| 1 | gezelter | 507 | /* | 
| 2 | gezelter | 246 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 | gezelter | 1782 | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1879 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1782 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | gezelter | 246 | */ | 
| 42 | gezelter | 2 |  | 
| 43 |  |  | #ifdef IS_MPI | 
| 44 |  |  | #include <mpi.h> | 
| 45 |  |  | #endif //is_mpi | 
| 46 | gezelter | 1938 |  | 
| 47 |  |  | #include <math.h> | 
| 48 |  |  | #include <iostream> | 
| 49 | gezelter | 2 |  | 
| 50 | tim | 3 | #include "brains/Thermo.hpp" | 
| 51 | gezelter | 246 | #include "primitives/Molecule.hpp" | 
| 52 | tim | 3 | #include "utils/simError.h" | 
| 53 | gezelter | 1390 | #include "utils/PhysicalConstants.hpp" | 
| 54 | gezelter | 1782 | #include "types/FixedChargeAdapter.hpp" | 
| 55 |  |  | #include "types/FluctuatingChargeAdapter.hpp" | 
| 56 |  |  | #include "types/MultipoleAdapter.hpp" | 
| 57 |  |  | #ifdef HAVE_QHULL | 
| 58 |  |  | #include "math/ConvexHull.hpp" | 
| 59 |  |  | #include "math/AlphaHull.hpp" | 
| 60 |  |  | #endif | 
| 61 | gezelter | 2 |  | 
| 62 | gezelter | 1782 | using namespace std; | 
| 63 | gezelter | 1390 | namespace OpenMD { | 
| 64 | gezelter | 2 |  | 
| 65 | gezelter | 1782 | RealType Thermo::getTranslationalKinetic() { | 
| 66 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 67 | chuckv | 1666 |  | 
| 68 | gezelter | 1782 | if (!snap->hasTranslationalKineticEnergy) { | 
| 69 |  |  | SimInfo::MoleculeIterator miter; | 
| 70 |  |  | vector<StuntDouble*>::iterator iiter; | 
| 71 |  |  | Molecule* mol; | 
| 72 |  |  | StuntDouble* sd; | 
| 73 |  |  | Vector3d vel; | 
| 74 |  |  | RealType mass; | 
| 75 |  |  | RealType kinetic(0.0); | 
| 76 |  |  |  | 
| 77 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 78 |  |  | mol = info_->nextMolecule(miter)) { | 
| 79 |  |  |  | 
| 80 |  |  | for (sd = mol->beginIntegrableObject(iiter); sd != NULL; | 
| 81 |  |  | sd = mol->nextIntegrableObject(iiter)) { | 
| 82 |  |  |  | 
| 83 |  |  | mass = sd->getMass(); | 
| 84 |  |  | vel = sd->getVel(); | 
| 85 |  |  |  | 
| 86 |  |  | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 87 |  |  |  | 
| 88 |  |  | } | 
| 89 |  |  | } | 
| 90 |  |  |  | 
| 91 |  |  | #ifdef IS_MPI | 
| 92 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE, | 
| 93 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 94 | gezelter | 1782 | #endif | 
| 95 |  |  |  | 
| 96 |  |  | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 97 |  |  |  | 
| 98 |  |  |  | 
| 99 |  |  | snap->setTranslationalKineticEnergy(kinetic); | 
| 100 |  |  | } | 
| 101 |  |  | return snap->getTranslationalKineticEnergy(); | 
| 102 |  |  | } | 
| 103 | gezelter | 2 |  | 
| 104 | gezelter | 1782 | RealType Thermo::getRotationalKinetic() { | 
| 105 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 106 | chuckv | 1666 |  | 
| 107 | gezelter | 1782 | if (!snap->hasRotationalKineticEnergy) { | 
| 108 |  |  | SimInfo::MoleculeIterator miter; | 
| 109 |  |  | vector<StuntDouble*>::iterator iiter; | 
| 110 |  |  | Molecule* mol; | 
| 111 |  |  | StuntDouble* sd; | 
| 112 |  |  | Vector3d angMom; | 
| 113 |  |  | Mat3x3d I; | 
| 114 |  |  | int i, j, k; | 
| 115 |  |  | RealType kinetic(0.0); | 
| 116 |  |  |  | 
| 117 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 118 |  |  | mol = info_->nextMolecule(miter)) { | 
| 119 |  |  |  | 
| 120 |  |  | for (sd = mol->beginIntegrableObject(iiter); sd != NULL; | 
| 121 |  |  | sd = mol->nextIntegrableObject(iiter)) { | 
| 122 |  |  |  | 
| 123 |  |  | if (sd->isDirectional()) { | 
| 124 |  |  | angMom = sd->getJ(); | 
| 125 |  |  | I = sd->getI(); | 
| 126 |  |  |  | 
| 127 |  |  | if (sd->isLinear()) { | 
| 128 |  |  | i = sd->linearAxis(); | 
| 129 |  |  | j = (i + 1) % 3; | 
| 130 |  |  | k = (i + 2) % 3; | 
| 131 |  |  | kinetic += angMom[j] * angMom[j] / I(j, j) | 
| 132 |  |  | + angMom[k] * angMom[k] / I(k, k); | 
| 133 |  |  | } else { | 
| 134 |  |  | kinetic += angMom[0]*angMom[0]/I(0, 0) | 
| 135 |  |  | + angMom[1]*angMom[1]/I(1, 1) | 
| 136 |  |  | + angMom[2]*angMom[2]/I(2, 2); | 
| 137 |  |  | } | 
| 138 |  |  | } | 
| 139 |  |  | } | 
| 140 |  |  | } | 
| 141 |  |  |  | 
| 142 |  |  | #ifdef IS_MPI | 
| 143 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE, | 
| 144 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 145 | gezelter | 1782 | #endif | 
| 146 |  |  |  | 
| 147 |  |  | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 148 |  |  |  | 
| 149 |  |  | snap->setRotationalKineticEnergy(kinetic); | 
| 150 |  |  | } | 
| 151 |  |  | return snap->getRotationalKineticEnergy(); | 
| 152 |  |  | } | 
| 153 | chuckv | 1666 |  | 
| 154 | gezelter | 1782 |  | 
| 155 | chuckv | 1666 |  | 
| 156 | gezelter | 1782 | RealType Thermo::getKinetic() { | 
| 157 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 158 |  |  |  | 
| 159 |  |  | if (!snap->hasKineticEnergy) { | 
| 160 |  |  | RealType ke = getTranslationalKinetic() + getRotationalKinetic(); | 
| 161 |  |  | snap->setKineticEnergy(ke); | 
