| 1 | 
  | 
/* | 
| 2 | 
< | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 2 | 
> | 
 * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
 * | 
| 4 | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
   | 
| 43 | 
  | 
/** | 
| 49 | 
  | 
 */ | 
| 50 | 
  | 
 | 
| 51 | 
  | 
#include "brains/Stats.hpp" | 
| 52 | 
+ | 
#include "brains/Thermo.hpp" | 
| 53 | 
  | 
 | 
| 54 | 
< | 
namespace oopse { | 
| 54 | 
> | 
namespace OpenMD { | 
| 55 | 
  | 
 | 
| 56 | 
< | 
  bool Stats::isInit_ = false; | 
| 55 | 
< | 
  std::string Stats::title_[Stats::ENDINDEX - Stats::BEGININDEX]; | 
| 56 | 
< | 
  std::string Stats::units_[Stats::ENDINDEX - Stats::BEGININDEX]; | 
| 57 | 
< | 
  Stats::StatsMapType Stats::statsMap; | 
| 58 | 
< | 
  Stats::Stats() { | 
| 56 | 
> | 
  Stats::Stats(SimInfo* info) : isInit_(false), info_(info) {    | 
| 57 | 
  | 
 | 
| 58 | 
  | 
    if (!isInit_) { | 
| 59 | 
  | 
      init(); | 
| 60 | 
  | 
      isInit_ = true; | 
| 61 | 
  | 
    } | 
| 64 | 
– | 
 | 
| 62 | 
  | 
  } | 
| 63 | 
  | 
 | 
| 64 | 
  | 
  void Stats::init() { | 
| 65 | 
+ | 
    | 
| 66 | 
+ | 
    data_.resize(Stats::ENDINDEX); | 
| 67 | 
  | 
 | 
| 68 | 
< | 
    Stats::title_[TIME] = "Time"; | 
| 69 | 
< | 
    Stats::title_[TOTAL_ENERGY] = "Total Energy"; | 
| 70 | 
< | 
    Stats::title_[POTENTIAL_ENERGY] = "Potential Energy"; | 
| 71 | 
< | 
    Stats::title_[KINETIC_ENERGY] = "Kinetic Energy"; | 
| 72 | 
< | 
    Stats::title_[TEMPERATURE] = "Temperature"; | 
| 73 | 
< | 
    Stats::title_[PRESSURE] = "Pressure"; | 
| 74 | 
< | 
    Stats::title_[VOLUME] = "Volume"; | 
| 75 | 
< | 
    Stats::title_[HULLVOLUME] = "Hull Volume"; | 
| 76 | 
< | 
    Stats::title_[GYRVOLUME] = "Gyrational Volume"; | 
| 77 | 
< | 
    Stats::title_[CONSERVED_QUANTITY] = "Conserved Quantity";              | 
| 78 | 
< | 
    Stats::title_[TRANSLATIONAL_KINETIC] = "Translational Kinetic"; | 
| 79 | 
< | 
    Stats::title_[ROTATIONAL_KINETIC] = "Rotational Kinetic"; | 
| 80 | 
< | 
    Stats::title_[LONG_RANGE_POTENTIAL] = "Long Range Potential"; | 
| 81 | 
< | 
    Stats::title_[SHORT_RANGE_POTENTIAL] = "Short Range Potential"; | 
| 82 | 
< | 
    Stats::title_[VANDERWAALS_POTENTIAL] = "van der waals Potential"; | 
| 83 | 
< | 
    Stats::title_[ELECTROSTATIC_POTENTIAL] = "Electrostatic Potential";     | 
| 84 | 
< | 
    Stats::title_[BOND_POTENTIAL] = "Bond Potential"; | 
| 85 | 
< | 
    Stats::title_[BEND_POTENTIAL] = "Bend Potential"; | 
| 86 | 
< | 
    Stats::title_[DIHEDRAL_POTENTIAL] = "Dihedral Potential"; | 
| 87 | 
< | 
    Stats::title_[INVERSION_POTENTIAL] = "Inversion Potential"; | 
| 88 | 
< | 
    Stats::title_[VRAW] = "Raw Potential"; | 
| 89 | 
< | 
    Stats::title_[VHARM] = "Harmonic Potential"; | 
| 90 | 
< | 
    Stats::title_[PRESSURE_TENSOR_XX] = "P_xx"; | 
| 91 | 
< | 
    Stats::title_[PRESSURE_TENSOR_XY] = "P_xy"; | 
| 92 | 
< | 
    Stats::title_[PRESSURE_TENSOR_XZ] = "P_xz"; | 
| 93 | 
< | 
    Stats::title_[PRESSURE_TENSOR_YX] = "P_yx"; | 
| 94 | 
< | 
    Stats::title_[PRESSURE_TENSOR_YY] = "P_yy"; | 
| 95 | 
< | 
    Stats::title_[PRESSURE_TENSOR_YZ] = "P_yz"; | 
| 96 | 
< | 
    Stats::title_[PRESSURE_TENSOR_ZX] = "P_zx"; | 
| 97 | 
< | 
    Stats::title_[PRESSURE_TENSOR_ZY] = "P_zy"; | 
| 98 | 
< | 
    Stats::title_[PRESSURE_TENSOR_ZZ] = "P_zz"; | 
| 99 | 
< | 
    Stats::title_[BOX_DIPOLE_X] = "box dipole x"; | 
| 100 | 
< | 
    Stats::title_[BOX_DIPOLE_Y] = "box dipole y"; | 
| 101 | 
< | 
    Stats::title_[BOX_DIPOLE_Z] = "box dipole z"; | 
| 102 | 
< | 
    Stats::title_[TAGGED_PAIR_DISTANCE] = "Tagged_Pair_Distance"; | 
| 68 | 
> | 
    StatsData time; | 
| 69 | 
> | 
    time.units =  "fs"; | 
| 70 | 
> | 
    time.title =  "Time"; | 
| 71 | 
> | 
    time.dataType = "RealType"; | 
| 72 | 
> | 
    time.accumulator = new Accumulator(); | 
| 73 | 
> | 
    data_[TIME] = time; | 
| 74 | 
> | 
    statsMap_["TIME"] = TIME; | 
| 75 | 
> | 
 | 
| 76 | 
> | 
    StatsData total_energy; | 
| 77 | 
> | 
    total_energy.units =  "kcal/mol"; | 
| 78 | 
> | 
    total_energy.title =  "Total Energy"; | 
| 79 | 
> | 
    total_energy.dataType = "RealType"; | 
| 80 | 
> | 
    total_energy.accumulator = new Accumulator(); | 
| 81 | 
> | 
    data_[TOTAL_ENERGY] = total_energy; | 
