ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 2022 by gezelter, Fri Sep 26 22:22:28 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
41
42 #include <math.h>
43 #include <iostream>
42  
43   #ifdef IS_MPI
44   #include <mpi.h>
45   #endif //is_mpi
46 +
47 + #include <math.h>
48 + #include <iostream>
49  
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53   #include "utils/PhysicalConstants.hpp"
54 + #include "types/FixedChargeAdapter.hpp"
55 + #include "types/FluctuatingChargeAdapter.hpp"
56 + #include "types/MultipoleAdapter.hpp"
57 + #ifdef HAVE_QHULL
58 + #include "math/ConvexHull.hpp"
59 + #include "math/AlphaHull.hpp"
60 + #endif
61  
62 + using namespace std;
63   namespace OpenMD {
64  
65 <  RealType Thermo::getKinetic() {
66 <    SimInfo::MoleculeIterator miter;
67 <    std::vector<StuntDouble*>::iterator iiter;
68 <    Molecule* mol;
69 <    StuntDouble* integrableObject;    
70 <    Vector3d vel;
71 <    Vector3d angMom;
72 <    Mat3x3d I;
73 <    int i;
74 <    int j;
75 <    int k;
76 <    RealType mass;
77 <    RealType kinetic = 0.0;
78 <    RealType kinetic_global = 0.0;
70 <    
71 <    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73 <           integrableObject = mol->nextIntegrableObject(iiter)) {
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67 >
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79          
80 <        mass = integrableObject->getMass();
81 <        vel = integrableObject->getVel();
82 <        
83 <        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
84 <        
85 <        if (integrableObject->isDirectional()) {
86 <          angMom = integrableObject->getJ();
87 <          I = integrableObject->getI();
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
93 >                    MPI_SUM, MPI_COMM_WORLD);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 <          if (integrableObject->isLinear()) {
105 <            i = integrableObject->linearAxis();
106 <            j = (i + 1) % 3;
107 <            k = (i + 2) % 3;
108 <            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
109 <          } else {                        
110 <            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
111 <              + angMom[2]*angMom[2]/I(2, 2);
112 <          }
113 <        }
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106 >
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126              
127 +            if (sd->isLinear()) {
128 +              i = sd->linearAxis();
129 +              j = (i + 1) % 3;
130 +              k = (i + 2) % 3;
131 +              kinetic += angMom[j] * angMom[j] / I(j, j)
132 +                + angMom[k] * angMom[k] / I(k, k);
133 +            } else {                        
134 +              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 +                + angMom[1]*angMom[1]/I(1, 1)
136 +                + angMom[2]*angMom[2]/I(2, 2);
137 +            }
138 +          }          
139 +        }
140        }
141 <    }
97 <    
141 >      
142   #ifdef IS_MPI
143 +      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
144 +                    MPI_SUM, MPI_COMM_WORLD);
145 + #endif
146 +      
147 +      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 +          
149 +      snap->setRotationalKineticEnergy(kinetic);
150 +    }
151 +    return snap->getRotationalKineticEnergy();
152 +  }
153  
154 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 <                  MPI_COMM_WORLD);
102 <    kinetic = kinetic_global;
154 >      
155  
156 < #endif //is_mpi
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
160 <
161 <    return kinetic;
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164    }
165  
166    RealType Thermo::getPotential() {
112    RealType potential = 0.0;
113    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
167  
168 <    // Get total potential for entire system from MPI.