| 162 | chuckv | 1666 | } | 
| 163 | gezelter | 1782 | return snap->getKineticEnergy(); | 
| 164 | chuckv | 1666 | } | 
| 165 |  |  |  | 
| 166 | gezelter | 1782 | RealType Thermo::getPotential() { | 
| 167 | chuckv | 1666 |  | 
| 168 | gezelter | 1782 | // ForceManager computes the potential and stores it in the | 
| 169 |  |  | // Snapshot.  All we have to do is report it. | 
| 170 | gezelter | 2 |  | 
| 171 | gezelter | 1782 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 172 |  |  | return snap->getPotentialEnergy(); | 
| 173 |  |  | } | 
| 174 | gezelter | 2 |  | 
| 175 | gezelter | 1782 | RealType Thermo::getTotalEnergy() { | 
| 176 | gezelter | 2 |  | 
| 177 | gezelter | 1782 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 178 | gezelter | 2 |  | 
| 179 | gezelter | 1782 | if (!snap->hasTotalEnergy) { | 
| 180 |  |  | snap->setTotalEnergy(this->getKinetic() + this->getPotential()); | 
| 181 |  |  | } | 
| 182 |  |  |  | 
| 183 |  |  | return snap->getTotalEnergy(); | 
| 184 | gezelter | 507 | } | 
| 185 | gezelter | 2 |  | 
| 186 | gezelter | 1782 | RealType Thermo::getTemperature() { | 
| 187 | gezelter | 2 |  | 
| 188 | gezelter | 1782 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 189 | gezelter | 2 |  | 
| 190 | gezelter | 1782 | if (!snap->hasTemperature) { | 
| 191 | gezelter | 2 |  | 
| 192 | gezelter | 1782 | RealType temperature = ( 2.0 * this->getKinetic() ) | 
| 193 |  |  | / (info_->getNdf()* PhysicalConstants::kb ); | 
| 194 | gezelter | 2 |  | 
| 195 | gezelter | 1782 | snap->setTemperature(temperature); | 
| 196 |  |  | } | 
| 197 |  |  |  | 
| 198 |  |  | return snap->getTemperature(); | 
| 199 |  |  | } | 
| 200 | gezelter | 2 |  | 
| 201 | gezelter | 1782 | RealType Thermo::getElectronicTemperature() { | 
| 202 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 203 | gezelter | 2 |  | 
| 204 | gezelter | 1782 | if (!snap->hasElectronicTemperature) { | 
| 205 |  |  |  | 
| 206 |  |  | SimInfo::MoleculeIterator miter; | 
| 207 |  |  | vector<Atom*>::iterator iiter; | 
| 208 |  |  | Molecule* mol; | 
| 209 |  |  | Atom* atom; | 
| 210 |  |  | RealType cvel; | 
| 211 |  |  | RealType cmass; | 
| 212 |  |  | RealType kinetic(0.0); | 
| 213 |  |  | RealType eTemp; | 
| 214 |  |  |  | 
| 215 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 216 |  |  | mol = info_->nextMolecule(miter)) { | 
| 217 |  |  |  | 
| 218 |  |  | for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; | 
| 219 |  |  | atom = mol->nextFluctuatingCharge(iiter)) { | 
| 220 |  |  |  | 
| 221 |  |  | cmass = atom->getChargeMass(); | 
| 222 |  |  | cvel = atom->getFlucQVel(); | 
| 223 |  |  |  | 
| 224 |  |  | kinetic += cmass * cvel * cvel; | 
| 225 |  |  |  | 
| 226 |  |  | } | 
| 227 |  |  | } | 
| 228 |  |  |  | 
| 229 |  |  | #ifdef IS_MPI | 
| 230 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE, | 
| 231 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 232 | gezelter | 1782 | #endif | 
| 233 | gezelter | 2 |  | 
| 234 | gezelter | 1782 | kinetic *= 0.5; | 
| 235 |  |  | eTemp =  (2.0 * kinetic) / | 
| 236 | gezelter | 1879 | (info_->getNFluctuatingCharges() * PhysicalConstants::kb ); | 
| 237 | gezelter | 1782 |  | 
| 238 |  |  | snap->setElectronicTemperature(eTemp); | 
| 239 |  |  | } | 
| 240 |  |  |  | 
| 241 |  |  | return snap->getElectronicTemperature(); | 
| 242 | gezelter | 507 | } | 
| 243 | gezelter | 2 |  | 
| 244 |  |  |  | 
| 245 | gezelter | 1782 | RealType Thermo::getVolume() { | 
| 246 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 247 |  |  | return snap->getVolume(); | 
| 248 | gezelter | 507 | } | 
| 249 | gezelter | 2 |  | 
| 250 | gezelter | 1782 | RealType Thermo::getPressure() { | 
| 251 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 252 | chuckv | 1666 |  | 
| 253 | gezelter | 1782 | if (!snap->hasPressure) { | 
| 254 |  |  | // Relies on the calculation of the full molecular pressure tensor | 
| 255 |  |  |  | 
| 256 |  |  | Mat3x3d tensor; | 
| 257 |  |  | RealType pressure; | 
| 258 |  |  |  | 
| 259 |  |  | tensor = getPressureTensor(); | 
| 260 |  |  |  | 
| 261 |  |  | pressure = PhysicalConstants::pressureConvert * | 
| 262 |  |  | (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 263 |  |  |  | 
| 264 |  |  | snap->setPressure(pressure); | 
| 265 |  |  | } | 
| 266 |  |  |  | 
| 267 |  |  | return snap->getPressure(); | 
| 268 | gezelter | 507 | } | 
| 269 | gezelter | 2 |  | 
| 270 | gezelter | 1782 | Mat3x3d Thermo::getPressureTensor() { | 
| 271 |  |  | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 272 |  |  | // routine derived via viral theorem description in: | 
| 273 |  |  | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 274 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 275 |  |  |  | 
| 276 |  |  | if (!snap->hasPressureTensor) { | 
| 277 |  |  |  | 
| 278 |  |  | Mat3x3d pressureTensor; | 
| 279 |  |  | Mat3x3d p_tens(0.0); | 
| 280 |  |  | RealType mass; | 
| 281 |  |  | Vector3d vcom; | 
| 282 |  |  |  | 
| 283 |  |  | SimInfo::MoleculeIterator i; | 
| 284 |  |  | vector<StuntDouble*>::iterator j; | 
| 285 |  |  | Molecule* mol; | 