| 82 | 
> | 
    statsMap_["TOTAL_ENERGY"] =  TOTAL_ENERGY; | 
| 83 | 
> | 
    | 
| 84 | 
> | 
    StatsData potential_energy; | 
| 85 | 
> | 
    potential_energy.units =  "kcal/mol"; | 
| 86 | 
> | 
    potential_energy.title =  "Potential Energy"; | 
| 87 | 
> | 
    potential_energy.dataType = "RealType"; | 
| 88 | 
> | 
    potential_energy.accumulator = new Accumulator(); | 
| 89 | 
> | 
    data_[POTENTIAL_ENERGY] = potential_energy; | 
| 90 | 
> | 
    statsMap_["POTENTIAL_ENERGY"] =  POTENTIAL_ENERGY; | 
| 91 | 
> | 
 | 
| 92 | 
> | 
    StatsData kinetic_energy; | 
| 93 | 
> | 
    kinetic_energy.units =  "kcal/mol"; | 
| 94 | 
> | 
    kinetic_energy.title =  "Kinetic Energy"; | 
| 95 | 
> | 
    kinetic_energy.dataType = "RealType"; | 
| 96 | 
> | 
    kinetic_energy.accumulator = new Accumulator(); | 
| 97 | 
> | 
    data_[KINETIC_ENERGY] = kinetic_energy; | 
| 98 | 
> | 
    statsMap_["KINETIC_ENERGY"] =  KINETIC_ENERGY; | 
| 99 | 
> | 
 | 
| 100 | 
> | 
    StatsData temperature; | 
| 101 | 
> | 
    temperature.units =  "K"; | 
| 102 | 
> | 
    temperature.title =  "Temperature"; | 
| 103 | 
> | 
    temperature.dataType = "RealType"; | 
| 104 | 
> | 
    temperature.accumulator = new Accumulator(); | 
| 105 | 
> | 
    data_[TEMPERATURE] = temperature; | 
| 106 | 
> | 
    statsMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 107 | 
> | 
 | 
| 108 | 
> | 
    StatsData pressure; | 
| 109 | 
> | 
    pressure.units =  "atm"; | 
| 110 | 
> | 
    pressure.title =  "Pressure"; | 
| 111 | 
> | 
    pressure.dataType = "RealType"; | 
| 112 | 
> | 
    pressure.accumulator = new Accumulator(); | 
| 113 | 
> | 
    data_[PRESSURE] = pressure; | 
| 114 | 
> | 
    statsMap_["PRESSURE"] =  PRESSURE; | 
| 115 | 
> | 
 | 
| 116 | 
> | 
    StatsData volume; | 
| 117 | 
> | 
    volume.units =  "A^3"; | 
| 118 | 
> | 
    volume.title =  "Volume"; | 
| 119 | 
> | 
    volume.dataType = "RealType"; | 
| 120 | 
> | 
    volume.accumulator = new Accumulator(); | 
| 121 | 
> | 
    data_[VOLUME] = volume; | 
| 122 | 
> | 
    statsMap_["VOLUME"] =  VOLUME; | 
| 123 | 
> | 
 | 
| 124 | 
> | 
    StatsData hullvolume; | 
| 125 | 
> | 
    hullvolume.units =  "A^3"; | 
| 126 | 
> | 
    hullvolume.title =  "Hull Volume"; | 
| 127 | 
> | 
    hullvolume.dataType = "RealType"; | 
| 128 | 
> | 
    hullvolume.accumulator = new Accumulator(); | 
| 129 | 
> | 
    data_[HULLVOLUME] = hullvolume; | 
| 130 | 
> | 
    statsMap_["HULLVOLUME"] =  HULLVOLUME; | 
| 131 | 
> | 
 | 
| 132 | 
> | 
    StatsData gyrvolume; | 
| 133 | 
> | 
    gyrvolume.units =  "A^3"; | 
| 134 | 
> | 
    gyrvolume.title =  "Gyrational Volume"; | 
| 135 | 
> | 
    gyrvolume.dataType = "RealType"; | 
| 136 | 
> | 
    gyrvolume.accumulator = new Accumulator(); | 
| 137 | 
> | 
    data_[GYRVOLUME] = gyrvolume; | 
| 138 | 
> | 
    statsMap_["GYRVOLUME"] =  GYRVOLUME; | 
| 139 | 
> | 
 | 
| 140 | 
> | 
    StatsData conserved_quantity; | 
| 141 | 
> | 
    conserved_quantity.units =  "kcal/mol";              | 
| 142 | 
> | 
    conserved_quantity.title =  "Conserved Quantity";              | 
| 143 | 
> | 
    conserved_quantity.dataType = "RealType"; | 
| 144 | 
> | 
    conserved_quantity.accumulator = new Accumulator(); | 
| 145 | 
> | 
    data_[CONSERVED_QUANTITY] = conserved_quantity; | 
| 146 | 
> | 
    statsMap_["CONSERVED_QUANTITY"] =  CONSERVED_QUANTITY; | 
| 147 | 
> | 
 | 
| 148 | 
> | 
    StatsData translational_kinetic; | 
| 149 | 
> | 
    translational_kinetic.units =  "kcal/mol"; | 
| 150 | 
> | 
    translational_kinetic.title =  "Translational Kinetic"; | 
| 151 | 
> | 
    translational_kinetic.dataType = "RealType"; | 
| 152 | 
> | 
    translational_kinetic.accumulator = new Accumulator(); | 
| 153 | 
> | 
    data_[TRANSLATIONAL_KINETIC] = translational_kinetic; | 
| 154 | 
> | 
    statsMap_["TRANSLATIONAL_KINETIC"] =  TRANSLATIONAL_KINETIC; | 
| 155 | 
> | 
 | 
| 156 | 
> | 
    StatsData rotational_kinetic; | 
| 157 | 
> | 
    rotational_kinetic.units =  "kcal/mol"; | 
| 158 | 
> | 
    rotational_kinetic.title =  "Rotational Kinetic"; | 
| 159 | 
> | 
    rotational_kinetic.dataType = "RealType"; | 
| 160 | 
> | 
    rotational_kinetic.accumulator = new Accumulator(); | 
| 161 | 
> | 
