| 1 |
gezelter |
507 |
/* |
| 2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
gezelter |
1390 |
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
gezelter |
246 |
*/ |
| 41 |
|
|
|
| 42 |
gezelter |
2 |
#include <math.h> |
| 43 |
|
|
#include <iostream> |
| 44 |
|
|
|
| 45 |
|
|
#ifdef IS_MPI |
| 46 |
|
|
#include <mpi.h> |
| 47 |
|
|
#endif //is_mpi |
| 48 |
|
|
|
| 49 |
tim |
3 |
#include "brains/Thermo.hpp" |
| 50 |
gezelter |
246 |
#include "primitives/Molecule.hpp" |
| 51 |
tim |
3 |
#include "utils/simError.h" |
| 52 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
| 53 |
gezelter |
2 |
|
| 54 |
gezelter |
1390 |
namespace OpenMD { |
| 55 |
gezelter |
2 |
|
| 56 |
tim |
963 |
RealType Thermo::getKinetic() { |
| 57 |
gezelter |
246 |
SimInfo::MoleculeIterator miter; |
| 58 |
|
|
std::vector<StuntDouble*>::iterator iiter; |
| 59 |
|
|
Molecule* mol; |
| 60 |
|
|
StuntDouble* integrableObject; |
| 61 |
|
|
Vector3d vel; |
| 62 |
|
|
Vector3d angMom; |
| 63 |
|
|
Mat3x3d I; |
| 64 |
|
|
int i; |
| 65 |
|
|
int j; |
| 66 |
|
|
int k; |
| 67 |
chrisfen |
998 |
RealType mass; |
| 68 |
tim |
963 |
RealType kinetic = 0.0; |
| 69 |
|
|
RealType kinetic_global = 0.0; |
| 70 |
gezelter |
246 |
|
| 71 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
| 72 |
gezelter |
507 |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
| 73 |
|
|
integrableObject = mol->nextIntegrableObject(iiter)) { |
| 74 |
gezelter |
945 |
|
| 75 |
chrisfen |
998 |
mass = integrableObject->getMass(); |
| 76 |
|
|
vel = integrableObject->getVel(); |
| 77 |
gezelter |
945 |
|
| 78 |
gezelter |
507 |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
| 79 |
gezelter |
945 |
|
| 80 |
gezelter |
507 |
if (integrableObject->isDirectional()) { |
| 81 |
|
|
angMom = integrableObject->getJ(); |
| 82 |
|
|
I = integrableObject->getI(); |
| 83 |
gezelter |
2 |
|
| 84 |
gezelter |
507 |
if (integrableObject->isLinear()) { |
| 85 |
|
|
i = integrableObject->linearAxis(); |
| 86 |
|
|
j = (i + 1) % 3; |
| 87 |
|
|
k = (i + 2) % 3; |
| 88 |
|
|
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
| 89 |
|
|
} else { |
| 90 |
|
|
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
| 91 |
|
|
+ angMom[2]*angMom[2]/I(2, 2); |
| 92 |
|
|
} |
| 93 |
|
|
} |
| 94 |
gezelter |
246 |
|
| 95 |
gezelter |
507 |
} |
| 96 |
gezelter |
246 |
} |
| 97 |
|
|
|
| 98 |
|
|
#ifdef IS_MPI |
| 99 |
gezelter |
2 |
|
| 100 |
tim |
963 |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
| 101 |
gezelter |
246 |
MPI_COMM_WORLD); |
| 102 |
|
|
kinetic = kinetic_global; |
| 103 |
gezelter |
2 |
|
| 104 |
gezelter |
246 |
#endif //is_mpi |
| 105 |
gezelter |
2 |
|
| 106 |
gezelter |
1390 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
| 107 |
gezelter |
2 |
|
| 108 |
gezelter |
246 |
return kinetic; |
| 109 |
gezelter |
507 |
} |
| 110 |
gezelter |
2 |
|
| 111 |
tim |
963 |
RealType Thermo::getPotential() { |
| 112 |
|
|
RealType potential = 0.0; |
| 113 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 114 |
tim |
963 |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
| 115 |
gezelter |
2 |
|
| 116 |
gezelter |
246 |
// Get total potential for entire system from MPI. |
| 117 |
gezelter |
2 |
|
| 118 |
gezelter |
246 |
#ifdef IS_MPI |
| 119 |
gezelter |
2 |
|
| 120 |
tim |
963 |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
| 121 |
gezelter |
246 |
MPI_COMM_WORLD); |
| 122 |
tim |
833 |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
| 123 |
gezelter |
2 |
|
| 124 |
gezelter |
246 |
#else |
| 125 |
gezelter |
2 |
|
| 126 |
tim |
833 |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
| 127 |
gezelter |
2 |
|
| 128 |
|
|
#endif // is_mpi |
| 129 |
|
|
|
| 130 |
gezelter |
246 |
return potential; |
| 131 |
gezelter |
507 |
} |
| 132 |
gezelter |
2 |
|
| 133 |
tim |
963 |
RealType Thermo::getTotalE() { |
| 134 |
|
|
RealType total; |
| 135 |
gezelter |
2 |
|
| 136 |
gezelter |
246 |
total = this->getKinetic() + this->getPotential(); |
| 137 |
|
|
return total; |
| 138 |
gezelter |
507 |
} |
| 139 |
gezelter |
2 |
|
| 140 |
tim |
963 |
RealType Thermo::getTemperature() { |
| 141 |
gezelter |
246 |
|
| 142 |
gezelter |
1390 |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
| 143 |
gezelter |
246 |
return temperature; |
| 144 |
gezelter |
507 |
} |
| 145 |
gezelter |
2 |
|
| 146 |
tim |
963 |
RealType Thermo::getVolume() { |
| 147 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 148 |
|
|
return curSnapshot->getVolume(); |
| 149 |
gezelter |
507 |
} |
| 150 |
gezelter |
2 |
|
| 151 |
tim |
963 |
RealType Thermo::getPressure() { |
| 152 |
gezelter |
2 |
|
| 153 |
gezelter |
246 |
// Relies on the calculation of the full molecular pressure tensor |
| 154 |
gezelter |
2 |
|
| 155 |
|
|
|
| 156 |
gezelter |
246 |
Mat3x3d tensor; |
| 157 |
tim |
963 |
RealType pressure; |
| 158 |
gezelter |
2 |
|
| 159 |
gezelter |
246 |
tensor = getPressureTensor(); |
| 160 |
gezelter |
2 |
|
| 161 |
gezelter |
1390 |
pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
| 162 |
gezelter |
2 |
|
| 163 |
gezelter |
246 |
return pressure; |
| 164 |
gezelter |
507 |
} |
| 165 |
gezelter |
2 |
|
| 166 |
tim |
963 |
RealType Thermo::getPressure(int direction) { |
| 167 |
tim |
538 |
|
| 168 |
|
|
// Relies on the calculation of the full molecular pressure tensor |
| 169 |
|
|
|
| 170 |
|
|
|
| 171 |
|
|
Mat3x3d tensor; |
| 172 |
tim |
963 |
RealType pressure; |
| 173 |
tim |
538 |
|
| 174 |
|
|
tensor = getPressureTensor(); |
| 175 |
|
|
|
| 176 |
gezelter |
1390 |
pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); |
| 177 |
tim |
538 |
|
| 178 |
|
|
return pressure; |
| 179 |
|
|
} |
| 180 |
|
|
|
| 181 |
gezelter |
507 |
Mat3x3d Thermo::getPressureTensor() { |
| 182 |
gezelter |
246 |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
| 183 |
|
|
// routine derived via viral theorem description in: |
| 184 |
|
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
| 185 |
|
|
Mat3x3d pressureTensor; |
| 186 |
|
|
Mat3x3d p_local(0.0); |
| 187 |
|
|
Mat3x3d p_global(0.0); |
| 188 |
gezelter |
2 |
|
| 189 |
gezelter |
246 |
SimInfo::MoleculeIterator i; |
| 190 |
|
|
std::vector<StuntDouble*>::iterator j; |
| 191 |
|
|
Molecule* mol; |
| 192 |
|
|
StuntDouble* integrableObject; |
| 193 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 194 |
gezelter |
507 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 195 |
|
|
integrableObject = mol->nextIntegrableObject(j)) { |
| 196 |
gezelter |
2 |
|
| 197 |
tim |
963 |
RealType mass = integrableObject->getMass(); |
| 198 |
gezelter |
507 |
Vector3d vcom = integrableObject->getVel(); |
| 199 |
|
|
p_local += mass * outProduct(vcom, vcom); |
| 200 |
|
|
} |
| 201 |
gezelter |
246 |
} |
| 202 |
gezelter |
2 |
|
| 203 |
|
|
#ifdef IS_MPI |
| 204 |
tim |
963 |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 205 |
gezelter |
2 |
#else |
| 206 |
gezelter |
246 |
p_global = p_local; |
| 207 |
gezelter |
2 |
#endif // is_mpi |
| 208 |
|
|
|
| 209 |
tim |
963 |
RealType volume = this->getVolume(); |
| 210 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 211 |
|
|
Mat3x3d tau = curSnapshot->statData.getTau(); |
| 212 |
gezelter |
1126 |
|
| 213 |
gezelter |
1390 |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
| 214 |
chrisfen |
998 |
|
| 215 |
gezelter |
246 |
return pressureTensor; |
| 216 |
gezelter |
507 |
} |
| 217 |
gezelter |
2 |
|
| 218 |
chrisfen |
998 |
|
| 219 |
gezelter |
507 |
void Thermo::saveStat(){ |
| 220 |
gezelter |
246 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 221 |
|
|
Stats& stat = currSnapshot->statData; |
| 222 |
gezelter |
2 |
|
| 223 |
gezelter |
246 |
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
| 224 |
|
|