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 < #ifdef IS_MPI
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173 >  }
174  
175 <    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 <                  MPI_COMM_WORLD);
122 <    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
175 >  RealType Thermo::getTotalEnergy() {
176  
177 < #else
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 < #endif // is_mpi
129 <
130 <    return potential;
183 >    return snap->getTotalEnergy();
184    }
185  
133  RealType Thermo::getTotalE() {
134    RealType total;
135
136    total = this->getKinetic() + this->getPotential();
137    return total;
138  }
139
186    RealType Thermo::getTemperature() {
141    
142    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143    return temperature;
144  }
187  
188 <  RealType Thermo::getVolume() {
147 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148 <    return curSnapshot->getVolume();
149 <  }
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 <  RealType Thermo::getPressure() {
190 >    if (!snap->hasTemperature) {
191  
192 <    // Relies on the calculation of the full molecular pressure tensor
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 +      snap->setTemperature(temperature);
196 +    }
197 +    
198 +    return snap->getTemperature();
199 +  }
200  
201 <    Mat3x3d tensor;
202 <    RealType pressure;
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <    tensor = getPressureTensor();
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
231 >                    MPI_SUM, MPI_COMM_WORLD);
232 > #endif
233  
234 <    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );            
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240  
241 <    return pressure;
241 >    return snap->getElectronicTemperature();
242    }
243  
166  RealType Thermo::getPressure(int direction) {
244  
245 <    // Relies on the calculation of the full molecular pressure tensor
245 >  RealType Thermo::getVolume() {
246 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 >    return snap->getVolume();
248 >  }
249  
250 <          
251 <    Mat3x3d tensor;
172 <    RealType pressure;
250 >  RealType Thermo::getPressure() {
251 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252  
253 <    tensor = getPressureTensor();
254 <
255 <    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
256 <
257 <    return pressure;
253 >    if (!snap->hasPressure) {
254 >      // Relies on the calculation of the full molecular pressure tensor
255 >      
256 >      Mat3x3d tensor;
257 >      RealType pressure;
258 >      
259 >      tensor = getPressureTensor();
260 >      
261 >      pressure = PhysicalConstants::pressureConvert *
262 >        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 >      
264 >      snap->setPressure(pressure);
265 >    }
266 >    
267 >    return snap->getPressure();    
268    }
269  
270    Mat3x3d Thermo::getPressureTensor() {
271      // returns pressure tensor in units amu*fs^-2*Ang^-1
272      // routine derived via viral theorem description in:
273      // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 <    Mat3x3d pressureTensor;
186 <    Mat3x3d p_local(0.0);
187 <    Mat3x3d p_global(0.0);
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <    SimInfo::MoleculeIterator i;
190 <    std::vector<StuntDouble*>::iterator j;
191 <    Molecule* mol;
192 <    StuntDouble* integrableObject;    
193 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 <           integrableObject = mol->nextIntegrableObject(j)) {
276 >    if (!snap->hasPressureTensor) {
277  
278 <        RealType mass = integrableObject->getMass();
279 <        Vector3d vcom = integrableObject->getVel();
280 <        p_local += mass * outProduct(vcom, vcom);        
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297        }
298 +      
299 + #ifdef IS_MPI
300 +      MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9,
301 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
302 + #endif
303 +      
304 +      RealType volume = this->getVolume();
305 +      Mat3x3d stressTensor = snap->getStressTensor();
306 +      
307 +      pressureTensor =  (p_tens +
308 +                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 +      
310 +      snap->setPressureTensor(pressureTensor);
311      }
312 <    
312 >    return snap->getPressureTensor();
313 >  }
314 >
315 >
316 >
317 >
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 >
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      Vector3d ri(0.0);
328 >      Vector3d dipoleVector(0.0);
329 >      Vector3d nPos(0.0);
330 >      Vector3d pPos(0.0);
331 >      RealType nChg(0.0);
332 >      RealType pChg(0.0);
333 >      int nCount = 0;
334 >      int pCount = 0;
335 >      
336 >      RealType chargeToC = 1.60217733e-19;
