| 1 |  | /* | 
| 2 | < | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 2 | > | * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 42 | – | /** | 
| 43 | – | * @file Stats.cpp | 
| 44 | – | * @author tlin | 
| 45 | – | * @date 11/04/2004 | 
| 46 | – | * @time 14:26am | 
| 47 | – | * @version 1.0 | 
| 48 | – | */ | 
| 49 | – |  | 
| 43 |  | #include "brains/Stats.hpp" | 
| 44 | + | #include "brains/Thermo.hpp" | 
| 45 |  |  | 
| 46 | < | namespace oopse { | 
| 46 | > | namespace OpenMD { | 
| 47 |  |  | 
| 48 | < | bool Stats::isInit_ = false; | 
| 55 | < | std::string Stats::title_[Stats::ENDINDEX - Stats::BEGININDEX]; | 
| 56 | < | std::string Stats::units_[Stats::ENDINDEX - Stats::BEGININDEX]; | 
| 57 | < | Stats::StatsMapType Stats::statsMap; | 
| 58 | < | Stats::Stats() { | 
| 48 | > | Stats::Stats(SimInfo* info) : info_(info), isInit_(false) { | 
| 49 |  |  | 
| 50 |  | if (!isInit_) { | 
| 51 |  | init(); | 
| 52 |  | isInit_ = true; | 
| 53 |  | } | 
| 64 | – |  | 
| 54 |  | } | 
| 55 |  |  | 
| 56 |  | void Stats::init() { | 
| 57 | + |  | 
| 58 | + | data_.resize(Stats::ENDINDEX); | 
| 59 |  |  | 
| 60 | < | Stats::title_[TIME] = "Time"; | 
| 61 | < | Stats::title_[TOTAL_ENERGY] = "Total Energy"; | 
| 62 | < | Stats::title_[POTENTIAL_ENERGY] = "Potential Energy"; | 
| 63 | < | Stats::title_[KINETIC_ENERGY] = "Kinetic Energy"; | 
| 64 | < | Stats::title_[TEMPERATURE] = "Temperature"; | 
| 65 | < | Stats::title_[PRESSURE] = "Pressure"; | 
| 66 | < | Stats::title_[VOLUME] = "Volume"; | 
| 76 | < | Stats::title_[CONSERVED_QUANTITY] = "Conserved Quantity"; | 
| 77 | < | Stats::title_[TRANSLATIONAL_KINETIC] = "Translational Kinetic"; | 
| 78 | < | Stats::title_[ROTATIONAL_KINETIC] = "Rotational Kinetic"; | 
| 79 | < | Stats::title_[LONG_RANGE_POTENTIAL] = "Long Range Potential"; | 
| 80 | < | Stats::title_[SHORT_RANGE_POTENTIAL] = "Short Range Potential"; | 
| 81 | < | Stats::title_[VANDERWAALS_POTENTIAL] = "van der waals Potential"; | 
| 82 | < | Stats::title_[ELECTROSTATIC_POTENTIAL] = "Electrostatic Potential"; | 
| 83 | < | Stats::title_[BOND_POTENTIAL] = "Bond Potential"; | 
| 84 | < | Stats::title_[BEND_POTENTIAL] = "Bend Potential"; | 
| 85 | < | Stats::title_[DIHEDRAL_POTENTIAL] = "Dihedral Potential"; | 
| 86 | < | Stats::title_[IMPROPER_POTENTIAL] = "Improper Potential"; | 
| 87 | < | Stats::title_[VRAW] = "Raw Potential"; | 
| 88 | < | Stats::title_[VHARM] = "Harmonic Potential"; | 
| 89 | < | Stats::title_[PRESSURE_TENSOR_X] = "presure tensor x"; | 
| 90 | < | Stats::title_[PRESSURE_TENSOR_Y] = "presure tensor y"; | 
| 91 | < | Stats::title_[PRESSURE_TENSOR_Z] = "presure tensor z"; | 
| 60 | > | StatsData time; | 
| 61 | > | time.units =  "fs"; | 
| 62 | > | time.title =  "Time"; | 
| 63 | > | time.dataType = "RealType"; | 
| 64 | > | time.accumulator = new Accumulator(); | 
| 65 | > | data_[TIME] = time; | 
| 66 | > | statsMap_["TIME"] = TIME; | 
| 67 |  |  | 
| 68 | < | Stats::units_[TIME] = "fs"; | 
| 69 | < | Stats::units_[TOTAL_ENERGY] = "kcal/mol"; | 
| 70 | < | Stats::units_[POTENTIAL_ENERGY] = "kcal/mol"; | 
| 71 | < | Stats::units_[KINETIC_ENERGY] = "kcal/mol"; | 
| 72 | < | Stats::units_[TEMPERATURE] = "K"; | 
| 73 | < | Stats::units_[PRESSURE] = "atm"; | 
| 74 | < | Stats::units_[VOLUME] = "A^3"; | 
| 75 | < | Stats::units_[CONSERVED_QUANTITY] = "kcal/mol"; | 
| 76 | < | Stats::units_[TRANSLATIONAL_KINETIC] = "kcal/mol"; | 
| 77 | < | Stats::units_[ROTATIONAL_KINETIC] = "kcal/mol"; | 
| 78 | < | Stats::units_[LONG_RANGE_POTENTIAL] = "kcal/mol"; | 
| 79 | < | Stats::units_[SHORT_RANGE_POTENTIAL] = "kcal/mol"; | 
| 80 | < | Stats::units_[VANDERWAALS_POTENTIAL] = "kcal/mol"; | 
| 81 | < | Stats::units_[ELECTROSTATIC_POTENTIAL] = "kcal/mol"; | 
| 82 | < | Stats::units_[BOND_POTENTIAL] = "kcal/mol"; | 
| 108 | < | Stats::units_[BEND_POTENTIAL] = "kcal/mol"; | 