| 286 |  |  | StuntDouble* sd; | 
| 287 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 288 |  |  | mol = info_->nextMolecule(i)) { | 
| 289 |  |  |  | 
| 290 |  |  | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 291 |  |  | sd = mol->nextIntegrableObject(j)) { | 
| 292 |  |  |  | 
| 293 |  |  | mass = sd->getMass(); | 
| 294 |  |  | vcom = sd->getVel(); | 
| 295 |  |  | p_tens += mass * outProduct(vcom, vcom); | 
| 296 |  |  | } | 
| 297 |  |  | } | 
| 298 |  |  |  | 
| 299 |  |  | #ifdef IS_MPI | 
| 300 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9, | 
| 301 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 302 | gezelter | 1782 | #endif | 
| 303 |  |  |  | 
| 304 |  |  | RealType volume = this->getVolume(); | 
| 305 |  |  | Mat3x3d stressTensor = snap->getStressTensor(); | 
| 306 |  |  |  | 
| 307 |  |  | pressureTensor =  (p_tens + | 
| 308 |  |  | PhysicalConstants::energyConvert * stressTensor)/volume; | 
| 309 |  |  |  | 
| 310 |  |  | snap->setPressureTensor(pressureTensor); | 
| 311 |  |  | } | 
| 312 |  |  | return snap->getPressureTensor(); | 
| 313 | gezelter | 507 | } | 
| 314 | gezelter | 2 |  | 
| 315 |  |  |  | 
| 316 |  |  |  | 
| 317 |  |  |  | 
| 318 | gezelter | 1782 | Vector3d Thermo::getSystemDipole() { | 
| 319 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 320 | gezelter | 2 |  | 
| 321 | gezelter | 1782 | if (!snap->hasSystemDipole) { | 
| 322 |  |  | SimInfo::MoleculeIterator miter; | 
| 323 |  |  | vector<Atom*>::iterator aiter; | 
| 324 |  |  | Molecule* mol; | 
| 325 |  |  | Atom* atom; | 
| 326 |  |  | RealType charge; | 
| 327 |  |  | Vector3d ri(0.0); | 
| 328 |  |  | Vector3d dipoleVector(0.0); | 
| 329 |  |  | Vector3d nPos(0.0); | 
| 330 |  |  | Vector3d pPos(0.0); | 
| 331 |  |  | RealType nChg(0.0); | 
| 332 |  |  | RealType pChg(0.0); | 
| 333 |  |  | int nCount = 0; | 
| 334 |  |  | int pCount = 0; | 
| 335 |  |  |  | 
| 336 |  |  | RealType chargeToC = 1.60217733e-19; | 
| 337 |  |  | RealType angstromToM = 1.0e-10; | 
| 338 |  |  | RealType debyeToCm = 3.33564095198e-30; | 
| 339 |  |  |  | 
| 340 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 341 |  |  | mol = info_->nextMolecule(miter)) { | 
| 342 |  |  |  | 
| 343 |  |  | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 344 |  |  | atom = mol->nextAtom(aiter)) { | 
| 345 |  |  |  | 
| 346 |  |  | charge = 0.0; | 
| 347 |  |  |  | 
| 348 |  |  | FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); | 
| 349 |  |  | if ( fca.isFixedCharge() ) { | 
| 350 |  |  | charge = fca.getCharge(); | 
| 351 |  |  | } | 
| 352 |  |  |  | 
| 353 |  |  | FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); | 
| 354 |  |  | if ( fqa.isFluctuatingCharge() ) { | 
| 355 |  |  | charge += atom->getFlucQPos(); | 
| 356 |  |  | } | 
| 357 |  |  |  | 
| 358 |  |  | charge *= chargeToC; | 
| 359 |  |  |  | 
| 360 |  |  | ri = atom->getPos(); | 
| 361 |  |  | snap->wrapVector(ri); | 
| 362 |  |  | ri *= angstromToM; | 
| 363 |  |  |  | 
| 364 |  |  | if (charge < 0.0) { | 
| 365 |  |  | nPos += ri; | 
| 366 |  |  | nChg -= charge; | 
| 367 |  |  | nCount++; | 
| 368 |  |  | } else if (charge > 0.0) { | 
| 369 |  |  | pPos += ri; | 
| 370 |  |  | pChg += charge; | 
| 371 |  |  | pCount++; | 
| 372 |  |  | } | 
| 373 |  |  |  | 
| 374 | gezelter | 1879 | if (atom->isDipole()) { | 
| 375 |  |  | dipoleVector += atom->getDipole() * debyeToCm; | 
| 376 | gezelter | 1782 | } | 
| 377 |  |  | } | 
| 378 |  |  | } | 
| 379 |  |  |  | 
| 380 |  |  |  | 
| 381 |  |  | #ifdef IS_MPI | 
| 382 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE, | 
| 383 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 384 |  |  | MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE, | 
| 385 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 386 |  |  |  | 
| 387 |  |  | MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER, | 
| 388 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 389 |  |  | MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER, | 
| 390 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 391 |  |  |  | 
| 392 |  |  | MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3, | 
| 393 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 394 |  |  | MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3, | 
| 395 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 396 | gezelter | 2 |  | 
| 397 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(), | 
| 398 |  |  | 3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 399 | gezelter | 1782 | #endif | 
| 400 |  |  |  | 
| 401 |  |  | // first load the accumulated dipole moment (if dipoles were present) | 
| 402 |  |  | Vector3d boxDipole = dipoleVector; | 
| 403 |  |  | // now include the dipole moment due to charges | 
| 404 |  |  | // use the lesser of the positive and negative charge totals | 
| 405 |  |  | RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 406 |  |  |  | 
| 407 |  |  | // find the average positions | 
| 408 |  |  | if (pCount > 0 && nCount > 0 ) { | 
| 409 |  |  | pPos /= pCount; | 
| 410 |  |  | nPos /= nCount; | 