337 >      RealType angstromToM = 1.0e-10;
338 >      RealType debyeToCm = 3.33564095198e-30;
339 >      
340 >      for (mol = info_->beginMolecule(miter); mol != NULL;
341 >           mol = info_->nextMolecule(miter)) {
342 >        
343 >        for (atom = mol->beginAtom(aiter); atom != NULL;
344 >             atom = mol->nextAtom(aiter)) {
345 >          
346 >          charge = 0.0;
347 >          
348 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 >          if ( fca.isFixedCharge() ) {
350 >            charge = fca.getCharge();
351 >          }
352 >          
353 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 >          if ( fqa.isFluctuatingCharge() ) {
355 >            charge += atom->getFlucQPos();
356 >          }
357 >          
358 >          charge *= chargeToC;
359 >          
360 >          ri = atom->getPos();
361 >          snap->wrapVector(ri);
362 >          ri *= angstromToM;
363 >          
364 >          if (charge < 0.0) {
365 >            nPos += ri;
366 >            nChg -= charge;
367 >            nCount++;
368 >          } else if (charge > 0.0) {
369 >            pPos += ri;
370 >            pChg += charge;
371 >            pCount++;
372 >          }
373 >          
374 >          if (atom->isDipole()) {
375 >            dipoleVector += atom->getDipole() * debyeToCm;
376 >          }
377 >        }
378 >      }
379 >      
380 >      
381   #ifdef IS_MPI
382 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
383 < #else
384 <    p_global = p_local;
385 < #endif // is_mpi
382 >      MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE,
383 >                    MPI_SUM, MPI_COMM_WORLD);
384 >      MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE,
385 >                    MPI_SUM, MPI_COMM_WORLD);
386 >      
387 >      MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER,
388 >                    MPI_SUM, MPI_COMM_WORLD);
389 >      MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER,
390 >                    MPI_SUM, MPI_COMM_WORLD);
391 >      
392 >      MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3,
393 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
394 >      MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3,
395 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
396  
397 <    RealType volume = this->getVolume();
398 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
399 <    Mat3x3d tau = curSnapshot->statData.getTau();
397 >      MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(),
398 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 > #endif
400 >      
401 >      // first load the accumulated dipole moment (if dipoles were present)
402 >      Vector3d boxDipole = dipoleVector;
403 >      // now include the dipole moment due to charges
404 >      // use the lesser of the positive and negative charge totals
405 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
406 >      
407 >      // find the average positions
408 >      if (pCount > 0 && nCount > 0 ) {
409 >        pPos /= pCount;
410 >        nPos /= nCount;
411 >      }
412 >      
413 >      // dipole is from the negative to the positive (physics notation)
414 >      boxDipole += (pPos - nPos) * chg_value;
415 >      snap->setSystemDipole(boxDipole);
416 >    }
417  
418 <    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
214 <    
215 <    return pressureTensor;
418 >    return snap->getSystemDipole();
419    }
420  
421  
422 <  void Thermo::saveStat(){
423 <    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221 <    Stats& stat = currSnapshot->statData;
222 <    
223 <    stat[Stats::KINETIC_ENERGY] = getKinetic();
224 <    stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 <    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226 <    stat[Stats::TEMPERATURE] = getTemperature();
227 <    stat[Stats::PRESSURE] = getPressure();
228 <    stat[Stats::VOLUME] = getVolume();      
422 >  Mat3x3d Thermo::getSystemQuadrupole() {
423 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
424  
425 <    Mat3x3d tensor =getPressureTensor();
426 <    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
427 <    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
428 <    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
429 <    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
430 <    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
431 <    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
432 <    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
433 <    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
434 <    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
425 >    if (!snap->hasSystemQuadrupole) {
426 >      SimInfo::MoleculeIterator miter;
427 >      vector<Atom*>::iterator aiter;
428 >      Molecule* mol;
429 >      Atom* atom;
430 >      RealType charge;
