| 1 | /* | 
| 2 | * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file Stats.cpp | 
| 45 | * @author tlin | 
| 46 | * @date 11/04/2004 | 
| 47 | * @time 14:26am | 
| 48 | * @version 1.0 | 
| 49 | */ | 
| 50 |  | 
| 51 | #include "brains/Stats.hpp" | 
| 52 | #include "brains/Thermo.hpp" | 
| 53 |  | 
| 54 | namespace OpenMD { | 
| 55 |  | 
| 56 | Stats::Stats(SimInfo* info) : isInit_(false), info_(info) { | 
| 57 |  | 
| 58 | if (!isInit_) { | 
| 59 | init(); | 
| 60 | isInit_ = true; | 
| 61 | } | 
| 62 | } | 
| 63 |  | 
| 64 | void Stats::init() { | 
| 65 |  | 
| 66 | data_.resize(Stats::ENDINDEX); | 
| 67 |  | 
| 68 | StatsData time; | 
| 69 | time.units =  "fs"; | 
| 70 | time.title =  "Time"; | 
| 71 | time.dataType = "RealType"; | 
| 72 | time.accumulator = new Accumulator(); | 
| 73 | data_[TIME] = time; | 
| 74 | statsMap_["TIME"] = TIME; | 
| 75 |  | 
| 76 | StatsData total_energy; | 
| 77 | total_energy.units =  "kcal/mol"; | 
| 78 | total_energy.title =  "Total Energy"; | 
| 79 | total_energy.dataType = "RealType"; | 
| 80 | total_energy.accumulator = new Accumulator(); | 
| 81 | data_[TOTAL_ENERGY] = total_energy; | 
| 82 | statsMap_["TOTAL_ENERGY"] =  TOTAL_ENERGY; | 
| 83 |  | 
| 84 | StatsData potential_energy; | 
| 85 | potential_energy.units =  "kcal/mol"; | 
| 86 | potential_energy.title =  "Potential Energy"; | 
| 87 | potential_energy.dataType = "RealType"; | 
| 88 | potential_energy.accumulator = new Accumulator(); | 
| 89 | data_[POTENTIAL_ENERGY] = potential_energy; | 
| 90 | statsMap_["POTENTIAL_ENERGY"] =  POTENTIAL_ENERGY; | 
| 91 |  | 
| 92 | StatsData kinetic_energy; | 
| 93 | kinetic_energy.units =  "kcal/mol"; | 
| 94 | kinetic_energy.title =  "Kinetic Energy"; | 
| 95 | kinetic_energy.dataType = "RealType"; | 
| 96 | kinetic_energy.accumulator = new Accumulator(); | 
| 97 | data_[KINETIC_ENERGY] = kinetic_energy; | 
| 98 | statsMap_["KINETIC_ENERGY"] =  KINETIC_ENERGY; | 
| 99 |  | 
| 100 | StatsData temperature; | 
| 101 | temperature.units =  "K"; | 
| 102 | temperature.title =  "Temperature"; | 
| 103 | temperature.dataType = "RealType"; | 
| 104 | temperature.accumulator = new Accumulator(); | 
| 105 | data_[TEMPERATURE] = temperature; | 
| 106 | statsMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 107 |  | 
| 108 | StatsData pressure; | 
| 109 | pressure.units =  "atm"; | 
| 110 | pressure.title =  "Pressure"; | 
| 111 | pressure.dataType = "RealType"; | 
| 112 | pressure.accumulator = new Accumulator(); | 
| 113 | data_[PRESSURE] = pressure; | 
| 114 | statsMap_["PRESSURE"] =  PRESSURE; | 
| 115 |  | 
| 116 | StatsData volume; | 
| 117 | volume.units =  "A^3"; | 
| 118 | volume.title =  "Volume"; | 
| 119 | volume.dataType = "RealType"; | 
| 120 | volume.accumulator = new Accumulator(); | 
| 121 | data_[VOLUME] = volume; | 
| 122 | statsMap_["VOLUME"] =  VOLUME; | 
| 123 |  | 
| 124 | StatsData hullvolume; | 
| 125 | hullvolume.units =  "A^3"; | 
| 126 | hullvolume.title =  "Hull Volume"; | 
| 127 | hullvolume.dataType = "RealType"; | 
| 128 | hullvolume.accumulator = new Accumulator(); | 
| 129 | data_[HULLVOLUME] = hullvolume; | 
| 130 | statsMap_["HULLVOLUME"] =  HULLVOLUME; | 
| 131 |  | 
| 132 | StatsData gyrvolume; | 
| 133 | gyrvolume.units =  "A^3"; | 
| 134 | gyrvolume.title =  "Gyrational Volume"; | 