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
| 225 |
|
|
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
| 226 |
|
|
stat[Stats::TEMPERATURE] = getTemperature(); |
| 227 |
|
|
stat[Stats::PRESSURE] = getPressure(); |
| 228 |
|
|
stat[Stats::VOLUME] = getVolume(); |
| 229 |
gezelter |
2 |
|
| 230 |
tim |
541 |
Mat3x3d tensor =getPressureTensor(); |
| 231 |
gezelter |
1126 |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
| 232 |
|
|
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
| 233 |
|
|
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
| 234 |
|
|
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
| 235 |
|
|
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
| 236 |
|
|
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
| 237 |
|
|
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
| 238 |
|
|
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
| 239 |
|
|
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
| 240 |
tim |
541 |
|
| 241 |
|
|
|
| 242 |
gezelter |
1291 |
Globals* simParams = info_->getSimParams(); |
| 243 |
|
|
|
| 244 |
|
|
if (simParams->haveTaggedAtomPair() && |
| 245 |
|
|
simParams->havePrintTaggedPairDistance()) { |
| 246 |
|
|
if ( simParams->getPrintTaggedPairDistance()) { |
| 247 |
|
|
|
| 248 |
|
|
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
| 249 |
|
|
Vector3d pos1, pos2, rab; |
| 250 |
|
|
|
| 251 |
|
|
#ifdef IS_MPI |
| 252 |
gezelter |
1313 |
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
| 253 |
gezelter |
1291 |
|
| 254 |
chuckv |
1292 |
int mol1 = info_->getGlobalMolMembership(tap.first); |
| 255 |
|
|
int mol2 = info_->getGlobalMolMembership(tap.second); |
| 256 |
gezelter |
1313 |
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
| 257 |
|
|
|
| 258 |
gezelter |
1291 |
int proc1 = info_->getMolToProc(mol1); |
| 259 |
|
|
int proc2 = info_->getMolToProc(mol2); |
| 260 |
|
|
|
| 261 |
gezelter |
1313 |
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
| 262 |
|
|
|
| 263 |
chuckv |
1292 |
RealType data[3]; |
| 264 |
gezelter |
1291 |
if (proc1 == worldRank) { |
| 265 |
|
|
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
| 266 |
gezelter |
1313 |
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
| 267 |
gezelter |
1291 |
pos1 = sd1->getPos(); |
| 268 |
|
|
data[0] = pos1.x(); |
| 269 |
|
|
data[1] = pos1.y(); |
| 270 |
|
|
data[2] = pos1.z(); |
| 271 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
| 272 |
|
|
} else { |
| 273 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
| 274 |
|
|
pos1 = Vector3d(data); |
| 275 |
|
|
} |
| 276 |
chuckv |
1292 |
|
| 277 |
|
|
|
| 278 |
gezelter |
1291 |
if (proc2 == worldRank) { |
| 279 |
|
|
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
| 280 |
gezelter |
1313 |
std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; |
| 281 |
gezelter |
1291 |
pos2 = sd2->getPos(); |
| 282 |
|
|
data[0] = pos2.x(); |
| 283 |
|
|
data[1] = pos2.y(); |
| 284 |
|
|
data[2] = pos2.z(); |
| 285 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
| 286 |
|
|
} else { |
| 287 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
| 288 |
|
|
pos2 = Vector3d(data); |
| 289 |
|
|
} |
| 290 |
|
|
#else |
| 291 |
|
|
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
| 292 |
|
|
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
| 293 |
|
|
pos1 = at1->getPos(); |
| 294 |
|
|
pos2 = at2->getPos(); |
| 295 |
|
|
#endif |
| 296 |
|
|
rab = pos2 - pos1; |
| 297 |
|
|
currSnapshot->wrapVector(rab); |
| 298 |
|
|
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
| 299 |
|
|
} |
| 300 |
|
|
} |
| 301 |
|
|
|
| 302 |
gezelter |
246 |
/**@todo need refactorying*/ |
| 303 |
|
|
//Conserved Quantity is set by integrator and time is set by setTime |
| 304 |
gezelter |
2 |
|
| 305 |
gezelter |
507 |
} |
| 306 |
gezelter |
2 |
|
| 307 |
gezelter |
1390 |
} //end namespace OpenMD |