431 >      Vector3d ri(0.0);
432 >      Vector3d dipole(0.0);
433 >      Mat3x3d qpole(0.0);
434 >      
435 >      RealType chargeToC = 1.60217733e-19;
436 >      RealType angstromToM = 1.0e-10;
437 >      RealType debyeToCm = 3.33564095198e-30;
438 >      
439 >      for (mol = info_->beginMolecule(miter); mol != NULL;
440 >           mol = info_->nextMolecule(miter)) {
441 >        
442 >        for (atom = mol->beginAtom(aiter); atom != NULL;
443 >             atom = mol->nextAtom(aiter)) {
444  
445 +          ri = atom->getPos();
446 +          snap->wrapVector(ri);
447 +          ri *= angstromToM;
448 +          
449 +          charge = 0.0;
450 +          
451 +          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
452 +          if ( fca.isFixedCharge() ) {
453 +            charge = fca.getCharge();
454 +          }
455 +          
456 +          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
457 +          if ( fqa.isFluctuatingCharge() ) {
458 +            charge += atom->getFlucQPos();
459 +          }
460 +          
461 +          charge *= chargeToC;
462 +          
463 +          qpole += 0.5 * charge * outProduct(ri, ri);
464  
465 <    Globals* simParams = info_->getSimParams();
465 >          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
466 >          
467 >          if ( ma.isDipole() ) {
468 >            dipole = atom->getDipole() * debyeToCm;
469 >            qpole += 0.5 * outProduct( dipole, ri );
470 >          }
471  
472 +          if ( ma.isQuadrupole() ) {
473 +            qpole += atom->getQuadrupole() * debyeToCm * angstromToM;          
474 +          }
475 +        }
476 +      }
477 +        
478 + #ifdef IS_MPI
479 +      MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(),
480 +                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
481 + #endif
482 +      
483 +      snap->setSystemQuadrupole(qpole);
484 +    }
485 +    
486 +    return snap->getSystemQuadrupole();
487 +  }
488 +
489 +  // Returns the Heat Flux Vector for the system
490 +  Vector3d Thermo::getHeatFlux(){
491 +    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
492 +    SimInfo::MoleculeIterator miter;
493 +    vector<StuntDouble*>::iterator iiter;
494 +    Molecule* mol;
495 +    StuntDouble* sd;    
496 +    RigidBody::AtomIterator ai;
497 +    Atom* atom;      
498 +    Vector3d vel;
499 +    Vector3d angMom;
500 +    Mat3x3d I;
501 +    int i;
502 +    int j;
503 +    int k;
504 +    RealType mass;
505 +
506 +    Vector3d x_a;
507 +    RealType kinetic;
508 +    RealType potential;
509 +    RealType eatom;
510 +    // Convective portion of the heat flux
511 +    Vector3d heatFluxJc = V3Zero;
512 +
513 +    /* Calculate convective portion of the heat flux */
514 +    for (mol = info_->beginMolecule(miter); mol != NULL;
515 +         mol = info_->nextMolecule(miter)) {
516 +      
517 +      for (sd = mol->beginIntegrableObject(iiter);
518 +           sd != NULL;
519 +           sd = mol->nextIntegrableObject(iiter)) {
520 +        
521 +        mass = sd->getMass();
522 +        vel = sd->getVel();
523 +
524 +        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
525 +        
526 +        if (sd->isDirectional()) {
527 +          angMom = sd->getJ();
528 +          I = sd->getI();
529 +
530 +          if (sd->isLinear()) {
531 +            i = sd->linearAxis();
532 +            j = (i + 1) % 3;
533 +            k = (i + 2) % 3;
534 +            kinetic += angMom[j] * angMom[j] / I(j, j)
535 +              + angMom[k] * angMom[k] / I(k, k);
536 +          } else {                        
537 +            kinetic += angMom[0]*angMom[0]/I(0, 0)
538 +              + angMom[1]*angMom[1]/I(1, 1)
539 +              + angMom[2]*angMom[2]/I(2, 2);
540 +          }
541 +        }
542 +
543 +        potential = 0.0;
544 +
545 +        if (sd->isRigidBody()) {
546 +          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
547 +          for (atom = rb->beginAtom(ai); atom != NULL;
548 +               atom = rb->nextAtom(ai)) {
549 +            potential +=  atom->getParticlePot();
550 +          }          
551 +        } else {
552 +          potential = sd->getParticlePot();
553 +        }
554 +
555 +        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
556 +        // The potential may not be a 1/2 factor
557 +        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
558 +        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
559 +        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
560 +        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
561 +      }
562 +    }
563 +
564 +    /* The J_v vector is reduced in the forceManager so everyone has
565 +     *  the global Jv. Jc is computed over the local atoms and must be
566 +     *  reduced among all processors.