| 135 | gyrvolume.dataType = "RealType"; | 
| 136 | gyrvolume.accumulator = new Accumulator(); | 
| 137 | data_[GYRVOLUME] = gyrvolume; | 
| 138 | statsMap_["GYRVOLUME"] =  GYRVOLUME; | 
| 139 |  | 
| 140 | StatsData conserved_quantity; | 
| 141 | conserved_quantity.units =  "kcal/mol"; | 
| 142 | conserved_quantity.title =  "Conserved Quantity"; | 
| 143 | conserved_quantity.dataType = "RealType"; | 
| 144 | conserved_quantity.accumulator = new Accumulator(); | 
| 145 | data_[CONSERVED_QUANTITY] = conserved_quantity; | 
| 146 | statsMap_["CONSERVED_QUANTITY"] =  CONSERVED_QUANTITY; | 
| 147 |  | 
| 148 | StatsData translational_kinetic; | 
| 149 | translational_kinetic.units =  "kcal/mol"; | 
| 150 | translational_kinetic.title =  "Translational Kinetic"; | 
| 151 | translational_kinetic.dataType = "RealType"; | 
| 152 | translational_kinetic.accumulator = new Accumulator(); | 
| 153 | data_[TRANSLATIONAL_KINETIC] = translational_kinetic; | 
| 154 | statsMap_["TRANSLATIONAL_KINETIC"] =  TRANSLATIONAL_KINETIC; | 
| 155 |  | 
| 156 | StatsData rotational_kinetic; | 
| 157 | rotational_kinetic.units =  "kcal/mol"; | 
| 158 | rotational_kinetic.title =  "Rotational Kinetic"; | 
| 159 | rotational_kinetic.dataType = "RealType"; | 
| 160 | rotational_kinetic.accumulator = new Accumulator(); | 
| 161 | data_[ROTATIONAL_KINETIC] = rotational_kinetic; | 
| 162 | statsMap_["ROTATIONAL_KINETIC"] =  ROTATIONAL_KINETIC; | 
| 163 |  | 
| 164 | StatsData long_range_potential; | 
| 165 | long_range_potential.units =  "kcal/mol"; | 
| 166 | long_range_potential.title =  "Long Range Potential"; | 
| 167 | long_range_potential.dataType = "RealType"; | 
| 168 | long_range_potential.accumulator = new Accumulator(); | 
| 169 | data_[LONG_RANGE_POTENTIAL] = long_range_potential; | 
| 170 | statsMap_["LONG_RANGE_POTENTIAL"] =  LONG_RANGE_POTENTIAL; | 
| 171 |  | 
| 172 | StatsData vanderwaals_potential; | 
| 173 | vanderwaals_potential.units =  "kcal/mol"; | 
| 174 | vanderwaals_potential.title =  "van der waals Potential"; | 
| 175 | vanderwaals_potential.dataType = "RealType"; | 
| 176 | vanderwaals_potential.accumulator = new Accumulator(); | 
| 177 | data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential; | 
| 178 | statsMap_["VANDERWAALS_POTENTIAL"] =  VANDERWAALS_POTENTIAL; | 
| 179 |  | 
| 180 | StatsData electrostatic_potential; | 
| 181 | electrostatic_potential.units =  "kcal/mol"; | 
| 182 | electrostatic_potential.title =  "Electrostatic Potential"; | 
| 183 | electrostatic_potential.dataType = "RealType"; | 
| 184 | electrostatic_potential.accumulator = new Accumulator(); | 
| 185 | data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential; | 
| 186 | statsMap_["ELECTROSTATIC_POTENTIAL"] =  ELECTROSTATIC_POTENTIAL; | 
| 187 |  | 
| 188 | StatsData metallic_potential; | 
| 189 | metallic_potential.units =  "kcal/mol"; | 
| 190 | metallic_potential.title =  "Metallic Potential"; | 
| 191 | metallic_potential.dataType = "RealType"; | 
| 192 | metallic_potential.accumulator = new Accumulator(); | 
| 193 | data_[METALLIC_POTENTIAL] = metallic_potential; | 
| 194 | statsMap_["METALLIC_POTENTIAL"] =  METALLIC_POTENTIAL; | 
| 195 |  | 
| 196 | StatsData hydrogenbonding_potential; | 
| 197 | hydrogenbonding_potential.units =  "kcal/mol"; | 