    data_[ROTATIONAL_KINETIC] = rotational_kinetic; | 
| 162 | 
> | 
    statsMap_["ROTATIONAL_KINETIC"] =  ROTATIONAL_KINETIC; | 
| 163 | 
> | 
 | 
| 164 | 
> | 
    StatsData long_range_potential; | 
| 165 | 
> | 
    long_range_potential.units =  "kcal/mol"; | 
| 166 | 
> | 
    long_range_potential.title =  "Long Range Potential"; | 
| 167 | 
> | 
    long_range_potential.dataType = "RealType"; | 
| 168 | 
> | 
    long_range_potential.accumulator = new Accumulator(); | 
| 169 | 
> | 
    data_[LONG_RANGE_POTENTIAL] = long_range_potential; | 
| 170 | 
> | 
    statsMap_["LONG_RANGE_POTENTIAL"] =  LONG_RANGE_POTENTIAL; | 
| 171 | 
> | 
 | 
| 172 | 
> | 
    StatsData vanderwaals_potential; | 
| 173 | 
> | 
    vanderwaals_potential.units =  "kcal/mol"; | 
| 174 | 
> | 
    vanderwaals_potential.title =  "van der waals Potential"; | 
| 175 | 
> | 
    vanderwaals_potential.dataType = "RealType"; | 
| 176 | 
> | 
    vanderwaals_potential.accumulator = new Accumulator(); | 
| 177 | 
> | 
    data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential; | 
| 178 | 
> | 
    statsMap_["VANDERWAALS_POTENTIAL"] =  VANDERWAALS_POTENTIAL; | 
| 179 | 
> | 
 | 
| 180 | 
> | 
    StatsData electrostatic_potential; | 
| 181 | 
> | 
    electrostatic_potential.units =  "kcal/mol"; | 
| 182 | 
> | 
    electrostatic_potential.title =  "Electrostatic Potential";     | 
| 183 | 
> | 
    electrostatic_potential.dataType = "RealType"; | 
| 184 | 
> | 
    electrostatic_potential.accumulator = new Accumulator(); | 
| 185 | 
> | 
    data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential; | 
| 186 | 
> | 
    statsMap_["ELECTROSTATIC_POTENTIAL"] =  ELECTROSTATIC_POTENTIAL; | 
| 187 | 
> | 
 | 
| 188 | 
> | 
    StatsData metallic_potential; | 
| 189 | 
> | 
    metallic_potential.units =  "kcal/mol"; | 
| 190 | 
> | 
    metallic_potential.title =  "Metallic Potential";     | 
| 191 | 
> | 
    metallic_potential.dataType = "RealType"; | 
| 192 | 
> | 
    metallic_potential.accumulator = new Accumulator(); | 
| 193 | 
> | 
    data_[METALLIC_POTENTIAL] = metallic_potential; | 
| 194 | 
> | 
    statsMap_["METALLIC_POTENTIAL"] =  METALLIC_POTENTIAL; | 
| 195 | 
> | 
 | 
| 196 | 
> | 
    StatsData hydrogenbonding_potential; | 
| 197 | 
> | 
    hydrogenbonding_potential.units =  "kcal/mol"; | 
| 198 | 
> | 
    hydrogenbonding_potential.title =  "Metallic Potential";     | 
| 199 | 
> | 
    hydrogenbonding_potential.dataType = "RealType"; | 
| 200 | 
> | 
    hydrogenbonding_potential.accumulator = new Accumulator(); | 
| 201 | 
> | 
    data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential; | 
| 202 | 
> | 
    statsMap_["HYDROGENBONDING_POTENTIAL"] =  HYDROGENBONDING_POTENTIAL; | 
| 203 | 
> | 
 | 
| 204 | 
> | 
    StatsData short_range_potential; | 
| 205 | 
> | 
    short_range_potential.units =  "kcal/mol"; | 
| 206 | 
> | 
    short_range_potential.title =  "Short Range Potential"; | 
| 207 | 
> | 
    short_range_potential.dataType = "RealType"; | 
| 208 | 
> | 
    short_range_potential.accumulator = new Accumulator(); | 
| 209 | 
> | 
    data_[SHORT_RANGE_POTENTIAL] = short_range_potential; | 
| 210 | 
> | 
    statsMap_["SHORT_RANGE_POTENTIAL"] =  SHORT_RANGE_POTENTIAL; | 
| 211 | 
> | 
 | 
| 212 | 
> | 
    StatsData bond_potential; | 
| 213 | 
> | 
    bond_potential.units =  "kcal/mol"; | 
| 214 | 
> | 
    bond_potential.title =  "Bond Potential"; | 
| 215 | 
> | 
    bond_potential.dataType = "RealType"; | 
| 216 | 
> | 
    bond_potential.accumulator = new Accumulator(); | 
| 217 | 
> | 
    data_[BOND_POTENTIAL] = bond_potential; | 
| 218 | 
> | 
    statsMap_["BOND_POTENTIAL"] =  BOND_POTENTIAL; | 
| 219 | 
> | 
 | 
| 220 | 
> | 
    StatsData bend_potential; | 
| 221 | 
> | 
    bend_potential.units =  "kcal/mol"; | 
| 222 | 
> | 
    bend_potential.title =  "Bend Potential"; | 
| 223 | 
> | 
    bend_potential.dataType = "RealType"; | 
| 224 | 
> | 
    bend_potential.accumulator = new Accumulator(); | 
| 225 | 
> | 
    data_[BEND_POTENTIAL] = bend_potential; | 
| 226 | 
> | 
    statsMap_["BEND_POTENTIAL"] =  BEND_POTENTIAL; | 
| 227 | 
  | 
     | 
| 228 | 
< | 
    Stats::units_[TIME] = "fs"; | 
| 229 | 
< | 
    Stats::units_[TOTAL_ENERGY] = "kcal/mol"; | 
| 230 | 
< | 
    Stats::units_[POTENTIAL_ENERGY] = "kcal/mol"; | 
| 231 | 
< | 
    Stats::units_[KINETIC_ENERGY] = "kcal/mol"; | 
| 232 | 
< | 
    Stats::units_[TEMPERATURE] = "K"; | 
| 233 | 
< | 
    Stats::units_[PRESSURE] = "atm"; | 
| 234 | 
< | 
    Stats::units_[VOLUME] = "A^3"; | 
| 112 | 
< | 
    Stats::units_[HULLVOLUME] = "A^3"; | 
| 113 | 
< | 
    Stats::units_[GYRVOLUME] = "A^3"; | 
| 114 | 
< | 
    Stats::units_[CONSERVED_QUANTITY] = "kcal/mol";              | 
| 115 | 
< | 
    Stats::units_[TRANSLATIONAL_KINETIC] = "kcal/mol"; | 
| 116 | 
< | 
    Stats::units_[ROTATIONAL_KINETIC] = "kcal/mol"; | 
| 117 | 
< | 
    Stats::units_[LONG_RANGE_POTENTIAL] = "kcal/mol"; | 
| 118 | 
< | 
    Stats::units_[SHORT_RANGE_POTENTIAL] = "kcal/mol"; | 
| 119 | 
< | 
    Stats::units_[VANDERWAALS_POTENTIAL] = "kcal/mol"; | 
| 120 | 
< | 
    Stats::units_[ELECTROSTATIC_POTENTIAL] = "kcal/mol"; | 
| 121 | 
< | 
    Stats::units_[BOND_POTENTIAL] = "kcal/mol"; | 
| 122 | 
< | 
    Stats::units_[BEND_POTENTIAL] = "kcal/mol"; | 
| 123 | 
< | 
    Stats::units_[DIHEDRAL_POTENTIAL] = "kcal/mol"; | 
| 124 | 
< | 
    Stats::units_[INVERSION_POTENTIAL] = "kcal/mol"; | 
| 125 | 
< | 
    Stats::units_[VRAW] = "kcal/mol"; | 
| 126 | 
< | 
    Stats::units_[VHARM] = "kcal/mol"; | 
| 127 | 
< | 
    Stats::units_[PRESSURE_TENSOR_XX] = "amu*fs^-2*Ang^-1"; | 
| 128 | 
< | 
    Stats::units_[PRESSURE_TENSOR_XY] = "amu*fs^-2*Ang^-1"; | 
| 129 | 
< | 
    Stats::units_[PRESSURE_TENSOR_XZ] = "amu*fs^-2*Ang^-1"; | 
| 130 | 
< | 
    Stats::units_[PRESSURE_TENSOR_YX] = "amu*fs^-2*Ang^-1"; | 
| 131 | 
< | 
    Stats::units_[PRESSURE_TENSOR_YY] = "amu*fs^-2*Ang^-1"; | 
| 132 | 
< | 
    Stats::units_[PRESSURE_TENSOR_YZ] = "amu*fs^-2*Ang^-1"; | 
| 133 | 
< | 
    Stats::units_[PRESSURE_TENSOR_ZX] = "amu*fs^-2*Ang^-1"; | 
| 134 | 
< | 
    Stats::units_[PRESSURE_TENSOR_ZY] = "amu*fs^-2*Ang^-1"; | 
| 135 | 
< | 
    Stats::units_[PRESSURE_TENSOR_ZZ] = "amu*fs^-2*Ang^-1"; | 
| 136 | 
< | 
    Stats::units_[BOX_DIPOLE_X] = "C*m"; | 
| 137 | 
< | 
    Stats::units_[BOX_DIPOLE_Y] = "C*m"; | 
| 138 | 
< | 
    Stats::units_[BOX_DIPOLE_Z] = "C*m"; | 
| 139 | 
< | 
    Stats::units_[TAGGED_PAIR_DISTANCE] = "Ang"; | 
| 140 | 
< | 
    Stats::units_[RNEMD_SWAP_TOTAL] = "Variable"; | 
| 228 | 
> | 
    StatsData dihedral_potential; | 
| 229 | 
> | 
    dihedral_potential.units =  "kcal/mol"; | 
| 230 | 
> | 
    dihedral_potential.title =  "Dihedral Potential"; | 
| 231 | 
> | 
    dihedral_potential.dataType = "RealType"; | 
| 232 | 
> | 
    dihedral_potential.accumulator = new Accumulator(); | 
| 233 | 
> | 
    data_[DIHEDRAL_POTENTIAL] = dihedral_potential; | 
| 234 | 
> | 
    statsMap_["DIHEDRAL_POTENTIAL"] =  DIHEDRAL_POTENTIAL; | 
| 235 | 
  | 
 | 
| 236 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("TIME", TIME)); | 
| 237 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("TOTAL_ENERGY", TOTAL_ENERGY)); | 
| 238 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("POTENTIAL_ENERGY", POTENTIAL_ENERGY)); | 
| 239 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("KINETIC_ENERGY", KINETIC_ENERGY)); | 
| 240 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("TEMPERATURE", TEMPERATURE)); | 
| 241 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE", PRESSURE)); | 
| 242 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("VOLUME", VOLUME)); | 
| 243 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("HULLVOLUME", HULLVOLUME)); | 
| 244 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("GYRVOLUME", GYRVOLUME)); | 
| 245 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("CONSERVED_QUANTITY", CONSERVED_QUANTITY)); | 
| 246 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("TRANSLATIONAL_KINETIC", TRANSLATIONAL_KINETIC)); | 
| 247 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("ROTATIONAL_KINETIC", ROTATIONAL_KINETIC)); | 
| 248 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("LONG_RANGE_POTENTIAL", LONG_RANGE_POTENTIAL)); | 
| 249 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("SHORT_RANGE_POTENTIAL", SHORT_RANGE_POTENTIAL)); | 
| 250 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("VANDERWAALS_POTENTIAL", VANDERWAALS_POTENTIAL)); | 
| 251 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("ELECTROSTATIC_POTENTIAL", ELECTROSTATIC_POTENTIAL)); | 
| 252 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("BOND_POTENTIAL", BOND_POTENTIAL)); | 
| 253 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("BEND_POTENTIAL", BEND_POTENTIAL)); | 
| 254 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("DIHEDRAL_POTENTIAL", DIHEDRAL_POTENTIAL)); | 
| 255 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("INVERSION_POTENTIAL", INVERSION_POTENTIAL)); | 
| 256 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("VRAW", VRAW));     | 
| 257 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("VHARM", VHARM));     | 
| 258 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_XX", PRESSURE_TENSOR_XX));     | 
| 259 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_XY", PRESSURE_TENSOR_XY));     | 
| 260 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_XZ", PRESSURE_TENSOR_XZ));     | 
| 261 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_YX", PRESSURE_TENSOR_YX));     | 
| 262 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_YY", PRESSURE_TENSOR_YY));     | 
| 263 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_YZ", PRESSURE_TENSOR_YZ));     | 
| 264 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_ZX", PRESSURE_TENSOR_ZX));     | 
| 265 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_ZY", PRESSURE_TENSOR_ZY));     | 
| 266 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_ZZ", PRESSURE_TENSOR_ZZ));     | 
| 267 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_X", BOX_DIPOLE_X));     | 
| 268 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_Y", BOX_DIPOLE_Y));     | 
| 269 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_Z", BOX_DIPOLE_Z));     | 
| 270 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("TAGGED_PAIR_DISTANCE", TAGGED_PAIR_DISTANCE));     | 
| 271 | 
< | 
    Stats::statsMap.insert(StatsMapType::value_type("RNEMD_SWAP_TOTAL", RNEMD_SWAP_TOTAL));     | 
| 236 | 
> | 
    StatsData inversion_potential; | 
| 237 | 
> | 
    inversion_potential.units =  "kcal/mol"; | 
| 238 | 
> | 
    inversion_potential.title =  "Inversion Potential"; | 
| 239 | 
> | 
    inversion_potential.dataType = "RealType"; | 
| 240 | 
> | 
    inversion_potential.accumulator = new Accumulator(); | 
| 241 | 
> | 
    data_[INVERSION_POTENTIAL] = inversion_potential; | 
| 242 | 
> | 
    statsMap_["INVERSION_POTENTIAL"] =  INVERSION_POTENTIAL; | 
| 243 | 
> | 
 | 
| 244 | 
> | 
    StatsData vraw; | 
| 245 | 
> | 
    vraw.units =  "kcal/mol"; | 
| 246 | 
> | 
    vraw.title =  "Raw Potential"; | 
| 247 | 
> | 
    vraw.dataType = "RealType"; | 
| 248 | 
> | 
    vraw.accumulator = new Accumulator(); | 
| 249 | 
> | 
    data_[RAW_POTENTIAL] = vraw; | 
| 250 | 
> | 
    statsMap_["RAW_POTENTIAL"] =  RAW_POTENTIAL; | 
| 251 | 
> | 
 | 
| 252 | 
> | 
    StatsData vrestraint; | 
| 253 | 
> | 
    vrestraint.units =  "kcal/mol"; | 
| 254 | 
> | 
    vrestraint.title =  "Restraint Potential"; | 
| 255 | 
> | 
    vrestraint.dataType = "RealType"; | 
| 256 | 
> | 
    vrestraint.accumulator = new Accumulator(); | 
| 257 | 
> | 
    data_[RESTRAINT_POTENTIAL] = vrestraint; | 
| 258 | 
> | 
    statsMap_["RESTRAINT_POTENTIAL"] =  RESTRAINT_POTENTIAL; | 
| 259 | 
> | 
 | 
| 260 | 
> | 
    StatsData pressure_tensor; | 
| 261 | 
> | 
    pressure_tensor.units =  "amu*fs^-2*Ang^-1"; | 
| 262 | 
> | 
    pressure_tensor.title =  "Ptensor"; | 
| 263 | 
> | 
    pressure_tensor.dataType = "Mat3x3d"; | 
| 264 | 
> | 
    pressure_tensor.accumulator = new MatrixAccumulator(); | 
| 265 | 
> | 
    data_[PRESSURE_TENSOR] = pressure_tensor; | 
| 266 | 
> | 
    statsMap_["PRESSURE_TENSOR"] =  PRESSURE_TENSOR; | 
| 267 | 
> | 
 | 
| 268 | 
> | 
    StatsData system_dipole; | 
| 269 | 
> | 
    system_dipole.units =  "C*m"; | 
| 270 | 
> | 
    system_dipole.title =  "System Dipole"; | 
| 271 | 
> | 
    system_dipole.dataType = "Vector3d"; | 
| 272 | 
> | 
    system_dipole.accumulator = new VectorAccumulator(); | 
| 273 | 
> | 
    data_[SYSTEM_DIPOLE] = system_dipole; | 
| 274 | 
> | 
    statsMap_["SYSTEM_DIPOLE"] =  SYSTEM_DIPOLE; | 
| 275 | 
> | 
 | 
| 276 | 
> | 
    StatsData tagged_pair_distance; | 
| 277 | 
> | 