567 +     */
568 + #ifdef IS_MPI
569 +    MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE,
570 +                  MPI_SUM, MPI_COMM_WORLD);
571 + #endif
572 +    
573 +    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
574 +
575 +    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
576 +      PhysicalConstants::energyConvert;
577 +        
578 +    // Correct for the fact the flux is 1/V (Jc + Jv)
579 +    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
580 +  }
581 +
582 +
583 +  Vector3d Thermo::getComVel(){
584 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
585 +
586 +    if (!snap->hasCOMvel) {
587 +
588 +      SimInfo::MoleculeIterator i;
589 +      Molecule* mol;
590 +      
591 +      Vector3d comVel(0.0);
592 +      RealType totalMass(0.0);
593 +      
594 +      for (mol = info_->beginMolecule(i); mol != NULL;
595 +           mol = info_->nextMolecule(i)) {
596 +        RealType mass = mol->getMass();
597 +        totalMass += mass;
598 +        comVel += mass * mol->getComVel();
599 +      }  
600 +      
601 + #ifdef IS_MPI
602 +      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
603 +                    MPI_SUM, MPI_COMM_WORLD);
604 +      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
605 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
606 + #endif
607 +      
608 +      comVel /= totalMass;
609 +      snap->setCOMvel(comVel);
610 +    }
611 +    return snap->getCOMvel();
612 +  }
613 +
614 +  Vector3d Thermo::getCom(){
615 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
616 +
617 +    if (!snap->hasCOM) {
618 +      
619 +      SimInfo::MoleculeIterator i;
620 +      Molecule* mol;
621 +      
622 +      Vector3d com(0.0);
623 +      RealType totalMass(0.0);
624 +      
625 +      for (mol = info_->beginMolecule(i); mol != NULL;
626 +           mol = info_->nextMolecule(i)) {
627 +        RealType mass = mol->getMass();
628 +        totalMass += mass;
629 +        com += mass * mol->getCom();
630 +      }  
631 +      
632 + #ifdef IS_MPI
633 +      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
634 +                    MPI_SUM, MPI_COMM_WORLD);
635 +      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
636 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
637 + #endif
638 +      
639 +      com /= totalMass;
640 +      snap->setCOM(com);
641 +    }
642 +    return snap->getCOM();
643 +  }        
644 +
645 +  /**
646 +   * Returns center of mass and center of mass velocity in one
647 +   * function call.
648 +   */  
649 +  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
650 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
651 +
652 +    if (!(snap->hasCOM && snap->hasCOMvel)) {
653 +
654 +      SimInfo::MoleculeIterator i;
655 +      Molecule* mol;
656 +      
657 +      RealType totalMass(0.0);
658 +      
659 +      com = 0.0;
660 +      comVel = 0.0;
661 +      
662 +      for (mol = info_->beginMolecule(i); mol != NULL;
663 +           mol = info_->nextMolecule(i)) {
664 +        RealType mass = mol->getMass();
665 +        totalMass += mass;
666 +        com += mass * mol->getCom();
667 +        comVel += mass * mol->getComVel();          
668 +      }  
669 +      
670 + #ifdef IS_MPI
671 +      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
672 +                    MPI_SUM, MPI_COMM_WORLD);
673 +      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
674 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
675 +      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
676 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
677 + #endif
678 +      
679 +      com /= totalMass;
680 +      comVel /= totalMass;
681 +      snap->setCOM(com);
682 +      snap->setCOMvel(comVel);
683 +    }    
684 +    com = snap->getCOM();
685 +    comVel = snap->getCOMvel();
686 +    return;
687 +  }        
688 +  
689 +  /**
690 +   * \brief Return inertia tensor for entire system and angular momentum
691 +   *  Vector.