| 198 | hydrogenbonding_potential.title =  "Hydrogen Bonding Potential"; | 
| 199 | hydrogenbonding_potential.dataType = "RealType"; | 
| 200 | hydrogenbonding_potential.accumulator = new Accumulator(); | 
| 201 | data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential; | 
| 202 | statsMap_["HYDROGENBONDING_POTENTIAL"] =  HYDROGENBONDING_POTENTIAL; | 
| 203 |  | 
| 204 | StatsData reciprocal_potential; | 
| 205 | reciprocal_potential.units =  "kcal/mol"; | 
| 206 | reciprocal_potential.title =  "Reciprocal Space Potential"; | 
| 207 | reciprocal_potential.dataType = "RealType"; | 
| 208 | reciprocal_potential.accumulator = new Accumulator(); | 
| 209 | data_[RECIPROCAL_POTENTIAL] = reciprocal_potential; | 
| 210 | statsMap_["RECIPROCAL_POTENTIAL"] =  RECIPROCAL_POTENTIAL; | 
| 211 |  | 
| 212 | StatsData short_range_potential; | 
| 213 | short_range_potential.units =  "kcal/mol"; | 
| 214 | short_range_potential.title =  "Short Range Potential"; | 
| 215 | short_range_potential.dataType = "RealType"; | 
| 216 | short_range_potential.accumulator = new Accumulator(); | 
| 217 | data_[SHORT_RANGE_POTENTIAL] = short_range_potential; | 
| 218 | statsMap_["SHORT_RANGE_POTENTIAL"] =  SHORT_RANGE_POTENTIAL; | 
| 219 |  | 
| 220 | StatsData bond_potential; | 
| 221 | bond_potential.units =  "kcal/mol"; | 
| 222 | bond_potential.title =  "Bond Potential"; | 
| 223 | bond_potential.dataType = "RealType"; | 
| 224 | bond_potential.accumulator = new Accumulator(); | 
| 225 | data_[BOND_POTENTIAL] = bond_potential; | 
| 226 | statsMap_["BOND_POTENTIAL"] =  BOND_POTENTIAL; | 
| 227 |  | 
| 228 | StatsData bend_potential; | 
| 229 | bend_potential.units =  "kcal/mol"; | 
| 230 | bend_potential.title =  "Bend Potential"; | 
| 231 | bend_potential.dataType = "RealType"; | 
| 232 | bend_potential.accumulator = new Accumulator(); | 
| 233 | data_[BEND_POTENTIAL] = bend_potential; | 
| 234 | statsMap_["BEND_POTENTIAL"] =  BEND_POTENTIAL; | 
| 235 |  | 
| 236 | StatsData dihedral_potential; | 
| 237 | dihedral_potential.units =  "kcal/mol"; | 
| 238 | dihedral_potential.title =  "Dihedral Potential"; | 
| 239 | dihedral_potential.dataType = "RealType"; | 
| 240 | dihedral_potential.accumulator = new Accumulator(); | 
| 241 | data_[DIHEDRAL_POTENTIAL] = dihedral_potential; | 
| 242 | statsMap_["DIHEDRAL_POTENTIAL"] =  DIHEDRAL_POTENTIAL; | 
| 243 |  | 
| 244 | StatsData inversion_potential; | 
| 245 | inversion_potential.units =  "kcal/mol"; | 
| 246 | inversion_potential.title =  "Inversion Potential"; | 
| 247 | inversion_potential.dataType = "RealType"; | 
| 248 | inversion_potential.accumulator = new Accumulator(); | 
| 249 | data_[INVERSION_POTENTIAL] = inversion_potential; | 
| 250 | statsMap_["INVERSION_POTENTIAL"] =  INVERSION_POTENTIAL; | 
| 251 |  | 
| 252 | StatsData vraw; | 
| 253 | vraw.units =  "kcal/mol"; | 
| 254 | vraw.title =  "Raw Potential"; | 
| 255 | vraw.dataType = "RealType"; | 
| 256 | vraw.accumulator = new Accumulator(); | 
| 257 | data_[RAW_POTENTIAL] = vraw; | 
| 258 | statsMap_["RAW_POTENTIAL"] =  RAW_POTENTIAL; | 
| 259 |  | 
| 260 | StatsData vrestraint; | 
| 261 | vrestraint.units =  "kcal/mol"; | 
| 262 | vrestraint.title =  "Restraint Potential"; | 
| 263 | vrestraint.dataType = "RealType"; | 
| 264 | vrestraint.accumulator = new Accumulator(); | 