    tagged_pair_distance.units =  "Ang"; | 
| 278 | 
> | 
    tagged_pair_distance.title =  "Tagged_Pair_Distance"; | 
| 279 | 
> | 
    tagged_pair_distance.dataType = "RealType"; | 
| 280 | 
> | 
    tagged_pair_distance.accumulator = new Accumulator(); | 
| 281 | 
> | 
    data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance; | 
| 282 | 
> | 
    statsMap_["TAGGED_PAIR_DISTANCE"] =  TAGGED_PAIR_DISTANCE; | 
| 283 | 
> | 
 | 
| 284 | 
> | 
    StatsData shadowh; | 
| 285 | 
> | 
    shadowh.units =  "kcal/mol"; | 
| 286 | 
> | 
    shadowh.title =  "Shadow Hamiltonian"; | 
| 287 | 
> | 
    shadowh.dataType = "RealType"; | 
| 288 | 
> | 
    shadowh.accumulator = new Accumulator(); | 
| 289 | 
> | 
    data_[SHADOWH] = shadowh; | 
| 290 | 
> | 
    statsMap_["SHADOWH"] =  SHADOWH; | 
| 291 | 
> | 
 | 
| 292 | 
> | 
    StatsData helfandmoment; | 
| 293 | 
> | 
    helfandmoment.units =  "Ang*kcal/mol"; | 
| 294 | 
> | 
    helfandmoment.title =  "Thermal Helfand Moment"; | 
| 295 | 
> | 
    helfandmoment.dataType = "Vector3d"; | 
| 296 | 
> | 
    helfandmoment.accumulator = new VectorAccumulator(); | 
| 297 | 
> | 
    data_[HELFANDMOMENT] = helfandmoment; | 
| 298 | 
> | 
    statsMap_["HELFANDMOMENT"] = HELFANDMOMENT; | 
| 299 | 
> | 
 | 
| 300 | 
> | 
    StatsData heatflux; | 
| 301 | 
> | 
    heatflux.units = "amu/fs^3"; | 
| 302 | 
> | 
    heatflux.title =  "Heat Flux";   | 
| 303 | 
> | 
    heatflux.dataType = "Vector3d"; | 
| 304 | 
> | 
    heatflux.accumulator = new VectorAccumulator(); | 
| 305 | 
> | 
    data_[HEATFLUX] = heatflux; | 
| 306 | 
> | 
    statsMap_["HEATFLUX"] = HEATFLUX; | 
| 307 | 
> | 
 | 
| 308 | 
> | 
    StatsData electronic_temperature; | 
| 309 | 
> | 
    electronic_temperature.units = "K"; | 
| 310 | 
> | 
    electronic_temperature.title =  "Electronic Temperature";   | 
| 311 | 
> | 
    electronic_temperature.dataType = "RealType"; | 
| 312 | 
> | 
    electronic_temperature.accumulator = new Accumulator(); | 
| 313 | 
> | 
    data_[ELECTRONIC_TEMPERATURE] = electronic_temperature; | 
| 314 | 
> | 
    statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE; | 
| 315 | 
> | 
 | 
| 316 | 
> | 
    // Now, set some defaults in the mask: | 
| 317 | 
> | 
 | 
| 318 | 
> | 
    Globals* simParams = info_->getSimParams(); | 
| 319 | 
> | 
    std::string statFileFormatString = simParams->getStatFileFormat(); | 
| 320 | 
> | 
    parseStatFileFormat(statFileFormatString); | 
| 321 | 
> | 
 | 
| 322 | 
> | 
    // if we're doing a thermodynamic integration, we'll want the raw | 
| 323 | 
> | 
    // potential as well as the full potential: | 
| 324 | 
> | 
     | 
| 325 | 
> | 
    if (simParams->getUseThermodynamicIntegration())  | 
| 326 | 
> | 
      statsMask_.set(RAW_POTENTIAL); | 
| 327 | 
> | 
     | 
| 328 | 
> | 
    // if we've got restraints turned on, we'll also want a report of the | 
| 329 | 
> | 
    // total harmonic restraints | 
| 330 | 
> | 
    if (simParams->getUseRestraints()){ | 
| 331 | 
> | 
      statsMask_.set(RESTRAINT_POTENTIAL); | 
| 332 | 
> | 
    } | 
| 333 | 
> | 
     | 
| 334 | 
> | 
    if (simParams->havePrintPressureTensor() &&  | 
| 335 | 
> | 
        simParams->getPrintPressureTensor()){ | 
| 336 | 
> | 
      statsMask_.set(PRESSURE_TENSOR); | 
| 337 | 
> | 
    } | 
| 338 | 
> | 
 | 
| 339 | 
> | 
    // Why do we have both of these? | 
| 340 | 
> | 
    if (simParams->getAccumulateBoxDipole()) { | 
| 341 | 
> | 
      statsMask_.set(SYSTEM_DIPOLE); | 
| 342 | 
> | 
    } | 
| 343 | 
> | 
    if (info_->getCalcBoxDipole()){ | 
| 344 | 
> | 
      statsMask_.set(SYSTEM_DIPOLE); | 
| 345 | 
> | 
    } | 
| 346 | 
> | 
 | 
| 347 | 
> | 
    if (simParams->havePrintHeatFlux()) { | 
| 348 | 
> | 
      if (simParams->getPrintHeatFlux()){ | 
| 349 | 
> | 
        statsMask_.set(HEATFLUX); | 
| 350 | 
> | 
      } | 
| 351 | 
> | 
    }     | 
| 352 | 
> | 
     | 
| 353 | 
> | 
     | 
| 354 | 
> | 
    if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) { | 
| 355 | 
> | 
      if (simParams->getPrintTaggedPairDistance()) { | 
| 356 | 
> | 
        statsMask_.set(TAGGED_PAIR_DISTANCE); | 
| 357 | 
> | 
      } | 
| 358 | 
> | 
    } | 
| 359 | 
> | 
     | 
| 360 | 
  | 
  } | 
| 361 | 
  | 
 | 
| 362 | 
+ | 
  void Stats::parseStatFileFormat(const std::string& format) { | 
| 363 | 
+ | 
    StringTokenizer tokenizer(format, " ,;|\t\n\r"); | 
| 364 | 
+ | 
 | 
| 365 | 
+ | 
    while(tokenizer.hasMoreTokens()) { | 
| 366 | 
+ | 
      std::string token(tokenizer.nextToken()); | 
| 367 | 
+ | 
      toUpper(token); | 
| 368 | 
+ | 
      StatsMapType::iterator i = statsMap_.find(token); | 
| 369 | 
+ | 
      if (i != statsMap_.end()) { | 
| 370 | 
+ | 
        statsMask_.set(i->second); | 
| 371 | 
+ | 
      } else { | 
| 372 | 
+ | 
        sprintf( painCave.errMsg, | 
| 373 | 
+ | 
                 "Stats::parseStatFileFormat: %s is not a recognized\n" | 
| 374 | 
+ | 
                 "\tstatFileFormat keyword.\n", token.c_str() ); | 
| 375 | 
+ | 
        painCave.isFatal = 0; | 
| 376 | 
+ | 
        painCave.severity = OPENMD_ERROR; | 
| 377 | 
+ | 
        simError();             | 
| 378 | 
+ | 
      } | 
| 379 | 
+ | 
    }    | 
| 380 | 
+ | 
  } | 
| 381 | 
+ | 
 | 
| 382 | 
+ | 
 | 
| 383 | 
+ | 
  std::string Stats::getTitle(int index) { | 
| 384 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 385 | 
+ | 
    return data_[index].title; | 
| 386 | 
+ | 
  } | 
| 387 | 
+ | 
 | 
| 388 | 
+ | 
  std::string Stats::getUnits(int index) { | 
| 389 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 390 | 
+ | 
    return data_[index].units; | 
| 391 | 
+ | 
  } | 
| 392 | 
+ | 
 | 
| 393 | 
+ | 
  std::string Stats::getDataType(int index) { | 
| 394 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 395 | 
+ | 
    return data_[index].dataType; | 
| 396 | 
+ | 
  } | 
| 397 | 
+ | 
 | 
| 398 | 
+ | 
  void Stats::collectStats(){ | 
| 399 | 
+ | 
    Globals* simParams = info_->getSimParams(); | 
| 400 | 
+ | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 401 | 
+ | 
    Thermo thermo(info_); | 
| 402 | 
+ | 
    | 
| 403 | 
+ | 
    for (unsigned int i = 0; i < statsMask_.size(); ++i) { | 
| 404 | 
+ | 
      if (statsMask_[i]) { | 
| 405 | 
+ | 
        switch (i) { | 
| 406 | 
+ | 
        case TIME: | 
| 407 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime()); | 
| 408 | 
+ | 
          break; | 
| 409 | 
+ | 
        case KINETIC_ENERGY: | 
| 410 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic()); | 
| 411 | 
+ | 
          break; | 
| 412 | 
+ | 
        case POTENTIAL_ENERGY: | 
| 413 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential()); | 
| 414 | 
+ | 
          break; | 
| 415 | 
+ | 
        case TOTAL_ENERGY: | 
| 416 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy()); | 
| 417 | 
+ | 
          break; | 
| 418 | 
+ | 
        case TEMPERATURE: | 
| 419 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature()); | 
| 420 | 
+ | 
          break; | 
| 421 | 
+ | 
        case PRESSURE: | 
| 422 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure()); | 
| 423 | 
+ | 
          break; | 
| 424 | 
+ | 
        case VOLUME: | 
| 425 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume()); | 
| 426 | 
+ | 
          break; | 
| 427 | 
+ | 
        case CONSERVED_QUANTITY: | 
| 428 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity()); | 
| 429 | 
+ | 
          break; | 
| 430 | 
+ | 
        case PRESSURE_TENSOR: | 
| 431 | 
+ | 
          dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor()); | 
| 432 | 
+ | 
          break; | 
| 433 | 
+ | 
        case SYSTEM_DIPOLE: | 
| 434 | 
+ | 
          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole()); | 
| 435 | 
+ | 
          break; | 
| 436 | 
+ | 
        case HEATFLUX: | 
| 437 | 
+ | 
          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux()); | 
| 438 | 
+ | 
          break; | 
| 439 | 
+ | 
        case HULLVOLUME: | 
| 440 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume()); | 
| 441 | 
+ | 
          break; | 
| 442 | 
+ | 
        case GYRVOLUME: | 
| 443 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume()); | 
| 444 | 
+ | 
          break; | 
| 445 | 
+ | 
        case TRANSLATIONAL_KINETIC: | 
| 446 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic()); | 
| 447 | 
+ | 
          break; | 
| 448 | 
+ | 
        case ROTATIONAL_KINETIC: | 
| 449 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic()); | 
| 450 | 
+ | 
          break; | 
| 451 | 
+ | 
        case LONG_RANGE_POTENTIAL: | 
| 452 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential()); | 
| 453 | 
+ | 
          break; | 
| 454 | 
+ | 
        case VANDERWAALS_POTENTIAL: | 
| 455 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]); | 
| 456 | 
+ | 
          break; | 
| 457 | 
+ | 
        case ELECTROSTATIC_POTENTIAL: | 
| 458 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]); | 
| 459 | 
+ | 
          break; | 
| 460 | 
+ | 
        case METALLIC_POTENTIAL: | 
| 461 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]); | 
| 462 | 
+ | 
          break; | 
| 463 | 
+ | 
        case HYDROGENBONDING_POTENTIAL: | 
| 464 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]); | 
| 465 | 
+ | 
          break; | 
| 466 | 
+ | 
        case SHORT_RANGE_POTENTIAL: | 
| 467 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential()); | 
| 468 | 
+ | 
          break; | 
| 469 | 
+ | 
        case BOND_POTENTIAL: | 
| 470 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential()); | 
| 471 | 
+ | 
          break; | 
| 472 | 
+ | 
        case BEND_POTENTIAL: | 
| 473 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential()); | 
| 474 | 
+ | 
          break; | 
| 475 | 
+ | 
        case DIHEDRAL_POTENTIAL: | 
| 476 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential()); | 
| 477 | 
+ | 
          break; | 
| 478 | 
+ | 
        case INVERSION_POTENTIAL: | 
| 479 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential()); | 
| 480 | 
+ | 
          break; | 
| 481 | 
+ | 
        case RAW_POTENTIAL: | 
| 482 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential()); | 
| 483 | 
+ | 
          break; | 
| 484 | 
+ | 
        case RESTRAINT_POTENTIAL: | 
| 485 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential()); | 
| 486 | 
+ | 
          break; | 
| 487 | 
+ | 
        case TAGGED_PAIR_DISTANCE: | 
| 488 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance()); | 
| 489 | 
+ | 
          break; | 
| 490 | 
+ | 
          /* | 
| 491 | 
+ | 
        case SHADOWH: | 
| 492 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian()); | 
| 493 | 
+ | 
          break; | 
| 494 | 
+ | 
        case HELFANDMOMENT: | 
| 495 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment()); | 
| 496 | 
+ | 
          break; | 
| 497 | 
+ | 
          */ | 
| 498 | 
+ | 
        case ELECTRONIC_TEMPERATURE: | 
| 499 | 
+ | 
          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature()); | 
| 500 | 
+ | 
          break;  | 
| 501 | 
+ | 
        } | 
| 502 | 
+ | 
      } | 
| 503 | 
+ | 
    } | 
| 504 | 
+ | 
  } | 
| 505 | 
+ | 
 | 
| 506 | 
+ | 
  int Stats::getIntData(int index) {  | 
| 507 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 508 | 
+ | 
    RealType value; | 
| 509 | 
+ | 
    dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 510 | 
+ | 
    return (int) value; | 
| 511 | 
+ | 
  } | 
| 512 | 
+ | 
  RealType Stats::getRealData(int index) { | 
| 513 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 514 | 
+ | 
    RealType value(0.0); | 
| 515 | 
+ | 
    dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 516 | 
+ | 
    return value; | 
| 517 | 
+ | 
  } | 
| 518 | 
+ | 
  Vector3d Stats::getVectorData(int index) { | 
| 519 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 520 | 
+ | 
    Vector3d value; | 
| 521 | 
+ | 
    dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 522 | 
+ | 
    return value; | 
| 523 | 
+ | 
  } | 
| 524 | 
+ | 
  Mat3x3d Stats::getMatrixData(int index) { | 
| 525 | 
+ | 
    assert(index >=0 && index < ENDINDEX); | 
| 526 | 
+ | 
    Mat3x3d value; | 
| 527 | 
+ | 
    dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 528 | 
+ | 
    return value; | 
| 529 | 
+ | 
  } | 
| 530 | 
+ | 
  | 
| 531 | 
+ | 
  Stats::StatsBitSet Stats::getStatsMask() { | 
| 532 | 
+ | 
    return statsMask_; | 
| 533 | 
+ | 
  } | 
| 534 | 
+ | 
  Stats::StatsMapType Stats::getStatsMap() { | 
| 535 | 
+ | 
    return statsMap_; | 
| 536 | 
+ | 
  } | 
| 537 | 
+ | 
  void Stats::setStatsMask(Stats::StatsBitSet mask) { | 
| 538 | 
+ | 
    statsMask_ = mask; | 
| 539 | 
+ | 
  } | 
| 540 | 
+ | 
 | 
| 541 | 
  | 
} |