| 411 |  |  | } | 
| 412 |  |  |  | 
| 413 |  |  | // dipole is from the negative to the positive (physics notation) | 
| 414 |  |  | boxDipole += (pPos - nPos) * chg_value; | 
| 415 |  |  | snap->setSystemDipole(boxDipole); | 
| 416 |  |  | } | 
| 417 | tim | 538 |  | 
| 418 | gezelter | 1782 | return snap->getSystemDipole(); | 
| 419 |  |  | } | 
| 420 | tim | 538 |  | 
| 421 | gezelter | 2022 |  | 
| 422 |  |  | Mat3x3d Thermo::getSystemQuadrupole() { | 
| 423 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 424 |  |  |  | 
| 425 |  |  | if (!snap->hasSystemQuadrupole) { | 
| 426 |  |  | SimInfo::MoleculeIterator miter; | 
| 427 |  |  | vector<Atom*>::iterator aiter; | 
| 428 |  |  | Molecule* mol; | 
| 429 |  |  | Atom* atom; | 
| 430 |  |  | RealType charge; | 
| 431 |  |  | Vector3d ri(0.0); | 
| 432 |  |  | Vector3d dipole(0.0); | 
| 433 |  |  | Mat3x3d qpole(0.0); | 
| 434 |  |  |  | 
| 435 |  |  | RealType chargeToC = 1.60217733e-19; | 
| 436 |  |  | RealType angstromToM = 1.0e-10; | 
| 437 |  |  | RealType debyeToCm = 3.33564095198e-30; | 
| 438 |  |  |  | 
| 439 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 440 |  |  | mol = info_->nextMolecule(miter)) { | 
| 441 |  |  |  | 
| 442 |  |  | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 443 |  |  | atom = mol->nextAtom(aiter)) { | 
| 444 |  |  |  | 
| 445 |  |  | ri = atom->getPos(); | 
| 446 |  |  | snap->wrapVector(ri); | 
| 447 |  |  | ri *= angstromToM; | 
| 448 |  |  |  | 
| 449 |  |  | charge = 0.0; | 
| 450 |  |  |  | 
| 451 |  |  | FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); | 
| 452 |  |  | if ( fca.isFixedCharge() ) { | 
| 453 |  |  | charge = fca.getCharge(); | 
| 454 |  |  | } | 
| 455 |  |  |  | 
| 456 |  |  | FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); | 
| 457 |  |  | if ( fqa.isFluctuatingCharge() ) { | 
| 458 |  |  | charge += atom->getFlucQPos(); | 
| 459 |  |  | } | 
| 460 |  |  |  | 
| 461 |  |  | charge *= chargeToC; | 
| 462 |  |  |  | 
| 463 |  |  | qpole += 0.5 * charge * outProduct(ri, ri); | 
| 464 |  |  |  | 
| 465 |  |  | MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); | 
| 466 |  |  |  | 
| 467 |  |  | if ( ma.isDipole() ) { | 
| 468 |  |  | dipole = atom->getDipole() * debyeToCm; | 
| 469 |  |  | qpole += 0.5 * outProduct( dipole, ri ); | 
| 470 | gezelter | 2046 | qpole += 0.5 * outProduct( ri, dipole ); | 
| 471 | gezelter | 2022 | } | 
| 472 |  |  |  | 
| 473 |  |  | if ( ma.isQuadrupole() ) { | 
| 474 |  |  | qpole += atom->getQuadrupole() * debyeToCm * angstromToM; | 
| 475 |  |  | } | 
| 476 |  |  | } | 
| 477 |  |  | } | 
| 478 |  |  |  | 
| 479 |  |  | #ifdef IS_MPI | 
| 480 |  |  | MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(), | 
| 481 |  |  | 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 482 |  |  | #endif | 
| 483 |  |  |  | 
| 484 |  |  | snap->setSystemQuadrupole(qpole); | 
| 485 |  |  | } | 
| 486 |  |  |  | 
| 487 |  |  | return snap->getSystemQuadrupole(); | 
| 488 |  |  | } | 
| 489 |  |  |  | 
| 490 | gezelter | 1782 | // Returns the Heat Flux Vector for the system | 
| 491 |  |  | Vector3d Thermo::getHeatFlux(){ | 
| 492 |  |  | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 493 |  |  | SimInfo::MoleculeIterator miter; | 
| 494 |  |  | vector<StuntDouble*>::iterator iiter; | 
| 495 |  |  | Molecule* mol; | 
| 496 |  |  | StuntDouble* sd; | 
| 497 |  |  | RigidBody::AtomIterator ai; | 
| 498 |  |  | Atom* atom; | 
| 499 |  |  | Vector3d vel; | 
| 500 |  |  | Vector3d angMom; | 
| 501 |  |  | Mat3x3d I; | 
| 502 |  |  | int i; | 
| 503 |  |  | int j; | 
| 504 |  |  | int k; | 
| 505 |  |  | RealType mass; | 
| 506 | chuckv | 1666 |  | 
| 507 | gezelter | 1782 | Vector3d x_a; | 
| 508 |  |  | RealType kinetic; | 
| 509 |  |  | RealType potential; | 
| 510 |  |  | RealType eatom; | 
| 511 |  |  | // Convective portion of the heat flux | 
| 512 |  |  | Vector3d heatFluxJc = V3Zero; | 
| 513 | tim | 538 |  | 
| 514 | gezelter | 1782 | /* Calculate convective portion of the heat flux */ | 
| 515 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 516 |  |  | mol = info_->nextMolecule(miter)) { | 
| 517 |  |  |  | 
| 518 |  |  | for (sd = mol->beginIntegrableObject(iiter); | 
| 519 |  |  | sd != NULL; | 
| 520 |  |  | sd = mol->nextIntegrableObject(iiter)) { | 
| 521 |  |  |  | 
| 522 |  |  | mass = sd->getMass(); | 
| 523 |  |  | vel = sd->getVel(); | 
| 524 | tim | 538 |  | 
| 525 | gezelter | 1782 | kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 526 |  |  |  | 
| 527 |  |  | if (sd->isDirectional()) { | 
| 528 |  |  | angMom = sd->getJ(); | 
| 529 |  |  | I = sd->getI(); | 
| 530 | tim | 538 |  | 
| 531 | gezelter | 1782 | if (sd->isLinear()) { | 
| 532 |  |  | i = sd->linearAxis(); | 
| 533 |  |  | j = (i + 1) % 3; | 
| 534 |  |  | k = (i + 2) % 3; | 
| 535 |  |  | kinetic += angMom[j] * angMom[j] / I(j, j) | 
| 536 |  |  | + angMom[k] * angMom[k] / I(k, k); | 
| 537 |  |  | } else { | 
| 538 |  |  | kinetic += angMom[0]*angMom[0]/I(0, 0) | 
| 539 |  |  | + angMom[1]*angMom[1]/I(1, 1) | 
| 540 |  |  | + angMom[2]*angMom[2]/I(2, 2); | 
| 541 |  |  | } | 
| 542 |  |  | } | 
| 543 | tim | 538 |  | 
| 544 | gezelter | 1782 | potential = 0.0; | 
| 545 | gezelter | 2 |  | 
| 546 | gezelter | 1782 | if (sd->isRigidBody()) { | 
| 547 |  |  | RigidBody* rb = dynamic_cast<RigidBody*>(sd); | 
| 548 |  |  | for (atom = rb->beginAtom(ai); atom != NULL; | 
| 549 |  |  | atom = rb->nextAtom(ai)) { | 
| 550 |  |  | potential +=  atom->getParticlePot(); | 
| 551 |  |  | } | 
| 552 |  |  | } else { | 
| 553 |  |  | potential = sd->getParticlePot(); | 
| 554 |  |  | } | 
| 555 | gezelter | 2 |  | 
| 556 | gezelter | 1782 | potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 | 
| 557 |  |  | // The potential may not be a 1/2 factor | 
| 558 |  |  | eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2 | 
| 559 |  |  | heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 | 
| 560 |  |  | heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 | 
| 561 |  |  | heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 | 
| 562 | gezelter | 507 | } | 
| 563 | gezelter | 246 | } | 
| 564 | chuckv | 1666 |  | 
| 565 | gezelter | 1782 | /* The J_v vector is reduced in the forceManager so everyone has | 
| 566 |  |  | *  the global Jv. Jc is computed over the local atoms and must be | 
| 567 |  |  | *  reduced among all processors. | 
| 568 |  |  | */ | 
| 569 | gezelter | 2 | #ifdef IS_MPI | 
| 570 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE, | 
| 571 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 572 | gezelter | 1782 | #endif | 
| 573 |  |  |  | 
| 574 |  |  | // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 | 
| 575 | gezelter | 2 |  | 
| 576 | gezelter | 1782 | Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * | 
| 577 |  |  | PhysicalConstants::energyConvert; | 
| 578 |  |  |  | 
| 579 |  |  | // Correct for the fact the flux is 1/V (Jc + Jv) | 
| 580 |  |  | return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 | 
| 581 |  |  | } | 
| 582 | gezelter | 1126 |  | 
| 583 | chuckv | 1666 |  | 
| 584 | gezelter | 1782 | Vector3d Thermo::getComVel(){ | 
| 585 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 586 |  |  |  | 
| 587 |  |  | if (!snap->hasCOMvel) { | 
| 588 |  |  |  | 
| 589 |  |  | SimInfo::MoleculeIterator i; | 
| 590 |  |  | Molecule* mol; | 
| 591 |  |  |  | 
| 592 |  |  | Vector3d comVel(0.0); | 
| 593 |  |  | RealType totalMass(0.0); | 
| 594 |  |  |  | 
| 595 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 596 |  |  | mol = info_->nextMolecule(i)) { | 
| 597 |  |  | RealType mass = mol->getMass(); | 
| 598 |  |  | totalMass += mass; | 
| 599 |  |  | comVel += mass * mol->getComVel(); | 
| 600 |  |  | } | 
| 601 |  |  |  | 
| 602 |  |  | #ifdef IS_MPI | 
| 603 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE, | 
| 604 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 605 |  |  | MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3, | 
| 606 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 607 | gezelter | 1782 | #endif | 
| 608 |  |  |  | 
| 609 |  |  | comVel /= totalMass; | 
| 610 |  |  | snap->setCOMvel(comVel); | 
| 611 |  |  | } | 
| 612 |  |  | return snap->getCOMvel(); | 
| 613 | gezelter | 507 | } | 
| 614 | gezelter | 2 |  | 
| 615 | gezelter | 1782 | Vector3d Thermo::getCom(){ | 
| 616 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 617 | chrisfen | 998 |  | 
| 618 | gezelter | 1782 | if (!snap->hasCOM) { | 
| 619 |  |  |  | 
| 620 |  |  | SimInfo::MoleculeIterator i; | 
| 621 |  |  | Molecule* mol; | 
| 622 |  |  |  | 
| 623 |  |  | Vector3d com(0.0); | 
| 624 |  |  | RealType totalMass(0.0); | 
| 625 |  |  |  | 
| 626 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 627 |  |  | mol = info_->nextMolecule(i)) { | 
| 628 |  |  | RealType mass = mol->getMass(); | 
| 629 |  |  | totalMass += mass; | 
| 630 |  |  | com += mass * mol->getCom(); | 
| 631 |  |  | } | 
| 632 |  |  |  | 
| 633 |  |  | #ifdef IS_MPI | 
| 634 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE, | 
| 635 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 636 |  |  | MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3, | 
| 637 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 638 | gezelter | 1782 | #endif | 
| 639 |  |  |  | 
| 640 |  |  | com /= totalMass; | 
| 641 |  |  | snap->setCOM(com); | 
| 642 |  |  | } | 
| 643 |  |  | return snap->getCOM(); | 
| 644 |  |  | } | 
| 645 | chuckv | 1666 |  | 
| 646 | gezelter | 1782 | /** | 
| 647 |  |  | * Returns center of mass and center of mass velocity in one | 
| 648 |  |  | * function call. | 
| 649 |  |  | */ | 
| 650 |  |  | void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 651 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 652 | gezelter | 2 |  | 
| 653 | gezelter | 1782 | if (!(snap->hasCOM && snap->hasCOMvel)) { | 
| 654 | tim | 541 |  | 
| 655 | gezelter | 1782 | SimInfo::MoleculeIterator i; | 
| 656 |  |  | Molecule* mol; | 
| 657 |  |  |  | 
| 658 |  |  | RealType totalMass(0.0); | 
| 659 |  |  |  | 
| 660 |  |  | com = 0.0; | 
| 661 |  |  | comVel = 0.0; | 
| 662 |  |  |  | 
| 663 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 664 |  |  | mol = info_->nextMolecule(i)) { | 
| 665 |  |  | RealType mass = mol->getMass(); | 
| 666 |  |  | totalMass += mass; | 
| 667 |  |  | com += mass * mol->getCom(); | 
| 668 |  |  | comVel += mass * mol->getComVel(); | 
| 669 |  |  | } | 
| 670 |  |  |  | 
| 671 |  |  | #ifdef IS_MPI | 
| 672 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE, | 
| 673 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 674 |  |  | MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3, | 
| 675 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 676 |  |  | MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3, | 
| 677 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 678 | gezelter | 1782 | #endif | 
| 679 |  |  |  | 
| 680 |  |  | com /= totalMass; | 
| 681 |  |  | comVel /= totalMass; | 
| 682 |  |  | snap->setCOM(com); | 
| 683 |  |  | snap->setCOMvel(comVel); | 
| 684 |  |  | } | 
| 685 |  |  | com = snap->getCOM(); | 
| 686 |  |  | comVel = snap->getCOMvel(); | 
| 687 |  |  | return; | 
| 688 |  |  | } | 
| 689 |  |  |  | 
| 690 |  |  | /** | 
| 691 | gezelter | 1879 | * \brief Return inertia tensor for entire system and angular momentum | 
| 692 |  |  | *  Vector. | 
| 693 | gezelter | 1782 | * | 
| 694 |  |  | * | 
| 695 |  |  | * | 
| 696 |  |  | *    [  Ixx -Ixy  -Ixz ] | 
| 697 |  |  | * I =| -Iyx  Iyy  -Iyz | | 
| 698 |  |  | *    [ -Izx -Iyz   Izz ] | 
| 699 |  |  | */ | 
| 700 |  |  | void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, | 
| 701 |  |  | Vector3d &angularMomentum){ | 
| 702 |  |  |  | 
| 703 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 704 |  |  |  | 
| 705 |  |  | if (!(snap->hasInertiaTensor && snap->hasCOMw)) { | 
| 706 |  |  |  | 
| 707 |  |  | RealType xx = 0.0; | 
| 708 |  |  | RealType yy = 0.0; | 
| 709 |  |  | RealType zz = 0.0; | 
| 710 |  |  | RealType xy = 0.0; | 
| 711 |  |  | RealType xz = 0.0; | 
| 712 |  |  | RealType yz = 0.0; | 
| 713 |  |  | Vector3d com(0.0); | 
| 714 |  |  | Vector3d comVel(0.0); | 
| 715 |  |  |  | 
| 716 |  |  | getComAll(com, comVel); | 
| 717 |  |  |  | 
| 718 |  |  | SimInfo::MoleculeIterator i; | 
| 719 |  |  | Molecule* mol; | 
| 720 |  |  |  | 
| 721 |  |  | Vector3d thisq(0.0); | 
| 722 |  |  | Vector3d thisv(0.0); | 
| 723 |  |  |  | 
| 724 |  |  | RealType thisMass = 0.0; | 
| 725 |  |  |  | 
| 726 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 727 |  |  | mol = info_->nextMolecule(i)) { | 
| 728 |  |  |  | 
| 729 |  |  | thisq = mol->getCom()-com; | 
| 730 |  |  | thisv = mol->getComVel()-comVel; | 
| 731 |  |  | thisMass = mol->getMass(); | 
| 732 |  |  | // Compute moment of intertia coefficients. | 
| 733 |  |  | xx += thisq[0]*thisq[0]*thisMass; | 
| 734 |  |  | yy += thisq[1]*thisq[1]*thisMass; | 
| 735 |  |  | zz += thisq[2]*thisq[2]*thisMass; | 
| 736 |  |  |  | 
| 737 |  |  | // compute products of intertia | 
| 738 |  |  | xy += thisq[0]*thisq[1]*thisMass; | 
| 739 |  |  | xz += thisq[0]*thisq[2]*thisMass; | 
| 740 |  |  | yz += thisq[1]*thisq[2]*thisMass; | 
| 741 |  |  |  | 
| 742 |  |  | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 743 |  |  | } | 
| 744 |  |  |  | 
| 745 |  |  | inertiaTensor(0,0) = yy + zz; | 
| 746 |  |  | inertiaTensor(0,1) = -xy; | 
| 747 |  |  | inertiaTensor(0,2) = -xz; | 
| 748 |  |  | inertiaTensor(1,0) = -xy; | 
| 749 |  |  | inertiaTensor(1,1) = xx + zz; | 
| 750 |  |  | inertiaTensor(1,2) = -yz; | 
| 751 |  |  | inertiaTensor(2,0) = -xz; | 
| 752 |  |  | inertiaTensor(2,1) = -yz; | 
| 753 |  |  | inertiaTensor(2,2) = xx + yy; | 
| 754 |  |  |  | 
| 755 |  |  | #ifdef IS_MPI | 
| 756 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(), | 
| 757 |  |  | 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 758 |  |  | MPI_Allreduce(MPI_IN_PLACE, | 
| 759 |  |  | angularMomentum.getArrayPointer(), 3, | 
| 760 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 761 | gezelter | 1782 | #endif | 
| 762 |  |  |  | 
| 763 |  |  | snap->setCOMw(angularMomentum); | 
| 764 |  |  | snap->setInertiaTensor(inertiaTensor); | 
| 765 |  |  | } | 
| 766 |  |  |  | 
| 767 |  |  | angularMomentum = snap->getCOMw(); | 
| 768 |  |  | inertiaTensor = snap->getInertiaTensor(); | 
| 769 |  |  |  | 
| 770 |  |  | return; | 
| 771 |  |  | } | 
| 772 |  |  |  | 
| 773 | gezelter | 1879 |  | 
| 774 |  |  | Mat3x3d Thermo::getBoundingBox(){ | 
| 775 |  |  |  | 
| 776 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 777 |  |  |  | 
| 778 |  |  | if (!(snap->hasBoundingBox)) { | 
| 779 |  |  |  | 
| 780 |  |  | SimInfo::MoleculeIterator i; | 
| 781 |  |  | Molecule::RigidBodyIterator ri; | 
| 782 |  |  | Molecule::AtomIterator ai; | 
| 783 |  |  | Molecule* mol; | 
| 784 |  |  | RigidBody* rb; | 
| 785 |  |  | Atom* atom; | 
| 786 |  |  | Vector3d pos, bMax, bMin; | 
| 787 |  |  | int index = 0; | 
| 788 |  |  |  | 
| 789 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 790 |  |  | mol = info_->nextMolecule(i)) { | 
| 791 |  |  |  | 
| 792 |  |  | //change the positions of atoms which belong to the rigidbodies | 
| 793 |  |  | for (rb = mol->beginRigidBody(ri); rb != NULL; | 
| 794 |  |  | rb = mol->nextRigidBody(ri)) { | 
| 795 |  |  | rb->updateAtoms(); | 
| 796 |  |  | } | 
| 797 |  |  |  | 
| 798 |  |  | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 799 |  |  | atom = mol->nextAtom(ai)) { | 
| 800 |  |  |  | 
| 801 |  |  | pos = atom->getPos(); | 
| 802 |  |  |  | 
| 803 |  |  | if (index == 0) { | 
| 804 |  |  | bMax = pos; | 
| 805 |  |  | bMin = pos; | 
| 806 |  |  | } else { | 
| 807 |  |  | for (int i = 0; i < 3; i++) { | 
| 808 |  |  | bMax[i] = max(bMax[i], pos[i]); | 
| 809 |  |  | bMin[i] = min(bMin[i], pos[i]); | 
| 810 |  |  | } | 
| 811 |  |  | } | 
| 812 |  |  | index++; | 
| 813 |  |  | } | 
| 814 |  |  | } | 
| 815 |  |  |  | 
| 816 |  |  | #ifdef IS_MPI | 
| 817 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE, | 
| 818 |  |  | MPI_MAX, MPI_COMM_WORLD); | 
| 819 | gezelter | 1879 |  | 
| 820 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE, | 
| 821 |  |  | MPI_MIN, MPI_COMM_WORLD); | 
| 822 | gezelter | 1879 | #endif | 
| 823 |  |  | Mat3x3d bBox = Mat3x3d(0.0); | 
| 824 |  |  | for (int i = 0; i < 3; i++) { | 
| 825 |  |  | bBox(i,i) = bMax[i] - bMin[i]; | 
| 826 |  |  | } | 
| 827 |  |  | snap->setBoundingBox(bBox); | 
| 828 |  |  | } | 
| 829 |  |  |  | 
| 830 |  |  | return snap->getBoundingBox(); | 
| 831 |  |  | } | 
| 832 |  |  |  | 
| 833 |  |  |  | 
| 834 | gezelter | 1782 | // Returns the angular momentum of the system | 
| 835 |  |  | Vector3d Thermo::getAngularMomentum(){ | 
| 836 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 837 |  |  |  | 
| 838 |  |  | if (!snap->hasCOMw) { | 
| 839 |  |  |  | 
| 840 |  |  | Vector3d com(0.0); | 
| 841 |  |  | Vector3d comVel(0.0); | 
| 842 |  |  | Vector3d angularMomentum(0.0); | 
| 843 |  |  |  | 
| 844 |  |  | getComAll(com, comVel); | 
| 845 |  |  |  | 
| 846 |  |  | SimInfo::MoleculeIterator i; | 
| 847 |  |  | Molecule* mol; | 
| 848 |  |  |  | 
| 849 |  |  | Vector3d thisr(0.0); | 
| 850 |  |  | Vector3d thisp(0.0); | 
| 851 |  |  |  | 
| 852 |  |  | RealType thisMass; | 
| 853 |  |  |  | 
| 854 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 855 |  |  | mol = info_->nextMolecule(i)) { | 
| 856 |  |  | thisMass = mol->getMass(); | 
| 857 |  |  | thisr = mol->getCom() - com; | 
| 858 |  |  | thisp = (mol->getComVel() - comVel) * thisMass; | 
| 859 |  |  |  | 
| 860 |  |  | angularMomentum += cross( thisr, thisp ); | 
| 861 |  |  | } | 
| 862 |  |  |  | 
| 863 |  |  | #ifdef IS_MPI | 
| 864 | gezelter | 1969 | MPI_Allreduce(MPI_IN_PLACE, | 
| 865 |  |  | angularMomentum.getArrayPointer(), 3, | 
| 866 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 867 | gezelter | 1782 | #endif | 
| 868 |  |  |  | 
| 869 |  |  | snap->setCOMw(angularMomentum); | 
| 870 |  |  | } | 
| 871 |  |  |  | 
| 872 |  |  | return snap->getCOMw(); | 
| 873 |  |  | } | 
| 874 |  |  |  | 
| 875 |  |  |  | 
| 876 |  |  | /** | 
| 877 |  |  | * Returns the Volume of the system based on a ellipsoid with | 
| 878 |  |  | * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 879 |  |  | * where R_i are related to the principle inertia moments | 
| 880 |  |  | *  R_i = sqrt(C*I_i/N), this reduces to | 
| 881 |  |  | *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). | 
| 882 |  |  | * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 883 |  |  | */ | 
| 884 |  |  | RealType Thermo::getGyrationalVolume(){ | 
| 885 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 886 |  |  |  | 
| 887 |  |  | if (!snap->hasGyrationalVolume) { | 
| 888 |  |  |  | 
| 889 |  |  | Mat3x3d intTensor; | 
| 890 |  |  | RealType det; | 
| 891 |  |  | Vector3d dummyAngMom; | 
| 892 |  |  | RealType sysconstants; | 
| 893 |  |  | RealType geomCnst; | 
| 894 |  |  | RealType volume; | 
| 895 |  |  |  | 
| 896 |  |  | geomCnst = 3.0/2.0; | 
| 897 |  |  | /* Get the inertial tensor and angular momentum for free*/ | 
| 898 |  |  | getInertiaTensor(intTensor, dummyAngMom); | 
| 899 |  |  |  | 
| 900 |  |  | det = intTensor.determinant(); | 
| 901 |  |  | sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); | 
| 902 |  |  | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); | 
| 903 |  |  |  | 
| 904 |  |  | snap->setGyrationalVolume(volume); | 
| 905 |  |  | } | 
| 906 |  |  | return snap->getGyrationalVolume(); | 
| 907 |  |  | } | 
| 908 |  |  |  | 
| 909 |  |  | void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 910 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 911 |  |  |  | 
| 912 |  |  | if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { | 
| 913 |  |  |  | 
| 914 |  |  | Mat3x3d intTensor; | 
| 915 |  |  | Vector3d dummyAngMom; | 
| 916 |  |  | RealType sysconstants; | 
| 917 |  |  | RealType geomCnst; | 
| 918 |  |  |  | 
| 919 |  |  | geomCnst = 3.0/2.0; | 
| 920 |  |  | /* Get the inertia tensor and angular momentum for free*/ | 
| 921 |  |  | this->getInertiaTensor(intTensor, dummyAngMom); | 
| 922 |  |  |  | 
| 923 |  |  | detI = intTensor.determinant(); | 
| 924 |  |  | sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); | 
| 925 |  |  | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); | 
| 926 |  |  | snap->setGyrationalVolume(volume); | 
| 927 |  |  | } else { | 
| 928 |  |  | volume = snap->getGyrationalVolume(); | 
| 929 |  |  | detI = snap->getInertiaTensor().determinant(); | 
| 930 |  |  | } | 
| 931 |  |  | return; | 
| 932 |  |  | } | 
| 933 |  |  |  | 
| 934 |  |  | RealType Thermo::getTaggedAtomPairDistance(){ | 
| 935 |  |  | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 936 | gezelter | 1291 | Globals* simParams = info_->getSimParams(); | 
| 937 | gezelter | 1782 |  | 
| 938 |  |  | if (simParams->haveTaggedAtomPair() && | 
| 939 | gezelter | 1291 | simParams->havePrintTaggedPairDistance()) { | 
| 940 |  |  | if ( simParams->getPrintTaggedPairDistance()) { | 
| 941 | gezelter | 1782 |  | 
| 942 |  |  | pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 943 | gezelter | 1291 | Vector3d pos1, pos2, rab; | 
| 944 | gezelter | 1782 |  | 
| 945 |  |  | #ifdef IS_MPI | 
| 946 |  |  | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 947 |  |  | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 948 | gezelter | 1291 |  | 
| 949 |  |  | int proc1 = info_->getMolToProc(mol1); | 
| 950 |  |  | int proc2 = info_->getMolToProc(mol2); | 
| 951 |  |  |  | 
| 952 | gezelter | 1782 | RealType data[3]; | 
| 953 | gezelter | 1291 | if (proc1 == worldRank) { | 
| 954 |  |  | StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 955 |  |  | pos1 = sd1->getPos(); | 
| 956 |  |  | data[0] = pos1.x(); | 
| 957 |  |  | data[1] = pos1.y(); | 
| 958 | gezelter | 1782 | data[2] = pos1.z(); | 
| 959 | gezelter | 1969 | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 960 | gezelter | 1291 | } else { | 
| 961 | gezelter | 1969 | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 962 | gezelter | 1291 | pos1 = Vector3d(data); | 
| 963 |  |  | } | 
| 964 | chuckv | 1292 |  | 
| 965 | gezelter | 1291 | if (proc2 == worldRank) { | 
| 966 |  |  | StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 967 |  |  | pos2 = sd2->getPos(); | 
| 968 |  |  | data[0] = pos2.x(); | 
| 969 |  |  | data[1] = pos2.y(); | 
| 970 | gezelter | 1796 | data[2] = pos2.z(); | 
| 971 | gezelter | 1969 | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 972 | gezelter | 1291 | } else { | 
| 973 | gezelter | 1969 | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 974 | gezelter | 1291 | pos2 = Vector3d(data); | 
| 975 |  |  | } | 
| 976 |  |  | #else | 
| 977 |  |  | StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 978 |  |  | StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 979 |  |  | pos1 = at1->getPos(); | 
| 980 |  |  | pos2 = at2->getPos(); | 
| 981 | gezelter | 1782 | #endif | 
| 982 | gezelter | 1291 | rab = pos2 - pos1; | 
| 983 |  |  | currSnapshot->wrapVector(rab); | 
| 984 | gezelter | 1782 | return rab.length(); | 
| 985 | gezelter | 1291 | } | 
| 986 | gezelter | 1782 | return 0.0; | 
| 987 | gezelter | 1291 | } | 
| 988 | gezelter | 1782 | return 0.0; | 
| 989 | gezelter | 507 | } | 
| 990 | gezelter | 2 |  | 
| 991 | gezelter | 1782 | RealType Thermo::getHullVolume(){ | 
| 992 | gezelter | 1879 | #ifdef HAVE_QHULL | 
| 993 | gezelter | 1782 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 994 |  |  | if (!snap->hasHullVolume) { | 
| 995 |  |  | Hull* surfaceMesh_; | 
| 996 | gezelter | 1879 |  | 
| 997 | gezelter | 1782 | Globals* simParams = info_->getSimParams(); | 
| 998 |  |  | const std::string ht = simParams->getHULL_Method(); | 
| 999 |  |  |  | 
| 1000 |  |  | if (ht == "Convex") { | 
| 1001 |  |  | surfaceMesh_ = new ConvexHull(); | 
| 1002 |  |  | } else if (ht == "AlphaShape") { | 
| 1003 |  |  | surfaceMesh_ = new AlphaHull(simParams->getAlpha()); | 
| 1004 |  |  | } else { | 
| 1005 |  |  | return 0.0; | 
| 1006 |  |  | } | 
| 1007 |  |  |  | 
| 1008 |  |  | // Build a vector of stunt doubles to determine if they are | 
| 1009 |  |  | // surface atoms | 
| 1010 |  |  | std::vector<StuntDouble*> localSites_; | 
| 1011 |  |  | Molecule* mol; | 
| 1012 |  |  | StuntDouble* sd; | 
| 1013 |  |  | SimInfo::MoleculeIterator i; | 
| 1014 |  |  | Molecule::IntegrableObjectIterator  j; | 
| 1015 |  |  |  | 
| 1016 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 1017 |  |  | mol = info_->nextMolecule(i)) { | 
| 1018 |  |  | for (sd = mol->beginIntegrableObject(j); | 
| 1019 |  |  | sd != NULL; | 
| 1020 |  |  | sd = mol->nextIntegrableObject(j)) { | 
| 1021 |  |  | localSites_.push_back(sd); | 
| 1022 | jmichalk | 1604 | } | 
| 1023 | gezelter | 1782 | } | 
| 1024 |  |  |  | 
| 1025 |  |  | // Compute surface Mesh | 
| 1026 |  |  | surfaceMesh_->computeHull(localSites_); | 
| 1027 |  |  | snap->setHullVolume(surfaceMesh_->getVolume()); | 
| 1028 | gezelter | 1879 |  | 
| 1029 |  |  | delete surfaceMesh_; | 
| 1030 | jmichalk | 1604 | } | 
| 1031 | gezelter | 1879 |  | 
| 1032 | gezelter | 1782 | return snap->getHullVolume(); | 
| 1033 | chuckv | 1666 | #else | 
| 1034 | gezelter | 1782 | return 0.0; | 
| 1035 | chuckv | 1638 | #endif | 
| 1036 | gezelter | 1782 | } | 
| 1037 | gezelter | 1879 |  | 
| 1038 |  |  |  | 
| 1039 | gezelter | 1782 | } |