| 265 | data_[RESTRAINT_POTENTIAL] = vrestraint; | 
| 266 | statsMap_["RESTRAINT_POTENTIAL"] =  RESTRAINT_POTENTIAL; | 
| 267 |  | 
| 268 | StatsData pressure_tensor; | 
| 269 | pressure_tensor.units =  "amu*fs^-2*Ang^-1"; | 
| 270 | pressure_tensor.title =  "Ptensor"; | 
| 271 | pressure_tensor.dataType = "Mat3x3d"; | 
| 272 | pressure_tensor.accumulator = new MatrixAccumulator(); | 
| 273 | data_[PRESSURE_TENSOR] = pressure_tensor; | 
| 274 | statsMap_["PRESSURE_TENSOR"] =  PRESSURE_TENSOR; | 
| 275 |  | 
| 276 | StatsData system_dipole; | 
| 277 | system_dipole.units =  "C*m"; | 
| 278 | system_dipole.title =  "System Dipole"; | 
| 279 | system_dipole.dataType = "Vector3d"; | 
| 280 | system_dipole.accumulator = new VectorAccumulator(); | 
| 281 | data_[SYSTEM_DIPOLE] = system_dipole; | 
| 282 | statsMap_["SYSTEM_DIPOLE"] =  SYSTEM_DIPOLE; | 
| 283 |  | 
| 284 | StatsData system_quadrupole; | 
| 285 | system_quadrupole.units =  "C*m*m"; | 
| 286 | system_quadrupole.title =  "System Quadrupole"; | 
| 287 | system_quadrupole.dataType = "Mat3x3d"; | 
| 288 | system_quadrupole.accumulator = new MatrixAccumulator(); | 
| 289 | data_[SYSTEM_QUADRUPOLE] = system_quadrupole; | 
| 290 | statsMap_["SYSTEM_QUADRUPOLE"] =  SYSTEM_QUADRUPOLE; | 
| 291 |  | 
| 292 | StatsData tagged_pair_distance; | 
| 293 | tagged_pair_distance.units =  "Ang"; | 
| 294 | tagged_pair_distance.title =  "Tagged_Pair_Distance"; | 
| 295 | tagged_pair_distance.dataType = "RealType"; | 
| 296 | tagged_pair_distance.accumulator = new Accumulator(); | 
| 297 | data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance; | 
| 298 | statsMap_["TAGGED_PAIR_DISTANCE"] =  TAGGED_PAIR_DISTANCE; | 
| 299 |  | 
| 300 | StatsData shadowh; | 
| 301 | shadowh.units =  "kcal/mol"; | 
| 302 | shadowh.title =  "Shadow Hamiltonian"; | 
| 303 | shadowh.dataType = "RealType"; | 
| 304 | shadowh.accumulator = new Accumulator(); | 
| 305 | data_[SHADOWH] = shadowh; | 
| 306 | statsMap_["SHADOWH"] =  SHADOWH; | 
| 307 |  | 
| 308 | StatsData helfandmoment; | 
| 309 | helfandmoment.units =  "Ang*kcal/mol"; | 
| 310 | helfandmoment.title =  "Thermal Helfand Moment"; | 
| 311 | helfandmoment.dataType = "Vector3d"; | 
| 312 | helfandmoment.accumulator = new VectorAccumulator(); | 
| 313 | data_[HELFANDMOMENT] = helfandmoment; | 
| 314 | statsMap_["HELFANDMOMENT"] = HELFANDMOMENT; | 
| 315 |  | 
| 316 | StatsData heatflux; | 
| 317 | heatflux.units = "amu/fs^3"; | 
| 318 | heatflux.title =  "Heat Flux"; | 
| 319 | heatflux.dataType = "Vector3d"; | 
| 320 | heatflux.accumulator = new VectorAccumulator(); | 
| 321 | data_[HEATFLUX] = heatflux; | 
| 322 | statsMap_["HEATFLUX"] = HEATFLUX; | 
| 323 |  | 
| 324 | StatsData electronic_temperature; | 
| 325 | electronic_temperature.units = "K"; | 
| 326 | electronic_temperature.title =  "Electronic Temperature"; | 
| 327 | electronic_temperature.dataType = "RealType"; | 
| 328 | electronic_temperature.accumulator = new Accumulator(); | 
| 329 | data_[ELECTRONIC_TEMPERATURE] = electronic_temperature; | 
| 330 | statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE; | 
| 331 |  | 
| 332 | StatsData com; | 
| 333 | com.units =  "A"; | 
| 334 | com.title =  "Center of Mass"; | 
| 335 | com.dataType = "Vector3d"; | 
| 336 | com.accumulator = new VectorAccumulator(); | 
| 337 | data_[COM] = com; | 