692 +   *
693 +   *
694 +   *
695 +   *    [  Ixx -Ixy  -Ixz ]
696 +   * I =| -Iyx  Iyy  -Iyz |
697 +   *    [ -Izx -Iyz   Izz ]
698 +   */
699 +  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
700 +                                Vector3d &angularMomentum){
701 +
702 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
703 +    
704 +    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
705 +      
706 +      RealType xx = 0.0;
707 +      RealType yy = 0.0;
708 +      RealType zz = 0.0;
709 +      RealType xy = 0.0;
710 +      RealType xz = 0.0;
711 +      RealType yz = 0.0;
712 +      Vector3d com(0.0);
713 +      Vector3d comVel(0.0);
714 +      
715 +      getComAll(com, comVel);
716 +      
717 +      SimInfo::MoleculeIterator i;
718 +      Molecule* mol;
719 +      
720 +      Vector3d thisq(0.0);
721 +      Vector3d thisv(0.0);
722 +      
723 +      RealType thisMass = 0.0;
724 +      
725 +      for (mol = info_->beginMolecule(i); mol != NULL;
726 +           mol = info_->nextMolecule(i)) {
727 +        
728 +        thisq = mol->getCom()-com;
729 +        thisv = mol->getComVel()-comVel;
730 +        thisMass = mol->getMass();
731 +        // Compute moment of intertia coefficients.
732 +        xx += thisq[0]*thisq[0]*thisMass;
733 +        yy += thisq[1]*thisq[1]*thisMass;
734 +        zz += thisq[2]*thisq[2]*thisMass;
735 +        
736 +        // compute products of intertia
737 +        xy += thisq[0]*thisq[1]*thisMass;
738 +        xz += thisq[0]*thisq[2]*thisMass;
739 +        yz += thisq[1]*thisq[2]*thisMass;
740 +        
741 +        angularMomentum += cross( thisq, thisv ) * thisMass;            
742 +      }
743 +      
744 +      inertiaTensor(0,0) = yy + zz;
745 +      inertiaTensor(0,1) = -xy;
746 +      inertiaTensor(0,2) = -xz;
747 +      inertiaTensor(1,0) = -xy;
748 +      inertiaTensor(1,1) = xx + zz;
749 +      inertiaTensor(1,2) = -yz;
750 +      inertiaTensor(2,0) = -xz;
751 +      inertiaTensor(2,1) = -yz;
752 +      inertiaTensor(2,2) = xx + yy;
753 +      
754 + #ifdef IS_MPI
755 +      MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(),
756 +                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 +      MPI_Allreduce(MPI_IN_PLACE,
758 +                    angularMomentum.getArrayPointer(), 3,
759 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
760 + #endif
761 +      
762 +      snap->setCOMw(angularMomentum);
763 +      snap->setInertiaTensor(inertiaTensor);
764 +    }
765 +    
766 +    angularMomentum = snap->getCOMw();
767 +    inertiaTensor = snap->getInertiaTensor();
768 +    
769 +    return;
770 +  }
771 +
772 +
773 +  Mat3x3d Thermo::getBoundingBox(){
774 +    
775 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
776 +    
777 +    if (!(snap->hasBoundingBox)) {
778 +      
779 +      SimInfo::MoleculeIterator i;
780 +      Molecule::RigidBodyIterator ri;
781 +      Molecule::AtomIterator ai;
782 +      Molecule* mol;
783 +      RigidBody* rb;
784 +      Atom* atom;
785 +      Vector3d pos, bMax, bMin;
786 +      int index = 0;
787 +      
788 +      for (mol = info_->beginMolecule(i); mol != NULL;
789 +           mol = info_->nextMolecule(i)) {
790 +        
791 +        //change the positions of atoms which belong to the rigidbodies
792 +        for (rb = mol->beginRigidBody(ri); rb != NULL;
793 +             rb = mol->nextRigidBody(ri)) {          
794 +          rb->updateAtoms();
795 +        }
796 +        
797 +        for(atom = mol->beginAtom(ai); atom != NULL;
798 +            atom = mol->nextAtom(ai)) {
799 +          
800 +          pos = atom->getPos();
801 +
802 +          if (index == 0) {
803 +            bMax = pos;
804 +            bMin = pos;
805 +          } else {
806 +            for (int i = 0; i < 3; i++) {
807 +              bMax[i] = max(bMax[i], pos[i]);
808 +              bMin[i] = min(bMin[i], pos[i]);
809 +            }
810 +          }
811 +          index++;
812 +        }
813 +      }
814 +      
815 + #ifdef IS_MPI
816 +      MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE,
