  | 
| 54 | gezelter | 1390 | namespace OpenMD { | 
| 55 | gezelter | 246 |  | 
| 56 | gezelter | 1782 | Stats::Stats(SimInfo* info) : isInit_(false), info_(info) { | 
| 57 | gezelter | 246 |  | 
| 58 |  |  | if (!isInit_) { | 
| 59 | gezelter | 507 | init(); | 
| 60 |  |  | isInit_ = true; | 
| 61 | gezelter | 246 | } | 
| 62 | gezelter | 507 | } | 
| 63 | gezelter | 246 |  | 
| 64 | gezelter | 507 | void Stats::init() { | 
| 65 | gezelter | 1782 |  | 
| 66 |  |  | data_.resize(Stats::ENDINDEX); | 
| 67 | gezelter | 246 |  | 
| 68 | gezelter | 1782 | StatsData time; | 
| 69 |  |  | time.units =  "fs"; | 
| 70 |  |  | time.title =  "Time"; | 
| 71 |  |  | time.dataType = "RealType"; | 
| 72 |  |  | time.accumulator = new Accumulator(); | 
| 73 |  |  | data_[TIME] = time; | 
| 74 |  |  | statsMap_["TIME"] = TIME; | 
| 75 |  |  |  | 
| 76 |  |  | StatsData total_energy; | 
| 77 |  |  | total_energy.units =  "kcal/mol"; | 
| 78 |  |  | total_energy.title =  "Total Energy"; | 
| 79 |  |  | total_energy.dataType = "RealType"; | 
| 80 |  |  | total_energy.accumulator = new Accumulator(); | 
| 81 |  |  | data_[TOTAL_ENERGY] = total_energy; | 
| 82 |  |  | statsMap_["TOTAL_ENERGY"] =  TOTAL_ENERGY; | 
| 83 |  |  |  | 
| 84 |  |  | StatsData potential_energy; | 
| 85 |  |  | potential_energy.units =  "kcal/mol"; | 
| 86 |  |  | potential_energy.title =  "Potential Energy"; | 
| 87 |  |  | potential_energy.dataType = "RealType"; | 
| 88 |  |  | potential_energy.accumulator = new Accumulator(); | 
| 89 |  |  | data_[POTENTIAL_ENERGY] = potential_energy; | 
| 90 |  |  | statsMap_["POTENTIAL_ENERGY"] =  POTENTIAL_ENERGY; | 
| 91 |  |  |  | 
| 92 |  |  | StatsData kinetic_energy; | 
| 93 |  |  | kinetic_energy.units =  "kcal/mol"; | 
| 94 |  |  | kinetic_energy.title =  "Kinetic Energy"; | 
| 95 |  |  | kinetic_energy.dataType = "RealType"; | 
| 96 |  |  | kinetic_energy.accumulator = new Accumulator(); | 
| 97 |  |  | data_[KINETIC_ENERGY] = kinetic_energy; | 
| 98 |  |  | statsMap_["KINETIC_ENERGY"] =  KINETIC_ENERGY; | 
| 99 |  |  |  | 
| 100 |  |  | StatsData temperature; | 
| 101 |  |  | temperature.units =  "K"; | 
| 102 |  |  | temperature.title =  "Temperature"; | 
| 103 |  |  | temperature.dataType = "RealType"; | 
| 104 |  |  | temperature.accumulator = new Accumulator(); | 
| 105 |  |  | data_[TEMPERATURE] = temperature; | 
| 106 |  |  | statsMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 107 |  |  |  | 
| 108 |  |  | StatsData pressure; | 
| 109 |  |  | pressure.units =  "atm"; | 
| 110 |  |  | pressure.title =  "Pressure"; | 
| 111 |  |  | pressure.dataType = "RealType"; | 
| 112 |  |  | pressure.accumulator = new Accumulator(); | 
| 113 |  |  | data_[PRESSURE] = pressure; | 
| 114 |  |  | statsMap_["PRESSURE"] =  PRESSURE; | 
| 115 |  |  |  | 
| 116 |  |  | StatsData volume; | 
| 117 |  |  | volume.units =  "A^3"; | 
| 118 |  |  | volume.title =  "Volume"; | 
| 119 |  |  | volume.dataType = "RealType"; | 
| 120 |  |  | volume.accumulator = new Accumulator(); | 
| 121 |  |  | data_[VOLUME] = volume; | 
| 122 |  |  | statsMap_["VOLUME"] =  VOLUME; | 
| 123 |  |  |  | 
| 124 |  |  | StatsData hullvolume; | 
| 125 |  |  | hullvolume.units =  "A^3"; | 
| 126 |  |  | hullvolume.title =  "Hull Volume"; | 
| 127 |  |  | hullvolume.dataType = "RealType"; | 
| 128 |  |  | hullvolume.accumulator = new Accumulator(); | 
| 129 |  |  | data_[HULLVOLUME] = hullvolume; | 
| 130 |  |  | statsMap_["HULLVOLUME"] =  HULLVOLUME; | 
| 131 |  |  |  | 
| 132 |  |  | StatsData gyrvolume; | 
| 133 |  |  | gyrvolume.units =  "A^3"; | 
| 134 |  |  | gyrvolume.title =  "Gyrational Volume"; | 
| 135 |  |  | gyrvolume.dataType = "RealType"; | 
| 136 |  |  | gyrvolume.accumulator = new Accumulator(); | 
| 137 |  |  | data_[GYRVOLUME] = gyrvolume; | 
| 138 |  |  | statsMap_["GYRVOLUME"] =  GYRVOLUME; | 
| 139 |  |  |  | 
| 140 |  |  | StatsData conserved_quantity; | 
| 141 |  |  | conserved_quantity.units =  "kcal/mol"; | 
| 142 |  |  | conserved_quantity.title =  "Conserved Quantity"; | 
| 143 |  |  | conserved_quantity.dataType = "RealType"; | 
| 144 |  |  | conserved_quantity.accumulator = new Accumulator(); | 
| 145 |  |  | data_[CONSERVED_QUANTITY] = conserved_quantity; | 
| 146 |  |  | statsMap_["CONSERVED_QUANTITY"] =  CONSERVED_QUANTITY; | 
| 147 |  |  |  | 
| 148 |  |  | StatsData translational_kinetic; | 
| 149 |  |  | translational_kinetic.units =  "kcal/mol"; | 
| 150 |  |  | translational_kinetic.title =  "Translational Kinetic"; | 
| 151 |  |  | translational_kinetic.dataType = "RealType"; | 
| 152 |  |  | translational_kinetic.accumulator = new Accumulator(); | 
| 153 |  |  | data_[TRANSLATIONAL_KINETIC] = translational_kinetic; | 
| 154 |  |  | statsMap_["TRANSLATIONAL_KINETIC"] =  TRANSLATIONAL_KINETIC; | 
| 155 |  |  |  | 
| 156 |  |  | StatsData rotational_kinetic; | 
| 157 |  |  | rotational_kinetic.units =  "kcal/mol"; | 
| 158 |  |  | rotational_kinetic.title =  "Rotational Kinetic"; | 
| 159 |  |  | rotational_kinetic.dataType = "RealType"; | 
| 160 |  |  | rotational_kinetic.accumulator = new Accumulator(); | 
| 161 |  |  | data_[ROTATIONAL_KINETIC] = rotational_kinetic; | 
| 162 |  |  | statsMap_["ROTATIONAL_KINETIC"] =  ROTATIONAL_KINETIC; | 
| 163 |  |  |  | 
| 164 |  |  | StatsData long_range_potential; | 
| 165 |  |  | long_range_potential.units =  "kcal/mol"; | 
| 166 |  |  | long_range_potential.title =  "Long Range Potential"; | 
| 167 |  |  | long_range_potential.dataType = "RealType"; | 
| 168 |  |  | long_range_potential.accumulator = new Accumulator(); | 
| 169 |  |  | data_[LONG_RANGE_POTENTIAL] = long_range_potential; | 
| 170 |  |  | statsMap_["LONG_RANGE_POTENTIAL"] =  LONG_RANGE_POTENTIAL; | 
| 171 |  |  |  | 
| 172 |  |  | StatsData vanderwaals_potential; | 
| 173 |  |  | vanderwaals_potential.units =  "kcal/mol"; | 
| 174 |  |  | vanderwaals_potential.title =  "van der waals Potential"; | 
| 175 |  |  | vanderwaals_potential.dataType = "RealType"; | 
| 176 |  |  | vanderwaals_potential.accumulator = new Accumulator(); | 
| 177 |  |  | data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential; | 
| 178 |  |  | statsMap_["VANDERWAALS_POTENTIAL"] =  VANDERWAALS_POTENTIAL; | 
| 179 |  |  |  | 
| 180 |  |  | StatsData electrostatic_potential; | 
| 181 |  |  | electrostatic_potential.units =  "kcal/mol"; | 
| 182 |  |  | electrostatic_potential.title =  "Electrostatic Potential"; | 
| 183 |  |  | electrostatic_potential.dataType = "RealType"; | 
| 184 |  |  | electrostatic_potential.accumulator = new Accumulator(); | 
| 185 |  |  | data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential; | 
| 186 |  |  | statsMap_["ELECTROSTATIC_POTENTIAL"] =  ELECTROSTATIC_POTENTIAL; | 
| 187 |  |  |  | 
| 188 |  |  | StatsData metallic_potential; | 
| 189 |  |  | metallic_potential.units =  "kcal/mol"; | 
| 190 |  |  | metallic_potential.title =  "Metallic Potential"; | 
| 191 |  |  | metallic_potential.dataType = "RealType"; | 
| 192 |  |  | metallic_potential.accumulator = new Accumulator(); | 
| 193 |  |  | data_[METALLIC_POTENTIAL] = metallic_potential; | 
| 194 |  |  | statsMap_["METALLIC_POTENTIAL"] =  METALLIC_POTENTIAL; | 
| 195 |  |  |  | 
| 196 |  |  | StatsData hydrogenbonding_potential; | 
| 197 |  |  | hydrogenbonding_potential.units =  "kcal/mol"; | 
| 198 | gezelter | 1834 | hydrogenbonding_potential.title =  "Hydrogen Bonding Potential"; | 
| 199 | gezelter | 1782 | hydrogenbonding_potential.dataType = "RealType"; | 
| 200 |  |  | hydrogenbonding_potential.accumulator = new Accumulator(); | 
| 201 |  |  | data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential; | 
| 202 |  |  | statsMap_["HYDROGENBONDING_POTENTIAL"] =  HYDROGENBONDING_POTENTIAL; | 
| 203 |  |  |  | 
| 204 |  |  | StatsData short_range_potential; | 
| 205 |  |  | short_range_potential.units =  "kcal/mol"; | 
| 206 |  |  | short_range_potential.title =  "Short Range Potential"; | 
| 207 |  |  | short_range_potential.dataType = "RealType"; | 
| 208 |  |  | short_range_potential.accumulator = new Accumulator(); | 
| 209 |  |  | data_[SHORT_RANGE_POTENTIAL] = short_range_potential; | 
| 210 |  |  | statsMap_["SHORT_RANGE_POTENTIAL"] =  SHORT_RANGE_POTENTIAL; | 
| 211 |  |  |  | 
| 212 |  |  | StatsData bond_potential; | 
| 213 |  |  | bond_potential.units =  "kcal/mol"; | 
| 214 |  |  | bond_potential.title =  "Bond Potential"; | 
| 215 |  |  | bond_potential.dataType = "RealType"; | 
| 216 |  |  | bond_potential.accumulator = new Accumulator(); | 
| 217 |  |  | data_[BOND_POTENTIAL] = bond_potential; | 
| 218 |  |  | statsMap_["BOND_POTENTIAL"] =  BOND_POTENTIAL; | 
| 219 |  |  |  | 
| 220 |  |  | StatsData bend_potential; | 
| 221 |  |  | bend_potential.units =  "kcal/mol"; | 
| 222 |  |  | bend_potential.title =  "Bend Potential"; | 
| 223 |  |  | bend_potential.dataType = "RealType"; | 
| 224 |  |  | bend_potential.accumulator = new Accumulator(); | 
| 225 |  |  | data_[BEND_POTENTIAL] = bend_potential; | 
| 226 |  |  | statsMap_["BEND_POTENTIAL"] =  BEND_POTENTIAL; | 
| 227 | gezelter | 1291 |  | 
| 228 | gezelter | 1782 | StatsData dihedral_potential; | 
| 229 |  |  | dihedral_potential.units =  "kcal/mol"; | 
| 230 |  |  | dihedral_potential.title =  "Dihedral Potential"; | 
| 231 |  |  | dihedral_potential.dataType = "RealType"; | 
| 232 |  |  | dihedral_potential.accumulator = new Accumulator(); | 
| 233 |  |  | data_[DIHEDRAL_POTENTIAL] = dihedral_potential; | 
| 234 |  |  | statsMap_["DIHEDRAL_POTENTIAL"] =  DIHEDRAL_POTENTIAL; | 
| 235 | tim | 681 |  | 
| 236 | gezelter | 1782 | StatsData inversion_potential; | 
| 237 |  |  | inversion_potential.units =  "kcal/mol"; | 
| 238 |  |  | inversion_potential.title =  "Inversion Potential"; | 
| 239 |  |  | inversion_potential.dataType = "RealType"; | 
| 240 |  |  | inversion_potential.accumulator = new Accumulator(); | 
| 241 |  |  | data_[INVERSION_POTENTIAL] = inversion_potential; | 
| 242 |  |  | statsMap_["INVERSION_POTENTIAL"] =  INVERSION_POTENTIAL; | 
| 243 |  |  |  | 
| 244 |  |  | StatsData vraw; | 
| 245 |  |  | vraw.units =  "kcal/mol"; | 
| 246 |  |  | vraw.title =  "Raw Potential"; | 
| 247 |  |  | vraw.dataType = "RealType"; | 
| 248 |  |  | vraw.accumulator = new Accumulator(); | 
| 249 |  |  | data_[RAW_POTENTIAL] = vraw; | 
| 250 |  |  | statsMap_["RAW_POTENTIAL"] =  RAW_POTENTIAL; | 
| 251 |  |  |  | 
| 252 |  |  | StatsData vrestraint; | 
| 253 |  |  | vrestraint.units =  "kcal/mol"; | 
| 254 |  |  | vrestraint.title =  "Restraint Potential"; | 
| 255 |  |  | vrestraint.dataType = "RealType"; | 
| 256 |  |  | vrestraint.accumulator = new Accumulator(); | 
| 257 |  |  | data_[RESTRAINT_POTENTIAL] = vrestraint; | 
| 258 |  |  | statsMap_["RESTRAINT_POTENTIAL"] =  RESTRAINT_POTENTIAL; | 
| 259 |  |  |  | 
| 260 |  |  | StatsData pressure_tensor; | 
| 261 |  |  | pressure_tensor.units =  "amu*fs^-2*Ang^-1"; | 
| 262 |  |  | pressure_tensor.title =  "Ptensor"; | 
| 263 |  |  | pressure_tensor.dataType = "Mat3x3d"; | 
| 264 |  |  | pressure_tensor.accumulator = new MatrixAccumulator(); | 
| 265 |  |  | data_[PRESSURE_TENSOR] = pressure_tensor; | 
| 266 |  |  | statsMap_["PRESSURE_TENSOR"] =  PRESSURE_TENSOR; | 
| 267 |  |  |  | 
| 268 |  |  | StatsData system_dipole; | 
| 269 |  |  | system_dipole.units =  "C*m"; | 
| 270 |  |  | system_dipole.title =  "System Dipole"; | 
| 271 |  |  | system_dipole.dataType = "Vector3d"; | 
| 272 |  |  | system_dipole.accumulator = new VectorAccumulator(); | 
| 273 |  |  | data_[SYSTEM_DIPOLE] = system_dipole; | 
| 274 |  |  | statsMap_["SYSTEM_DIPOLE"] =  SYSTEM_DIPOLE; | 
| 275 |  |  |  | 
| 276 |  |  | StatsData tagged_pair_distance; | 
| 277 |  |  | tagged_pair_distance.units =  "Ang"; | 
| 278 |  |  | tagged_pair_distance.title =  "Tagged_Pair_Distance"; | 
| 279 |  |  | tagged_pair_distance.dataType = "RealType"; | 
| 280 |  |  | tagged_pair_distance.accumulator = new Accumulator(); | 
| 281 |  |  | data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance; | 
| 282 |  |  | statsMap_["TAGGED_PAIR_DISTANCE"] =  TAGGED_PAIR_DISTANCE; | 
| 283 |  |  |  | 
| 284 |  |  | StatsData shadowh; | 
| 285 |  |  | shadowh.units =  "kcal/mol"; | 
| 286 |  |  | shadowh.title =  "Shadow Hamiltonian"; | 
| 287 |  |  | shadowh.dataType = "RealType"; | 
| 288 |  |  | shadowh.accumulator = new Accumulator(); | 
| 289 |  |  | data_[SHADOWH] = shadowh; | 
| 290 |  |  | statsMap_["SHADOWH"] =  SHADOWH; | 
| 291 |  |  |  | 
| 292 |  |  | StatsData helfandmoment; | 
| 293 |  |  | helfandmoment.units =  "Ang*kcal/mol"; | 
| 294 |  |  | helfandmoment.title =  "Thermal Helfand Moment"; | 
| 295 |  |  | helfandmoment.dataType = "Vector3d"; | 
| 296 |  |  | helfandmoment.accumulator = new VectorAccumulator(); | 
| 297 |  |  | data_[HELFANDMOMENT] = helfandmoment; | 
| 298 |  |  | statsMap_["HELFANDMOMENT"] = HELFANDMOMENT; | 
| 299 |  |  |  | 
| 300 |  |  | StatsData heatflux; | 
| 301 |  |  | heatflux.units = "amu/fs^3"; | 
| 302 |  |  | heatflux.title =  "Heat Flux"; | 
| 303 |  |  | heatflux.dataType = "Vector3d"; | 
| 304 |  |  | heatflux.accumulator = new VectorAccumulator(); | 
| 305 |  |  | data_[HEATFLUX] = heatflux; | 
| 306 |  |  | statsMap_["HEATFLUX"] = HEATFLUX; | 
| 307 |  |  |  | 
| 308 |  |  | StatsData electronic_temperature; | 
| 309 |  |  | electronic_temperature.units = "K"; | 
| 310 |  |  | electronic_temperature.title =  "Electronic Temperature"; | 
| 311 |  |  | electronic_temperature.dataType = "RealType"; | 
| 312 |  |  | electronic_temperature.accumulator = new Accumulator(); | 
| 313 |  |  | data_[ELECTRONIC_TEMPERATURE] = electronic_temperature; | 
| 314 |  |  | statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE; | 
| 315 |  |  |  | 
| 316 | gezelter | 1879 | StatsData com; | 
| 317 |  |  | com.units =  "A"; | 
| 318 |  |  | com.title =  "Center of Mass"; | 
| 319 |  |  | com.dataType = "Vector3d"; | 
| 320 |  |  | com.accumulator = new VectorAccumulator(); | 
| 321 |  |  | data_[COM] = com; | 
| 322 |  |  | statsMap_["COM"] =  COM; | 
| 323 |  |  |  | 
| 324 |  |  | StatsData comVel; | 
| 325 |  |  | comVel.units =  "A/fs"; | 
| 326 |  |  | comVel.title =  "Center of Mass Velocity"; | 
| 327 |  |  | comVel.dataType = "Vector3d"; | 
| 328 |  |  | comVel.accumulator = new VectorAccumulator(); | 
| 329 |  |  | data_[COM_VELOCITY] = comVel; | 
| 330 |  |  | statsMap_["COM_VELOCITY"] =  COM_VELOCITY; | 
| 331 |  |  |  | 
| 332 |  |  | StatsData angMom; | 
| 333 |  |  | angMom.units =  "amu A^2/fs"; | 
| 334 |  |  | angMom.title =  "Angular Momentum"; | 
| 335 |  |  | angMom.dataType = "Vector3d"; | 
| 336 |  |  | angMom.accumulator = new VectorAccumulator(); | 
| 337 |  |  | data_[ANGULAR_MOMENTUM] = angMom; | 
| 338 |  |  | statsMap_["ANGULAR_MOMENTUM"] =  ANGULAR_MOMENTUM; | 
| 339 |  |  |  | 
| 340 | gezelter | 1782 | // Now, set some defaults in the mask: | 
| 341 |  |  |  | 
| 342 |  |  | Globals* simParams = info_->getSimParams(); | 
| 343 |  |  | std::string statFileFormatString = simParams->getStatFileFormat(); | 
| 344 |  |  | parseStatFileFormat(statFileFormatString); | 
| 345 |  |  |  | 
| 346 |  |  | // if we're doing a thermodynamic integration, we'll want the raw | 
| 347 |  |  | // potential as well as the full potential: | 
| 348 |  |  |  | 
| 349 |  |  | if (simParams->getUseThermodynamicIntegration()) | 
| 350 |  |  | statsMask_.set(RAW_POTENTIAL); | 
| 351 |  |  |  | 
| 352 |  |  | // if we've got restraints turned on, we'll also want a report of the | 
| 353 |  |  | // total harmonic restraints | 
| 354 |  |  | if (simParams->getUseRestraints()){ | 
| 355 |  |  | statsMask_.set(RESTRAINT_POTENTIAL); | 
| 356 |  |  | } | 
| 357 |  |  |  | 
| 358 |  |  | if (simParams->havePrintPressureTensor() && | 
| 359 |  |  | simParams->getPrintPressureTensor()){ | 
| 360 |  |  | statsMask_.set(PRESSURE_TENSOR); | 
| 361 |  |  | } | 
| 362 |  |  |  | 
| 363 |  |  | // Why do we have both of these? | 
| 364 |  |  | if (simParams->getAccumulateBoxDipole()) { | 
| 365 |  |  | statsMask_.set(SYSTEM_DIPOLE); | 
| 366 |  |  | } | 
| 367 |  |  | if (info_->getCalcBoxDipole()){ | 
| 368 |  |  | statsMask_.set(SYSTEM_DIPOLE); | 
| 369 |  |  | } | 
| 370 |  |  |  | 
| 371 |  |  | if (simParams->havePrintHeatFlux()) { | 
| 372 |  |  | if (simParams->getPrintHeatFlux()){ | 
| 373 |  |  | statsMask_.set(HEATFLUX); | 
| 374 |  |  | } | 
| 375 |  |  | } | 
| 376 |  |  |  | 
| 377 |  |  |  | 
| 378 |  |  | if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) { | 
| 379 |  |  | if (simParams->getPrintTaggedPairDistance()) { | 
| 380 |  |  | statsMask_.set(TAGGED_PAIR_DISTANCE); | 
| 381 |  |  | } | 
| 382 |  |  | } | 
| 383 |  |  |  | 
| 384 | gezelter | 507 | } | 
| 385 | gezelter | 246 |  | 
| 386 | gezelter | 1782 | void Stats::parseStatFileFormat(const std::string& format) { | 
| 387 |  |  | StringTokenizer tokenizer(format, " ,;|\t\n\r"); | 
| 388 |  |  |  | 
| 389 |  |  | while(tokenizer.hasMoreTokens()) { | 
| 390 |  |  | std::string token(tokenizer.nextToken()); | 
| 391 |  |  | toUpper(token); | 
| 392 |  |  | StatsMapType::iterator i = statsMap_.find(token); | 
| 393 |  |  | if (i != statsMap_.end()) { | 
| 394 |  |  | statsMask_.set(i->second); | 
| 395 |  |  | } else { | 
| 396 |  |  | sprintf( painCave.errMsg, | 
| 397 |  |  | "Stats::parseStatFileFormat: %s is not a recognized\n" | 
| 398 |  |  | "\tstatFileFormat keyword.\n", token.c_str() ); | 
| 399 |  |  | painCave.isFatal = 0; | 
| 400 |  |  | painCave.severity = OPENMD_ERROR; | 
| 401 |  |  | simError(); | 
| 402 |  |  | } | 
| 403 |  |  | } | 
| 404 |  |  | } | 
| 405 |  |  |  | 
| 406 | gezelter | 1879 | Stats::~Stats() { | 
| 407 |  |  | data_.clear(); | 
| 408 |  |  | statsMap_.clear(); | 
| 409 |  |  | } | 
| 410 | gezelter | 1782 |  | 
| 411 |  |  | std::string Stats::getTitle(int index) { | 
| 412 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 413 |  |  | return data_[index].title; | 
| 414 |  |  | } | 
| 415 |  |  |  | 
| 416 |  |  | std::string Stats::getUnits(int index) { | 
| 417 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 418 |  |  | return data_[index].units; | 
| 419 |  |  | } | 
| 420 |  |  |  | 
| 421 |  |  | std::string Stats::getDataType(int index) { | 
| 422 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 423 |  |  | return data_[index].dataType; | 
| 424 |  |  | } | 
| 425 |  |  |  | 
| 426 |  |  | void Stats::collectStats(){ | 
| 427 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 428 |  |  | Thermo thermo(info_); | 
| 429 |  |  |  | 
| 430 |  |  | for (unsigned int i = 0; i < statsMask_.size(); ++i) { | 
| 431 |  |  | if (statsMask_[i]) { | 
| 432 |  |  | switch (i) { | 
| 433 |  |  | case TIME: | 
| 434 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime()); | 
| 435 | gezelter | 1782 | break; | 
| 436 |  |  | case KINETIC_ENERGY: | 
| 437 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic()); | 
| 438 | gezelter | 1782 | break; | 
| 439 |  |  | case POTENTIAL_ENERGY: | 
| 440 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential()); | 
| 441 | gezelter | 1782 | break; | 
| 442 |  |  | case TOTAL_ENERGY: | 
| 443 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy()); | 
| 444 | gezelter | 1782 | break; | 
| 445 |  |  | case TEMPERATURE: | 
| 446 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature()); | 
| 447 | gezelter | 1782 | break; | 
| 448 |  |  | case PRESSURE: | 
| 449 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure()); | 
| 450 | gezelter | 1782 | break; | 
| 451 |  |  | case VOLUME: | 
| 452 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume()); | 
| 453 | gezelter | 1782 | break; | 
| 454 |  |  | case CONSERVED_QUANTITY: | 
| 455 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity()); | 
| 456 | gezelter | 1782 | break; | 
| 457 |  |  | case PRESSURE_TENSOR: | 
| 458 |  |  | dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor()); | 
| 459 |  |  | break; | 
| 460 |  |  | case SYSTEM_DIPOLE: | 
| 461 |  |  | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole()); | 
| 462 |  |  | break; | 
| 463 |  |  | case HEATFLUX: | 
| 464 |  |  | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux()); | 
| 465 |  |  | break; | 
| 466 |  |  | case HULLVOLUME: | 
| 467 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume()); | 
| 468 | gezelter | 1782 | break; | 
| 469 |  |  | case GYRVOLUME: | 
| 470 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume()); | 
| 471 | gezelter | 1782 | break; | 
| 472 |  |  | case TRANSLATIONAL_KINETIC: | 
| 473 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic()); | 
| 474 | gezelter | 1782 | break; | 
| 475 |  |  | case ROTATIONAL_KINETIC: | 
| 476 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic()); | 
| 477 | gezelter | 1782 | break; | 
| 478 |  |  | case LONG_RANGE_POTENTIAL: | 
| 479 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential()); | 
| 480 | gezelter | 1782 | break; | 
| 481 |  |  | case VANDERWAALS_POTENTIAL: | 
| 482 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]); | 
| 483 | gezelter | 1782 | break; | 
| 484 |  |  | case ELECTROSTATIC_POTENTIAL: | 
| 485 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]); | 
| 486 | gezelter | 1782 | break; | 
| 487 |  |  | case METALLIC_POTENTIAL: | 
| 488 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]); | 
| 489 | gezelter | 1782 | break; | 
| 490 |  |  | case HYDROGENBONDING_POTENTIAL: | 
| 491 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]); | 
| 492 | gezelter | 1782 | break; | 
| 493 |  |  | case SHORT_RANGE_POTENTIAL: | 
| 494 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential()); | 
| 495 | gezelter | 1782 | break; | 
| 496 |  |  | case BOND_POTENTIAL: | 
| 497 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential()); | 
| 498 | gezelter | 1782 | break; | 
| 499 |  |  | case BEND_POTENTIAL: | 
| 500 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential()); | 
| 501 | gezelter | 1782 | break; | 
| 502 |  |  | case DIHEDRAL_POTENTIAL: | 
| 503 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential()); | 
| 504 | gezelter | 1782 | break; | 
| 505 |  |  | case INVERSION_POTENTIAL: | 
| 506 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential()); | 
| 507 | gezelter | 1782 | break; | 
| 508 |  |  | case RAW_POTENTIAL: | 
| 509 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential()); | 
| 510 | gezelter | 1782 | break; | 
| 511 |  |  | case RESTRAINT_POTENTIAL: | 
| 512 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential()); | 
| 513 | gezelter | 1782 | break; | 
| 514 |  |  | case TAGGED_PAIR_DISTANCE: | 
| 515 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance()); | 
| 516 | gezelter | 1782 | break; | 
| 517 | gezelter | 1879 | case ELECTRONIC_TEMPERATURE: | 
| 518 |  |  | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature()); | 
| 519 |  |  | break; | 
| 520 |  |  | case COM: | 
| 521 |  |  | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom()); | 
| 522 |  |  | break; | 
| 523 |  |  | case COM_VELOCITY: | 
| 524 |  |  | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel()); | 
| 525 |  |  | break; | 
| 526 |  |  | case ANGULAR_MOMENTUM: | 
| 527 |  |  | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum()); | 
| 528 |  |  | break; | 
| 529 | gezelter | 1782 | /* | 
| 530 |  |  | case SHADOWH: | 
| 531 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian()); | 
| 532 | gezelter | 1782 | break; | 
| 533 |  |  | case HELFANDMOMENT: | 
| 534 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment()); | 
| 535 | gezelter | 1782 | break; | 
| 536 |  |  | */ | 
| 537 |  |  | } | 
| 538 |  |  | } | 
| 539 |  |  | } | 
| 540 |  |  | } | 
| 541 |  |  |  | 
| 542 |  |  | int Stats::getIntData(int index) { | 
| 543 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 544 |  |  | RealType value; | 
| 545 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 546 | gezelter | 1782 | return (int) value; | 
| 547 |  |  | } | 
| 548 |  |  | RealType Stats::getRealData(int index) { | 
| 549 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 550 |  |  | RealType value(0.0); | 
| 551 | gezelter | 1791 | dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 552 | gezelter | 1782 | return value; | 
| 553 |  |  | } | 
| 554 |  |  | Vector3d Stats::getVectorData(int index) { | 
| 555 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 556 |  |  | Vector3d value; | 
| 557 |  |  | dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 558 |  |  | return value; | 
| 559 |  |  | } | 
| 560 |  |  | Mat3x3d Stats::getMatrixData(int index) { | 
| 561 |  |  | assert(index >=0 && index < ENDINDEX); | 
| 562 |  |  | Mat3x3d value; | 
| 563 |  |  | dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 564 |  |  | return value; | 
| 565 |  |  | } | 
| 566 |  |  |  | 
| 567 |  |  | Stats::StatsBitSet Stats::getStatsMask() { | 
| 568 |  |  | return statsMask_; | 
| 569 |  |  | } | 
| 570 |  |  | Stats::StatsMapType Stats::getStatsMap() { | 
| 571 |  |  | return statsMap_; | 
| 572 |  |  | } | 
| 573 |  |  | void Stats::setStatsMask(Stats::StatsBitSet mask) { | 
| 574 |  |  | statsMask_ = mask; | 
| 575 |  |  | } | 
| 576 |  |  |  | 
| 577 | gezelter | 246 | } |