| 338 | statsMap_["COM"] =  COM; | 
| 339 |  | 
| 340 | StatsData comVel; | 
| 341 | comVel.units =  "A/fs"; | 
| 342 | comVel.title =  "Center of Mass Velocity"; | 
| 343 | comVel.dataType = "Vector3d"; | 
| 344 | comVel.accumulator = new VectorAccumulator(); | 
| 345 | data_[COM_VELOCITY] = comVel; | 
| 346 | statsMap_["COM_VELOCITY"] =  COM_VELOCITY; | 
| 347 |  | 
| 348 | StatsData angMom; | 
| 349 | angMom.units =  "amu A^2/fs"; | 
| 350 | angMom.title =  "Angular Momentum"; | 
| 351 | angMom.dataType = "Vector3d"; | 
| 352 | angMom.accumulator = new VectorAccumulator(); | 
| 353 | data_[ANGULAR_MOMENTUM] = angMom; | 
| 354 | statsMap_["ANGULAR_MOMENTUM"] =  ANGULAR_MOMENTUM; | 
| 355 |  | 
| 356 | // Now, set some defaults in the mask: | 
| 357 |  | 
| 358 | Globals* simParams = info_->getSimParams(); | 
| 359 | std::string statFileFormatString = simParams->getStatFileFormat(); | 
| 360 | parseStatFileFormat(statFileFormatString); | 
| 361 |  | 
| 362 | // if we're doing a thermodynamic integration, we'll want the raw | 
| 363 | // potential as well as the full potential: | 
| 364 |  | 
| 365 | if (simParams->getUseThermodynamicIntegration()) | 
| 366 | statsMask_.set(RAW_POTENTIAL); | 
| 367 |  | 
| 368 | // if we've got restraints turned on, we'll also want a report of the | 
| 369 | // total harmonic restraints | 
| 370 | if (simParams->getUseRestraints()){ | 
| 371 | statsMask_.set(RESTRAINT_POTENTIAL); | 
| 372 | } | 
| 373 |  | 
| 374 | if (simParams->havePrintPressureTensor() && | 
| 375 | simParams->getPrintPressureTensor()){ | 
| 376 | statsMask_.set(PRESSURE_TENSOR); | 
| 377 | } | 
| 378 |  | 
| 379 | // Why do we have both of these? | 
| 380 | if (simParams->getAccumulateBoxDipole()) { | 
| 381 | statsMask_.set(SYSTEM_DIPOLE); | 
| 382 | } | 
| 383 | if (info_->getCalcBoxDipole()){ | 
| 384 | statsMask_.set(SYSTEM_DIPOLE); | 
| 385 | } | 
| 386 |  | 
| 387 | // Why do we have both of these? | 
| 388 | if (simParams->getAccumulateBoxQuadrupole()) { | 
| 389 | statsMask_.set(SYSTEM_QUADRUPOLE); | 
| 390 | } | 
| 391 | if (info_->getCalcBoxQuadrupole()){ | 
| 392 | statsMask_.set(SYSTEM_QUADRUPOLE); | 
| 393 | } | 
| 394 |  | 
| 395 | if (simParams->havePrintHeatFlux()) { | 
| 396 | if (simParams->getPrintHeatFlux()){ | 
| 397 | statsMask_.set(HEATFLUX); | 
| 398 | } | 
| 399 | } | 
| 400 |  | 
| 401 |  | 
| 402 | if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) { | 
| 403 | if (simParams->getPrintTaggedPairDistance()) { | 
| 404 | statsMask_.set(TAGGED_PAIR_DISTANCE); | 
| 405 | } | 
| 406 | } | 
| 407 |  | 
| 408 | } | 
| 409 |  | 
| 410 | void Stats::parseStatFileFormat(const std::string& format) { | 
| 411 | StringTokenizer tokenizer(format, " ,;|\t\n\r"); | 
| 412 |  | 
| 413 | while(tokenizer.hasMoreTokens()) { | 
| 414 | std::string token(tokenizer.nextToken()); | 
| 415 | toUpper(token); | 
| 416 | StatsMapType::iterator i = statsMap_.find(token); | 
| 417 | if (i != statsMap_.end()) { | 
| 418 | statsMask_.set(i->second); | 
| 419 | } else { | 
| 420 | sprintf( painCave.errMsg, | 
| 421 | "Stats::parseStatFileFormat: %s is not a recognized\n" | 
| 422 | "\tstatFileFormat keyword.\n", token.c_str() ); | 
| 423 | painCave.isFatal = 0; | 
| 424 | painCave.severity = OPENMD_ERROR; | 
| 425 | simError(); | 
| 426 | } | 
| 427 | } | 
| 428 | } | 
| 429 |  | 
| 430 | Stats::~Stats() { | 
| 431 | data_.clear(); | 
| 432 | statsMap_.clear(); | 
| 433 | } | 
| 434 |  | 
| 435 | std::string Stats::getTitle(int index) { | 
| 436 | assert(index >=0 && index < ENDINDEX); | 
| 437 | return data_[index].title; | 
| 438 | } | 
| 439 |  | 
| 440 | std::string Stats::getUnits(int index) { | 
| 441 | assert(index >=0 && index < ENDINDEX); | 
| 442 | return data_[index].units; | 
| 443 | } | 
| 444 |  | 
| 445 | std::string Stats::getDataType(int index) { | 
| 446 | assert(index >=0 && index < ENDINDEX); | 
| 447 | return data_[index].dataType; | 
| 448 | } | 
| 449 |  | 
| 450 | void Stats::collectStats(){ | 
| 451 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 452 | Thermo thermo(info_); | 
| 453 |  | 
| 454 | for (unsigned int i = 0; i < statsMask_.size(); ++i) { | 
| 455 | if (statsMask_[i]) { | 
| 456 | switch (i) { | 
| 457 | case TIME: | 
| 458 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime()); | 
| 459 | break; | 
| 460 | case KINETIC_ENERGY: | 
| 461 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic()); | 
| 462 | break; | 
| 463 | case POTENTIAL_ENERGY: | 
| 464 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential()); | 
| 465 | break; | 
| 466 | case TOTAL_ENERGY: | 
| 467 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy()); | 
| 468 | break; | 
| 469 | case TEMPERATURE: | 
| 470 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature()); | 
| 471 | break; | 
| 472 | case PRESSURE: | 
| 473 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure()); | 
| 474 | break; | 
| 475 | case VOLUME: | 
| 476 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume()); | 
| 477 | break; | 
| 478 | case CONSERVED_QUANTITY: | 
| 479 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity()); | 
| 480 | break; | 
| 481 | case PRESSURE_TENSOR: | 
| 482 | dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor()); | 
| 483 | break; | 
| 484 | case SYSTEM_DIPOLE: | 
| 485 | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole()); | 
| 486 | break; | 
| 487 | case SYSTEM_QUADRUPOLE: | 
| 488 | dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getSystemQuadrupole()); | 
| 489 | break; | 
| 490 | case HEATFLUX: | 
| 491 | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux()); | 
| 492 | break; | 
| 493 | case HULLVOLUME: | 
| 494 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume()); | 
| 495 | break; | 
| 496 | case GYRVOLUME: | 
| 497 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume()); | 
| 498 | break; | 
| 499 | case TRANSLATIONAL_KINETIC: | 
| 500 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic()); | 
| 501 | break; | 
| 502 | case ROTATIONAL_KINETIC: | 
| 503 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic()); | 
| 504 | break; | 
| 505 | case LONG_RANGE_POTENTIAL: | 
| 506 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential()); | 
| 507 | break; | 
| 508 | case VANDERWAALS_POTENTIAL: | 
| 509 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]); | 
| 510 | break; | 
| 511 | case ELECTROSTATIC_POTENTIAL: | 
| 512 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]); | 
| 513 | break; | 
| 514 | case METALLIC_POTENTIAL: | 
| 515 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]); | 
| 516 | break; | 