817 +                    MPI_MAX, MPI_COMM_WORLD);
818 +
819 +      MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE,
820 +                    MPI_MIN, MPI_COMM_WORLD);
821 + #endif
822 +      Mat3x3d bBox = Mat3x3d(0.0);
823 +      for (int i = 0; i < 3; i++) {          
824 +        bBox(i,i) = bMax[i] - bMin[i];
825 +      }
826 +      snap->setBoundingBox(bBox);
827 +    }
828 +    
829 +    return snap->getBoundingBox();    
830 +  }
831 +  
832 +  
833 +  // Returns the angular momentum of the system
834 +  Vector3d Thermo::getAngularMomentum(){
835 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
836 +    
837 +    if (!snap->hasCOMw) {
838 +      
839 +      Vector3d com(0.0);
840 +      Vector3d comVel(0.0);
841 +      Vector3d angularMomentum(0.0);
842 +      
843 +      getComAll(com, comVel);
844 +      
845 +      SimInfo::MoleculeIterator i;
846 +      Molecule* mol;
847 +      
848 +      Vector3d thisr(0.0);
849 +      Vector3d thisp(0.0);
850 +      
851 +      RealType thisMass;
852 +      
853 +      for (mol = info_->beginMolecule(i); mol != NULL;
854 +           mol = info_->nextMolecule(i)) {
855 +        thisMass = mol->getMass();
856 +        thisr = mol->getCom() - com;
857 +        thisp = (mol->getComVel() - comVel) * thisMass;
858 +        
859 +        angularMomentum += cross( thisr, thisp );      
860 +      }  
861 +      
862 + #ifdef IS_MPI
863 +      MPI_Allreduce(MPI_IN_PLACE,
864 +                    angularMomentum.getArrayPointer(), 3,
865 +                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
866 + #endif
867 +      
868 +      snap->setCOMw(angularMomentum);
869 +    }
870 +    
871 +    return snap->getCOMw();
872 +  }
873 +  
874 +  
875 +  /**
876 +   * Returns the Volume of the system based on a ellipsoid with
877 +   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
878 +   * where R_i are related to the principle inertia moments
879 +   *  R_i = sqrt(C*I_i/N), this reduces to
880 +   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
881 +   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
882 +   */
883 +  RealType Thermo::getGyrationalVolume(){
884 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
885 +    
886 +    if (!snap->hasGyrationalVolume) {
887 +      
888 +      Mat3x3d intTensor;
889 +      RealType det;
890 +      Vector3d dummyAngMom;
891 +      RealType sysconstants;
892 +      RealType geomCnst;
893 +      RealType volume;
894 +      
895 +      geomCnst = 3.0/2.0;
896 +      /* Get the inertial tensor and angular momentum for free*/
897 +      getInertiaTensor(intTensor, dummyAngMom);
898 +      
899 +      det = intTensor.determinant();
900 +      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
901 +      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
902 +
903 +      snap->setGyrationalVolume(volume);
904 +    }
905 +    return snap->getGyrationalVolume();
906 +  }
907 +  
908 +  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
909 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
910 +
911 +    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
912 +    
913 +      Mat3x3d intTensor;
914 +      Vector3d dummyAngMom;
915 +      RealType sysconstants;
916 +      RealType geomCnst;
917 +      
918 +      geomCnst = 3.0/2.0;
919 +      /* Get the inertia tensor and angular momentum for free*/
920 +      this->getInertiaTensor(intTensor, dummyAngMom);
921 +      
922 +      detI = intTensor.determinant();
923 +      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
924 +      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
925 +      snap->setGyrationalVolume(volume);
926 +    } else {
927 +      volume = snap->getGyrationalVolume();
928 +      detI = snap->getInertiaTensor().determinant();
929 +    }
930 +    return;
931 +  }
932 +  
933 +  RealType Thermo::getTaggedAtomPairDistance(){
934 +    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
935 +    Globals* simParams = info_->getSimParams();
936 +    
937      if (simParams->haveTaggedAtomPair() &&