| 109 | < | Stats::units_[DIHEDRAL_POTENTIAL] = "kcal/mol"; | 
| 110 | < | Stats::units_[IMPROPER_POTENTIAL] = "kcal/mol"; | 
| 111 | < | Stats::units_[VRAW] = "kcal/mol"; | 
| 112 | < | Stats::units_[VHARM] = "kcal/mol"; | 
| 113 | < | Stats::units_[PRESSURE_TENSOR_X] = "amu*fs^-2*Ang^-1"; | 
| 114 | < | Stats::units_[PRESSURE_TENSOR_Y] = "amu*fs^-2*Ang^-1"; | 
| 115 | < | Stats::units_[PRESSURE_TENSOR_Z] = "amu*fs^-2*Ang^-1"; | 
| 68 | > | StatsData total_energy; | 
| 69 | > | total_energy.units =  "kcal/mol"; | 
| 70 | > | total_energy.title =  "Total Energy"; | 
| 71 | > | total_energy.dataType = "RealType"; | 
| 72 | > | total_energy.accumulator = new Accumulator(); | 
| 73 | > | data_[TOTAL_ENERGY] = total_energy; | 
| 74 | > | statsMap_["TOTAL_ENERGY"] =  TOTAL_ENERGY; | 
| 75 | > |  | 
| 76 | > | StatsData potential_energy; | 
| 77 | > | potential_energy.units =  "kcal/mol"; | 
| 78 | > | potential_energy.title =  "Potential Energy"; | 
| 79 | > | potential_energy.dataType = "RealType"; | 
| 80 | > | potential_energy.accumulator = new Accumulator(); | 
| 81 | > | data_[POTENTIAL_ENERGY] = potential_energy; | 
| 82 | > | statsMap_["POTENTIAL_ENERGY"] =  POTENTIAL_ENERGY; | 
| 83 |  |  | 
| 84 | < | Stats::statsMap.insert(StatsMapType::value_type("TIME", TIME)); | 
| 85 | < | Stats::statsMap.insert(StatsMapType::value_type("TOTAL_ENERGY", TOTAL_ENERGY)); | 
| 86 | < | Stats::statsMap.insert(StatsMapType::value_type("POTENTIAL_ENERGY", POTENTIAL_ENERGY)); | 
| 87 | < | Stats::statsMap.insert(StatsMapType::value_type("KINETIC_ENERGY", KINETIC_ENERGY)); | 
| 88 | < | Stats::statsMap.insert(StatsMapType::value_type("TEMPERATURE", TEMPERATURE)); | 
| 89 | < | Stats::statsMap.insert(StatsMapType::value_type("PRESSURE", PRESSURE)); | 
| 90 | < | Stats::statsMap.insert(StatsMapType::value_type("VOLUME", VOLUME)); | 
| 91 | < | Stats::statsMap.insert(StatsMapType::value_type("CONSERVED_QUANTITY", CONSERVED_QUANTITY)); | 
| 92 | < | Stats::statsMap.insert(StatsMapType::value_type("TRANSLATIONAL_KINETIC", TRANSLATIONAL_KINETIC)); | 
| 93 | < | Stats::statsMap.insert(StatsMapType::value_type("ROTATIONAL_KINETIC", ROTATIONAL_KINETIC)); | 
| 94 | < | Stats::statsMap.insert(StatsMapType::value_type("LONG_RANGE_POTENTIAL", LONG_RANGE_POTENTIAL)); | 
| 95 | < | Stats::statsMap.insert(StatsMapType::value_type("SHORT_RANGE_POTENTIAL", SHORT_RANGE_POTENTIAL)); | 
| 96 | < | Stats::statsMap.insert(StatsMapType::value_type("VANDERWAALS_POTENTIAL", VANDERWAALS_POTENTIAL)); | 
| 97 | < | Stats::statsMap.insert(StatsMapType::value_type("ELECTROSTATIC_POTENTIAL", ELECTROSTATIC_POTENTIAL)); | 
| 98 | < | Stats::statsMap.insert(StatsMapType::value_type("BOND_POTENTIAL", BOND_POTENTIAL)); | 
| 99 | < | Stats::statsMap.insert(StatsMapType::value_type("BEND_POTENTIAL", BEND_POTENTIAL)); | 
| 100 | < | Stats::statsMap.insert(StatsMapType::value_type("DIHEDRAL_POTENTIAL", DIHEDRAL_POTENTIAL)); | 
| 101 | < | Stats::statsMap.insert(StatsMapType::value_type("IMPROPER_POTENTIAL", IMPROPER_POTENTIAL)); | 
| 102 | < | Stats::statsMap.insert(StatsMapType::value_type("VRAW", VRAW)); | 
| 103 | < | Stats::statsMap.insert(StatsMapType::value_type("VHARM", VHARM)); | 
| 104 | < | Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_X", PRESSURE_TENSOR_X)); | 
| 105 | < | Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_Y", PRESSURE_TENSOR_Y)); | 
| 106 | < | Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_Z", PRESSURE_TENSOR_Z)); | 
| 84 | > | StatsData kinetic_energy; | 
| 85 | > | kinetic_energy.units =  "kcal/mol"; | 
| 86 | > | kinetic_energy.title =  "Kinetic Energy"; | 
| 87 | > | kinetic_energy.dataType = "RealType"; | 
| 88 | > | kinetic_energy.accumulator = new Accumulator(); | 
| 89 | > | data_[KINETIC_ENERGY] = kinetic_energy; | 
| 90 | > | statsMap_["KINETIC_ENERGY"] =  KINETIC_ENERGY; | 
| 91 | > |  | 
| 92 | > | StatsData temperature; | 
| 93 | > | temperature.units =  "K"; | 
| 94 | > | temperature.title =  "Temperature"; | 
| 95 | > | temperature.dataType = "RealType"; | 
| 96 | > | temperature.accumulator = new Accumulator(); | 
| 97 | > | data_[TEMPERATURE] = temperature; | 
| 98 | > | statsMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 99 | > |  | 
| 100 | > | StatsData pressure; | 
| 101 | > | pressure.units =  "atm"; | 
| 102 | > | pressure.title =  "Pressure"; | 
| 103 | > | pressure.dataType = "RealType"; | 
| 104 | > | pressure.accumulator = new Accumulator(); | 
| 105 | > | data_[PRESSURE] = pressure; | 
| 106 | > | statsMap_["PRESSURE"] =  PRESSURE; | 
| 107 | > |  | 
| 108 | > | StatsData volume; | 
| 109 | > | volume.units =  "A^3"; | 
| 110 | > | volume.title =  "Volume"; | 
| 111 | > | volume.dataType = "RealType"; | 
| 112 | > | volume.accumulator = new Accumulator(); | 
| 113 | > | data_[VOLUME] = volume; | 
| 114 | > | statsMap_["VOLUME"] =  VOLUME; | 
| 115 | > |  | 
| 116 | > | StatsData hullvolume; | 
| 117 | > | hullvolume.units =  "A^3"; | 
| 118 | > | hullvolume.title =  "Hull Volume"; | 
| 119 | > | hullvolume.dataType = "RealType"; | 
| 120 | > | hullvolume.accumulator = new Accumulator(); | 
| 121 | > | data_[HULLVOLUME] = hullvolume; | 
| 122 | > | statsMap_["HULLVOLUME"] =  HULLVOLUME; | 
| 123 | > |  | 
| 124 | > | StatsData gyrvolume; | 
| 125 | > | gyrvolume.units =  "A^3"; | 
| 126 | > | gyrvolume.title =  "Gyrational Volume"; | 
| 127 | > | gyrvolume.dataType = "RealType"; | 
| 128 | > | gyrvolume.accumulator = new Accumulator(); | 
| 129 | > | data_[GYRVOLUME] = gyrvolume; | 
| 130 | > | statsMap_["GYRVOLUME"] =  GYRVOLUME; | 
| 131 | > |  | 
| 132 | > | StatsData conserved_quantity; | 
| 133 | > | conserved_quantity.units =  "kcal/mol"; | 
| 134 | > | conserved_quantity.title =  "Conserved Quantity"; | 
| 135 | > | conserved_quantity.dataType = "RealType"; | 
| 136 | > | conserved_quantity.accumulator = new Accumulator(); | 
| 137 | > | data_[CONSERVED_QUANTITY] = conserved_quantity; | 
| 138 | > | statsMap_["CONSERVED_QUANTITY"] =  CONSERVED_QUANTITY; | 
| 139 | > |  | 
| 140 | > | StatsData translational_kinetic; | 
| 141 | > | translational_kinetic.units =  "kcal/mol"; | 
| 142 | > | translational_kinetic.title =  "Translational Kinetic"; | 
| 143 | > | translational_kinetic.dataType = "RealType"; | 
| 144 | > | translational_kinetic.accumulator = new Accumulator(); | 
| 145 | > | data_[TRANSLATIONAL_KINETIC] = translational_kinetic; | 
| 146 | > | statsMap_["TRANSLATIONAL_KINETIC"] =  TRANSLATIONAL_KINETIC; | 
| 147 | > |  | 
| 148 | > | StatsData rotational_kinetic; | 
| 149 | > | rotational_kinetic.units =  "kcal/mol"; | 
| 150 | > | rotational_kinetic.title =  "Rotational Kinetic"; | 
| 151 | > | rotational_kinetic.dataType = "RealType"; | 
| 152 | > | rotational_kinetic.accumulator = new Accumulator(); | 
| 153 | > | data_[ROTATIONAL_KINETIC] = rotational_kinetic; | 
| 154 | > | statsMap_["ROTATIONAL_KINETIC"] =  ROTATIONAL_KINETIC; | 
| 155 | > |  | 
| 156 | > | StatsData long_range_potential; | 
| 157 | > | long_range_potential.units =  "kcal/mol"; | 
| 158 | > | long_range_potential.title =  "Long Range Potential"; | 
| 159 | > | long_range_potential.dataType = "RealType"; | 
| 160 | > | long_range_potential.accumulator = new Accumulator(); | 
| 161 | > | data_[LONG_RANGE_POTENTIAL] = long_range_potential; | 
| 162 | > | statsMap_["LONG_RANGE_POTENTIAL"] =  LONG_RANGE_POTENTIAL; | 
| 163 | > |  | 
| 164 | > | StatsData vanderwaals_potential; | 
| 165 | > | vanderwaals_potential.units =  "kcal/mol"; | 
| 166 | > | vanderwaals_potential.title =  "van der waals Potential"; | 
| 167 | > | vanderwaals_potential.dataType = "RealType"; | 
| 168 | > | vanderwaals_potential.accumulator = new Accumulator(); | 
| 169 | > | data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential; | 
| 170 | > | statsMap_["VANDERWAALS_POTENTIAL"] =  VANDERWAALS_POTENTIAL; | 
| 171 | > |  | 
| 172 | > | StatsData electrostatic_potential; | 
| 173 | > | electrostatic_potential.units =  "kcal/mol"; | 
| 174 | > | electrostatic_potential.title =  "Electrostatic Potential"; | 
| 175 | > | electrostatic_potential.dataType = "RealType"; | 
| 176 | > | electrostatic_potential.accumulator = new Accumulator(); | 
| 177 | > | data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential; | 
| 178 | > | statsMap_["ELECTROSTATIC_POTENTIAL"] =  ELECTROSTATIC_POTENTIAL; | 
| 179 | > |  | 
| 180 | > | StatsData metallic_potential; | 
| 181 | > | metallic_potential.units =  "kcal/mol"; | 
| 182 | > | metallic_potential.title =  "Metallic Potential"; | 
| 183 | > | metallic_potential.dataType = "RealType"; | 
| 184 | > | metallic_potential.accumulator = new Accumulator(); | 
| 185 | > | data_[METALLIC_POTENTIAL] = metallic_potential; | 
| 186 | > | statsMap_["METALLIC_POTENTIAL"] =  METALLIC_POTENTIAL; | 
| 187 | > |  | 
| 188 | > | StatsData hydrogenbonding_potential; | 
| 189 | > | hydrogenbonding_potential.units =  "kcal/mol"; | 
| 190 | > | hydrogenbonding_potential.title =  "Hydrogen Bonding Potential"; | 
| 191 | > | hydrogenbonding_potential.dataType = "RealType"; | 
| 192 | > | hydrogenbonding_potential.accumulator = new Accumulator(); | 
| 193 | > | data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential; | 
| 194 | > | statsMap_["HYDROGENBONDING_POTENTIAL"] =  HYDROGENBONDING_POTENTIAL; | 
| 195 | > |  | 
| 196 | > | StatsData reciprocal_potential; | 
| 197 | > | reciprocal_potential.units =  "kcal/mol"; | 
| 198 | > | reciprocal_potential.title =  "Reciprocal Space Potential"; | 
| 199 | > | reciprocal_potential.dataType = "RealType"; | 
| 200 | > | reciprocal_potential.accumulator = new Accumulator(); | 
| 201 | > | data_[RECIPROCAL_POTENTIAL] = reciprocal_potential; | 
| 202 | > | statsMap_["RECIPROCAL_POTENTIAL"] =  RECIPROCAL_POTENTIAL; | 
| 203 | > |  | 
| 204 | > | StatsData short_range_potential; | 
| 205 | > | short_range_potential.units =  "kcal/mol"; | 
| 206 | > | short_range_potential.title =  "Short Range Potential"; | 
| 207 | > | short_range_potential.dataType = "RealType"; | 
| 208 | > | short_range_potential.accumulator = new Accumulator(); | 
| 209 | > | data_[SHORT_RANGE_POTENTIAL] = short_range_potential; | 
| 210 | > | statsMap_["SHORT_RANGE_POTENTIAL"] =  SHORT_RANGE_POTENTIAL; | 
| 211 | > |  | 
| 212 | > | StatsData bond_potential; | 
| 213 | > | bond_potential.units =  "kcal/mol"; | 
| 214 | > | bond_potential.title =  "Bond Potential"; | 
| 215 | > | bond_potential.dataType = "RealType"; | 
| 216 | > | bond_potential.accumulator = new Accumulator(); | 
| 217 | > | data_[BOND_POTENTIAL] = bond_potential; | 
| 218 | > | statsMap_["BOND_POTENTIAL"] =  BOND_POTENTIAL; | 
| 219 | > |  | 
| 220 | > | StatsData bend_potential; | 
| 221 | > | bend_potential.units =  "kcal/mol"; | 
| 222 | > | bend_potential.title =  "Bend Potential"; | 
| 223 | > | bend_potential.dataType = "RealType"; | 
| 224 | > | bend_potential.accumulator = new Accumulator(); | 
| 225 | > | data_[BEND_POTENTIAL] = bend_potential; | 
| 226 | > | statsMap_["BEND_POTENTIAL"] =  BEND_POTENTIAL; | 
| 227 | > |  | 
| 228 | > | StatsData dihedral_potential; | 
| 229 | > | dihedral_potential.units =  "kcal/mol"; | 
| 230 | > | dihedral_potential.title =  "Dihedral Potential"; | 
| 231 | > | dihedral_potential.dataType = "RealType"; | 
| 232 | > | dihedral_potential.accumulator = new Accumulator(); | 
| 233 | > | data_[DIHEDRAL_POTENTIAL] = dihedral_potential; | 
| 234 | > | statsMap_["DIHEDRAL_POTENTIAL"] =  DIHEDRAL_POTENTIAL; | 
| 235 | > |  | 
| 236 | > | StatsData inversion_potential; | 
| 237 | > | inversion_potential.units =  "kcal/mol"; | 
| 238 | > | inversion_potential.title =  "Inversion Potential"; | 
| 239 | > | inversion_potential.dataType = "RealType"; | 
| 240 | > | inversion_potential.accumulator = new Accumulator(); | 
| 241 | > | data_[INVERSION_POTENTIAL] = inversion_potential; | 
| 242 | > | statsMap_["INVERSION_POTENTIAL"] =  INVERSION_POTENTIAL; | 
| 243 | > |  | 
| 244 | > | StatsData vraw; | 
| 245 | > | vraw.units =  "kcal/mol"; | 
| 246 | > | vraw.title =  "Raw Potential"; | 
| 247 | > | vraw.dataType = "RealType"; | 
| 248 | > | vraw.accumulator = new Accumulator(); | 
| 249 | > | data_[RAW_POTENTIAL] = vraw; | 
| 250 | > | statsMap_["RAW_POTENTIAL"] =  RAW_POTENTIAL; | 
| 251 | > |  | 
| 252 | > | StatsData vrestraint; | 
| 253 | > | vrestraint.units =  "kcal/mol"; | 
| 254 | > | vrestraint.title =  "Restraint Potential"; | 
| 255 | > | vrestraint.dataType = "RealType"; | 
| 256 | > | vrestraint.accumulator = new Accumulator(); | 
| 257 | > | data_[RESTRAINT_POTENTIAL] = vrestraint; | 
| 258 | > | statsMap_["RESTRAINT_POTENTIAL"] =  RESTRAINT_POTENTIAL; | 
| 259 | > |  | 
| 260 | > | StatsData pressure_tensor; | 
| 261 | > | pressure_tensor.units =  "amu*fs^-2*Ang^-1"; | 
| 262 | > | pressure_tensor.title =  "Ptensor"; | 
| 263 | > | pressure_tensor.dataType = "Mat3x3d"; | 
| 264 | > | pressure_tensor.accumulator = new MatrixAccumulator(); | 
| 265 | > | data_[PRESSURE_TENSOR] = pressure_tensor; | 
| 266 | > | statsMap_["PRESSURE_TENSOR"] =  PRESSURE_TENSOR; | 
| 267 | > |  | 
| 268 | > | StatsData system_dipole; | 
| 269 | > | system_dipole.units =  "C*m"; | 
| 270 | > | system_dipole.title =  "System Dipole"; | 
| 271 | > | system_dipole.dataType = "Vector3d"; | 
| 272 | > | system_dipole.accumulator = new VectorAccumulator(); | 
| 273 | > | data_[SYSTEM_DIPOLE] = system_dipole; | 
| 274 | > | statsMap_["SYSTEM_DIPOLE"] =  SYSTEM_DIPOLE; | 
| 275 | > |  | 
| 276 | > | StatsData system_quadrupole; | 
| 277 | > | system_quadrupole.units =  "C*m*m"; | 
| 278 | > | system_quadrupole.title =  "System Quadrupole"; | 
| 279 | > | system_quadrupole.dataType = "Mat3x3d"; | 
| 280 | > | system_quadrupole.accumulator = new MatrixAccumulator(); | 
| 281 | > | data_[SYSTEM_QUADRUPOLE] = system_quadrupole; | 
| 282 | > | statsMap_["SYSTEM_QUADRUPOLE"] =  SYSTEM_QUADRUPOLE; | 
| 283 | > |  | 
| 284 | > | StatsData tagged_pair_distance; | 
| 285 | > | tagged_pair_distance.units =  "Ang"; | 
| 286 | > | tagged_pair_distance.title =  "Tagged_Pair_Distance"; | 
| 287 | > | tagged_pair_distance.dataType = "RealType"; | 
| 288 | > | tagged_pair_distance.accumulator = new Accumulator(); | 
| 289 | > | data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance; | 
| 290 | > | statsMap_["TAGGED_PAIR_DISTANCE"] =  TAGGED_PAIR_DISTANCE; | 
| 291 | > |  | 
| 292 | > | StatsData shadowh; | 
| 293 | > | shadowh.units =  "kcal/mol"; | 
| 294 | > | shadowh.title =  "Shadow Hamiltonian"; | 
| 295 | > | shadowh.dataType = "RealType"; | 
| 296 | > | shadowh.accumulator = new Accumulator(); | 
| 297 | > | data_[SHADOWH] = shadowh; | 
| 298 | > | statsMap_["SHADOWH"] =  SHADOWH; | 
| 299 | > |  | 
| 300 | > | StatsData helfandmoment; | 
| 301 | > | helfandmoment.units =  "Ang*kcal/mol"; | 
| 302 | > | helfandmoment.title =  "Thermal Helfand Moment"; | 
| 303 | > | helfandmoment.dataType = "Vector3d"; | 
| 304 | > | helfandmoment.accumulator = new VectorAccumulator(); | 
| 305 | > | data_[HELFANDMOMENT] = helfandmoment; | 
| 306 | > | statsMap_["HELFANDMOMENT"] = HELFANDMOMENT; | 
| 307 | > |  | 
| 308 | > | StatsData heatflux; | 
| 309 | > | heatflux.units = "amu/fs^3"; | 
| 310 | > | heatflux.title =  "Heat Flux"; | 
| 311 | > | heatflux.dataType = "Vector3d"; | 
| 312 | > | heatflux.accumulator = new VectorAccumulator(); | 
| 313 | > | data_[HEATFLUX] = heatflux; | 
| 314 | > | statsMap_["HEATFLUX"] = HEATFLUX; | 
| 315 | > |  | 
| 316 | > | StatsData electronic_temperature; | 
| 317 | > | electronic_temperature.units = "K"; | 
| 318 | > | electronic_temperature.title =  "Electronic Temperature"; | 
| 319 | > | electronic_temperature.dataType = "RealType"; | 
| 320 | > | electronic_temperature.accumulator = new Accumulator(); | 
| 321 | > | data_[ELECTRONIC_TEMPERATURE] = electronic_temperature; | 
| 322 | > | statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE; | 
| 323 | > |  | 
| 324 | > | StatsData com; | 
| 325 | > | com.units =  "A"; | 
| 326 | > | com.title =  "Center of Mass"; | 
| 327 | > | com.dataType = "Vector3d"; | 
| 328 | > | com.accumulator = new VectorAccumulator(); | 
| 329 | > | data_[COM] = com; | 
| 330 | > | statsMap_["COM"] =  COM; | 
| 331 | > |  | 
| 332 | > | StatsData comVel; | 
| 333 | > | comVel.units =  "A/fs"; | 
| 334 | > | comVel.title =  "Center of Mass Velocity"; | 
| 335 | > | comVel.dataType = "Vector3d"; | 
| 336 | > | comVel.accumulator = new VectorAccumulator(); | 
| 337 | > | data_[COM_VELOCITY] = comVel; | 
| 338 | > | statsMap_["COM_VELOCITY"] =  COM_VELOCITY; | 
| 339 | > |  | 
| 340 | > | StatsData angMom; | 
| 341 | > | angMom.units =  "amu A^2/fs"; | 
| 342 | > | angMom.title =  "Angular Momentum"; | 
| 343 | > | angMom.dataType = "Vector3d"; | 
| 344 | > | angMom.accumulator = new VectorAccumulator(); | 
| 345 | > | data_[ANGULAR_MOMENTUM] = angMom; | 
| 346 | > | statsMap_["ANGULAR_MOMENTUM"] =  ANGULAR_MOMENTUM; | 
| 347 | > |  | 
| 348 | > | // Now, set some defaults in the mask: | 
| 349 | > |  | 
| 350 | > | Globals* simParams = info_->getSimParams(); | 
| 351 | > | std::string statFileFormatString = simParams->getStatFileFormat(); | 
| 352 | > | parseStatFileFormat(statFileFormatString); | 
| 353 | > |  | 
| 354 | > | // if we're doing a thermodynamic integration, we'll want the raw | 
| 355 | > | // potential as well as the full potential: | 
| 356 | > |  | 
| 357 | > | if (simParams->getUseThermodynamicIntegration()) | 
| 358 | > | statsMask_.set(RAW_POTENTIAL); | 
| 359 | > |  | 
| 360 | > | // if we've got restraints turned on, we'll also want a report of the | 
| 361 | > | // total harmonic restraints | 
| 362 | > | if (simParams->getUseRestraints()){ | 
| 363 | > | statsMask_.set(RESTRAINT_POTENTIAL); | 
| 364 | > | } | 
| 365 | > |  | 
| 366 | > | if (simParams->havePrintPressureTensor() && | 
| 367 | > | simParams->getPrintPressureTensor()){ | 
| 368 | > | statsMask_.set(PRESSURE_TENSOR); | 
| 369 | > | } | 
| 370 | > |  | 
| 371 | > | // Why do we have both of these? | 
| 372 | > | if (simParams->getAccumulateBoxDipole()) { | 
| 373 | > | statsMask_.set(SYSTEM_DIPOLE); | 
| 374 | > | } | 
| 375 | > | if (info_->getCalcBoxDipole()){ | 
| 376 | > | statsMask_.set(SYSTEM_DIPOLE); | 
| 377 | > | } | 
| 378 | > |  | 
| 379 | > | // Why do we have both of these? | 
| 380 | > | if (simParams->getAccumulateBoxQuadrupole()) { | 
| 381 | > | statsMask_.set(SYSTEM_QUADRUPOLE); | 
| 382 | > | } | 
| 383 | > | if (info_->getCalcBoxQuadrupole()){ | 
| 384 | > | statsMask_.set(SYSTEM_QUADRUPOLE); | 
| 385 | > | } | 
| 386 | > |  | 
| 387 | > | if (simParams->havePrintHeatFlux()) { | 
| 388 | > | if (simParams->getPrintHeatFlux()){ | 
| 389 | > | statsMask_.set(HEATFLUX); | 
| 390 | > | } | 
| 391 | > | } | 
| 392 | > |  | 
| 393 | > |  | 
| 394 | > | if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) { | 
| 395 | > | if (simParams->getPrintTaggedPairDistance()) { | 
| 396 | > | statsMask_.set(TAGGED_PAIR_DISTANCE); | 
| 397 | > | } | 
| 398 | > | } | 
| 399 | > |  | 
| 400 |  | } | 
| 401 |  |  | 
| 402 | + | void Stats::parseStatFileFormat(const std::string& format) { | 
| 403 | + | StringTokenizer tokenizer(format, " ,;|\t\n\r"); | 
| 404 | + |  | 
| 405 | + | while(tokenizer.hasMoreTokens()) { | 
| 406 | + | std::string token(tokenizer.nextToken()); | 
| 407 | + | toUpper(token); | 
| 408 | + | StatsMapType::iterator i = statsMap_.find(token); | 
| 409 | + | if (i != statsMap_.end()) { | 
| 410 | + | statsMask_.set(i->second); | 
| 411 | + | } else { | 
| 412 | + | sprintf( painCave.errMsg, | 
| 413 | + | "Stats::parseStatFileFormat: %s is not a recognized\n" | 
| 414 | + | "\tstatFileFormat keyword.\n", token.c_str() ); | 
| 415 | + | painCave.isFatal = 0; | 
| 416 | + | painCave.severity = OPENMD_ERROR; | 
| 417 | + | simError(); | 
| 418 | + | } | 
| 419 | + | } | 
| 420 | + | } | 
| 421 | + |  | 
| 422 | + | Stats::~Stats() { | 
| 423 | + | data_.clear(); | 
| 424 | + | statsMap_.clear(); | 
| 425 | + | } | 
| 426 | + |  | 
| 427 | + | std::string Stats::getTitle(int index) { | 
| 428 | + | assert(index >=0 && index < ENDINDEX); | 
| 429 | + | return data_[index].title; | 
| 430 | + | } | 
| 431 | + |  | 
| 432 | + | std::string Stats::getUnits(int index) { | 
| 433 | + | assert(index >=0 && index < ENDINDEX); | 
| 434 | + | return data_[index].units; | 
| 435 | + | } | 
| 436 | + |  | 
| 437 | + | std::string Stats::getDataType(int index) { | 
| 438 | + | assert(index >=0 && index < ENDINDEX); | 
| 439 | + | return data_[index].dataType; | 
| 440 | + | } | 
| 441 | + |  | 
| 442 | + | void Stats::collectStats(){ | 
| 443 | + | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 444 | + | Thermo thermo(info_); | 
| 445 | + |  | 
| 446 | + | for (unsigned int i = 0; i < statsMask_.size(); ++i) { | 
| 447 | + | if (statsMask_[i]) { | 
| 448 | + | switch (i) { | 
| 449 | + | case TIME: | 
| 450 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime()); | 
| 451 | + | break; | 
| 452 | + | case KINETIC_ENERGY: | 
| 453 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic()); | 
| 454 | + | break; | 
| 455 | + | case POTENTIAL_ENERGY: | 
| 456 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential()); | 
| 457 | + | break; | 
| 458 | + | case TOTAL_ENERGY: | 
| 459 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy()); | 
| 460 | + | break; | 
| 461 | + | case TEMPERATURE: | 
| 462 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature()); | 
| 463 | + | break; | 
| 464 | + | case PRESSURE: | 
| 465 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure()); | 
| 466 | + | break; | 
| 467 | + | case VOLUME: | 
| 468 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume()); | 
| 469 | + | break; | 
| 470 | + | case CONSERVED_QUANTITY: | 
| 471 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity()); | 
| 472 | + | break; | 
| 473 | + | case PRESSURE_TENSOR: | 
| 474 | + | dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor()); | 
| 475 | + | break; | 
| 476 | + | case SYSTEM_DIPOLE: | 
| 477 | + | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole()); | 
| 478 | + | break; | 
| 479 | + | case SYSTEM_QUADRUPOLE: | 
| 480 | + | dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getSystemQuadrupole()); | 
| 481 | + | break; | 
| 482 | + | case HEATFLUX: | 
| 483 | + | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux()); | 
| 484 | + | break; | 
| 485 | + | case HULLVOLUME: | 
| 486 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume()); | 
| 487 | + | break; | 
| 488 | + | case GYRVOLUME: | 
| 489 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume()); | 
| 490 | + | break; | 
| 491 | + | case TRANSLATIONAL_KINETIC: | 
| 492 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic()); | 
| 493 | + | break; | 
| 494 | + | case ROTATIONAL_KINETIC: | 
| 495 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic()); | 
| 496 | + | break; | 
| 497 | + | case LONG_RANGE_POTENTIAL: | 
| 498 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential()); | 
| 499 | + | break; | 
| 500 | + | case VANDERWAALS_POTENTIAL: | 
| 501 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]); | 
| 502 | + | break; | 
| 503 | + | case ELECTROSTATIC_POTENTIAL: | 
| 504 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]); | 
| 505 | + | break; | 
| 506 | + | case METALLIC_POTENTIAL: | 
| 507 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]); | 
| 508 | + | break; | 
| 509 | + | case HYDROGENBONDING_POTENTIAL: | 
| 510 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]); | 
| 511 | + | break; | 
| 512 | + | case RECIPROCAL_POTENTIAL: | 
| 513 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getReciprocalPotential()); | 
| 514 | + | break; | 
| 515 | + | case SHORT_RANGE_POTENTIAL: | 
| 516 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential()); | 
| 517 | + | break; | 
| 518 | + | case BOND_POTENTIAL: | 
| 519 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential()); | 
| 520 | + | break; | 
| 521 | + | case BEND_POTENTIAL: | 
| 522 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential()); | 
| 523 | + | break; | 
| 524 | + | case DIHEDRAL_POTENTIAL: | 
| 525 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential()); | 
| 526 | + | break; | 
| 527 | + | case INVERSION_POTENTIAL: | 
| 528 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential()); | 
| 529 | + | break; | 
| 530 | + | case RAW_POTENTIAL: | 
| 531 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential()); | 
| 532 | + | break; | 
| 533 | + | case RESTRAINT_POTENTIAL: | 
| 534 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential()); | 
| 535 | + | break; | 
| 536 | + | case TAGGED_PAIR_DISTANCE: | 
| 537 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance()); | 
| 538 | + | break; | 
| 539 | + | case ELECTRONIC_TEMPERATURE: | 
| 540 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature()); | 
| 541 | + | break; | 
| 542 | + | case COM: | 
| 543 | + | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom()); | 
| 544 | + | break; | 
| 545 | + | case COM_VELOCITY: | 
| 546 | + | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel()); | 
| 547 | + | break; | 
| 548 | + | case ANGULAR_MOMENTUM: | 
| 549 | + | dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum()); | 
| 550 | + | break; | 
| 551 | + | /* | 
| 552 | + | case SHADOWH: | 
| 553 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian()); | 
| 554 | + | break; | 
| 555 | + | case HELFANDMOMENT: | 
| 556 | + | dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment()); | 
| 557 | + | break; | 
| 558 | + | */ | 
| 559 | + | } | 
| 560 | + | } | 
| 561 | + | } | 
| 562 | + | } | 
| 563 | + |  | 
| 564 | + | int Stats::getIntData(int index) { | 
| 565 | + | assert(index >=0 && index < ENDINDEX); | 
| 566 | + | RealType value; | 
| 567 | + | dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 568 | + | return (int) value; | 
| 569 | + | } | 
| 570 | + | RealType Stats::getRealData(int index) { | 
| 571 | + | assert(index >=0 && index < ENDINDEX); | 
| 572 | + | RealType value(0.0); | 
| 573 | + | dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); | 
| 574 | + | return value; | 
| 575 | + | } | 
| 576 | + | Vector3d Stats::getVectorData(int index) { | 
| 577 | + | assert(index >=0 && index < ENDINDEX); | 
| 578 | + | Vector3d value; | 
| 579 | + | dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 580 | + | return value; | 
| 581 | + | } | 
| 582 | + | Mat3x3d Stats::getMatrixData(int index) { | 
| 583 | + | assert(index >=0 && index < ENDINDEX); | 
| 584 | + | Mat3x3d value; | 
| 585 | + | dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value); | 
| 586 | + | return value; | 
| 587 | + | } | 
| 588 | + |  | 
| 589 | + | Stats::StatsBitSet Stats::getStatsMask() { | 
| 590 | + | return statsMask_; | 
| 591 | + | } | 
| 592 | + | Stats::StatsMapType Stats::getStatsMap() { | 
| 593 | + | return statsMap_; | 
| 594 | + | } | 
| 595 | + | void Stats::setStatsMask(Stats::StatsBitSet mask) { | 
| 596 | + | statsMask_ = mask; | 
| 597 | + | } | 
| 598 | + |  | 
| 599 |  | } |