| 517 | case HYDROGENBONDING_POTENTIAL: | 
| 518 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]); | 
| 519 | break; | 
| 520 | case RECIPROCAL_POTENTIAL: | 
| 521 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getReciprocalPotential()); | 
| 522 | break; | 
| 523 | case SHORT_RANGE_POTENTIAL: | 
| 524 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential()); | 
| 525 | break; | 
| 526 | case BOND_POTENTIAL: | 
| 527 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential()); | 
| 528 | break; | 
| 529 | case BEND_POTENTIAL: | 
| 530 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential()); | 
| 531 | break; | 
| 532 | case DIHEDRAL_POTENTIAL: | 
| 533 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential()); | 
| 534 | break; | 
| 535 | case INVERSION_POTENTIAL: | 
| 536 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential()); | 
| 537 | break; | 
| 538 | case RAW_POTENTIAL: | 
| 539 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential()); | 
| 540 | break; | 
| 541 | case RESTRAINT_POTENTIAL: | 
| 542 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential()); | 
| 543 | break; | 
| 544 | case TAGGED_PAIR_DISTANCE: | 
| 545 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance()); | 
| 546 | break; | 
| 547 | case ELECTRONIC_TEMPERATURE: | 
| 548 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature()); | 
| 549 | break; | 
| 550 | case COM: | 
| 551 | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom()); | 
| 552 | break; | 
| 553 | case COM_VELOCITY: | 
| 554 | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel()); | 
| 555 | break; | 
| 556 | case ANGULAR_MOMENTUM: | 
| 557 | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum()); | 
| 558 | break; | 
| 559 | /* | 
| 560 | case SHADOWH: | 
| 561 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian()); | 
| 562 | break; | 
| 563 | case HELFANDMOMENT: | 
| 564 | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment()); | 
| 565 | break; | 
| 566 | */ | 
| 567 | } | 
| 568 | } | 
| 569 | } | 
| 570 | } | 
| 571 |  | 
| 572 | int Stats::getIntData(int index) { | 
| 573 | assert(index >=0 && index < ENDINDEX); | 
| 574 | RealType value; | 
| 575 | dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 576 | return (int) value; | 
| 577 | } | 
| 578 | RealType Stats::getRealData(int index) { | 
| 579 | assert(index >=0 && index < ENDINDEX); | 
| 580 | RealType value(0.0); | 
| 581 | dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 582 | return value; | 
| 583 | } | 
| 584 | Vector3d Stats::getVectorData(int index) { | 
| 585 | assert(index >=0 && index < ENDINDEX); | 
| 586 | Vector3d value; | 
| 587 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 588 | return value; | 
| 589 | } | 
| 590 | Mat3x3d Stats::getMatrixData(int index) { | 
| 591 | assert(index >=0 && index < ENDINDEX); | 
| 592 | Mat3x3d value; | 
| 593 | dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 594 | return value; | 
| 595 | } | 
| 596 |  | 
| 597 | Stats::StatsBitSet Stats::getStatsMask() { | 
| 598 | return statsMask_; | 
| 599 | } | 
| 600 | Stats::StatsMapType Stats::getStatsMap() { | 
| 601 | return statsMap_; | 
| 602 | } | 
| 603 | void Stats::setStatsMask(Stats::StatsBitSet mask) { | 
| 604 | statsMask_ = mask; | 
| 605 | } | 
| 606 |  | 
| 607 | } |