938          simParams->havePrintTaggedPairDistance()) {
939        if ( simParams->getPrintTaggedPairDistance()) {
940          
941 <        std::pair<int, int> tap = simParams->getTaggedAtomPair();
941 >        pair<int, int> tap = simParams->getTaggedAtomPair();
942          Vector3d pos1, pos2, rab;
943 <
943 >        
944   #ifdef IS_MPI        
252        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
253
945          int mol1 = info_->getGlobalMolMembership(tap.first);
946          int mol2 = info_->getGlobalMolMembership(tap.second);
256        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
947  
948          int proc1 = info_->getMolToProc(mol1);
949          int proc2 = info_->getMolToProc(mol2);
950  
261        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
262
951          RealType data[3];
952          if (proc1 == worldRank) {
953            StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
266          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
954            pos1 = sd1->getPos();
955            data[0] = pos1.x();
956            data[1] = pos1.y();
# Line 274 | Line 961 | namespace OpenMD {
961            pos1 = Vector3d(data);
962          }
963  
277
964          if (proc2 == worldRank) {
965            StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
280          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
966            pos2 = sd2->getPos();
967            data[0] = pos2.x();
968            data[1] = pos2.y();
969 <          data[2] = pos2.z();          
969 >          data[2] = pos2.z();  
970            MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
971          } else {
972            MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
# Line 295 | Line 980 | namespace OpenMD {
980   #endif        
981          rab = pos2 - pos1;
982          currSnapshot->wrapVector(rab);
983 <        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
983 >        return rab.length();
984        }
985 +      return 0.0;    
986      }
987 +    return 0.0;
988 +  }
989 +
990 +  RealType Thermo::getHullVolume(){
991 + #ifdef HAVE_QHULL    
992 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
993 +    if (!snap->hasHullVolume) {
994 +      Hull* surfaceMesh_;
995        
996 <    /**@todo need refactorying*/
997 <    //Conserved Quantity is set by integrator and time is set by setTime
996 >      Globals* simParams = info_->getSimParams();
997 >      const std::string ht = simParams->getHULL_Method();
998 >      
999 >      if (ht == "Convex") {
1000 >        surfaceMesh_ = new ConvexHull();
1001 >      } else if (ht == "AlphaShape") {
1002 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
1003 >      } else {
1004 >        return 0.0;
1005 >      }
1006 >      
1007 >      // Build a vector of stunt doubles to determine if they are
1008 >      // surface atoms
1009 >      std::vector<StuntDouble*> localSites_;
1010 >      Molecule* mol;
1011 >      StuntDouble* sd;
1012 >      SimInfo::MoleculeIterator i;
1013 >      Molecule::IntegrableObjectIterator  j;
1014 >      
1015 >      for (mol = info_->beginMolecule(i); mol != NULL;
1016 >           mol = info_->nextMolecule(i)) {          
1017 >        for (sd = mol->beginIntegrableObject(j);
1018 >             sd != NULL;
1019 >             sd = mol->nextIntegrableObject(j)) {  
1020 >          localSites_.push_back(sd);
1021 >        }
1022 >      }  
1023 >      
1024 >      // Compute surface Mesh
1025 >      surfaceMesh_->computeHull(localSites_);
1026 >      snap->setHullVolume(surfaceMesh_->getVolume());
1027 >      
1028 >      delete surfaceMesh_;
1029 >    }
1030      
1031 +    return snap->getHullVolume();
1032 + #else
1033 +    return 0.0;
1034 + #endif
1035    }
1036  
1037 < } //end namespace OpenMD
1037 >
1038 > }

Comparing trunk/src/brains/Thermo.cpp (property svn:keywords):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 2022 by gezelter, Fri Sep 26 22:22:28 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines