ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 2022 by gezelter, Fri Sep 26 22:22:28 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
41
42 #include <math.h>
43 #include <iostream>
42  
43   #ifdef IS_MPI
44   #include <mpi.h>
45   #endif //is_mpi
46 +
47 + #include <math.h>
48 + #include <iostream>
49  
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #ifdef HAVE_QHULL
58 > #include "math/ConvexHull.hpp"
59 > #include "math/AlphaHull.hpp"
60 > #endif
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64  
65 <  double Thermo::getKinetic() {
66 <    SimInfo::MoleculeIterator miter;
58 <    std::vector<StuntDouble*>::iterator iiter;
59 <    Molecule* mol;
60 <    StuntDouble* integrableObject;    
61 <    Vector3d vel;
62 <    Vector3d angMom;
63 <    Mat3x3d I;
64 <    int i;
65 <    int j;
66 <    int k;
67 <    double kinetic = 0.0;
68 <    double kinetic_global = 0.0;
69 <    
70 <    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
71 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
72 <           integrableObject = mol->nextIntegrableObject(iiter)) {
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 <        double mass = integrableObject->getMass();
69 <        Vector3d vel = integrableObject->getVel();
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
93 >                    MPI_SUM, MPI_COMM_WORLD);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 <        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106  
107 <        if (integrableObject->isDirectional()) {
108 <          angMom = integrableObject->getJ();
109 <          I = integrableObject->getI();
110 <
111 <          if (integrableObject->isLinear()) {
112 <            i = integrableObject->linearAxis();
113 <            j = (i + 1) % 3;
114 <            k = (i + 2) % 3;
115 <            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
116 <          } else {                        
117 <            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
118 <              + angMom[2]*angMom[2]/I(2, 2);
119 <          }
120 <        }
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126              
127 +            if (sd->isLinear()) {
128 +              i = sd->linearAxis();
129 +              j = (i + 1) % 3;
130 +              k = (i + 2) % 3;
131 +              kinetic += angMom[j] * angMom[j] / I(j, j)
132 +                + angMom[k] * angMom[k] / I(k, k);
133 +            } else {                        
134 +              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 +                + angMom[1]*angMom[1]/I(1, 1)
136 +                + angMom[2]*angMom[2]/I(2, 2);
137 +            }
138 +          }          
139 +        }
140        }
141 <    }
96 <    
141 >      
142   #ifdef IS_MPI
143 +      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
144 +                    MPI_SUM, MPI_COMM_WORLD);
145 + #endif
146 +      
147 +      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 +          
149 +      snap->setRotationalKineticEnergy(kinetic);
150 +    }
151 +    return snap->getRotationalKineticEnergy();
152 +  }
153  
154 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 <                  MPI_COMM_WORLD);
101 <    kinetic = kinetic_global;
154 >      
155  
156 < #endif //is_mpi
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
160 <
161 <    return kinetic;
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164    }
165  
166 <  double Thermo::getPotential() {
111 <    double potential = 0.0;
112 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
113 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
166 >  RealType Thermo::getPotential() {
167  
168 <    // Get total potential for entire system from MPI.
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 < #ifdef IS_MPI
172 <
120 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
121 <                  MPI_COMM_WORLD);
122 <
123 < #else
124 <
125 <    potential = potential_local;
126 <
127 < #endif // is_mpi
128 <
129 <    return potential;
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173    }
174  
175 <  double Thermo::getTotalE() {
133 <    double total;
175 >  RealType Thermo::getTotalEnergy() {
176  
177 <    total = this->getKinetic() + this->getPotential();
136 <    return total;
137 <  }
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <  double Thermo::getTemperature() {
180 <    
181 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
142 <    return temperature;
143 <  }
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 <  double Thermo::getVolume() {
146 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
147 <    return curSnapshot->getVolume();
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  double Thermo::getPressure() {
186 >  RealType Thermo::getTemperature() {
187  
188 <    // Relies on the calculation of the full molecular pressure tensor
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 +    if (!snap->hasTemperature) {
191  
192 <    Mat3x3d tensor;
193 <    double pressure;
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <    tensor = getPressureTensor();
196 <
197 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
198 <
162 <    return pressure;
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199    }
200  
201 <  double Thermo::getPressure(int direction) {
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <    // Relies on the calculation of the full molecular pressure tensor
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
231 >                    MPI_SUM, MPI_COMM_WORLD);
232 > #endif
233  
234 <          
235 <    Mat3x3d tensor;
236 <    double pressure;
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );            
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240  
241 <    tensor = getPressureTensor();
241 >    return snap->getElectronicTemperature();
242 >  }
243  
175    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
244  
245 <    return pressure;
245 >  RealType Thermo::getVolume() {
246 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 >    return snap->getVolume();
248    }
249  
250 +  RealType Thermo::getPressure() {
251 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252  
253 +    if (!snap->hasPressure) {
254 +      // Relies on the calculation of the full molecular pressure tensor
255 +      
256 +      Mat3x3d tensor;
257 +      RealType pressure;
258 +      
259 +      tensor = getPressureTensor();
260 +      
261 +      pressure = PhysicalConstants::pressureConvert *
262 +        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 +      
264 +      snap->setPressure(pressure);
265 +    }
266 +    
267 +    return snap->getPressure();    
268 +  }
269  
270    Mat3x3d Thermo::getPressureTensor() {
271      // returns pressure tensor in units amu*fs^-2*Ang^-1
272      // routine derived via viral theorem description in:
273      // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 <    Mat3x3d pressureTensor;
187 <    Mat3x3d p_local(0.0);
188 <    Mat3x3d p_global(0.0);
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <    SimInfo::MoleculeIterator i;
191 <    std::vector<StuntDouble*>::iterator j;
192 <    Molecule* mol;
193 <    StuntDouble* integrableObject;    
194 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196 <           integrableObject = mol->nextIntegrableObject(j)) {
276 >    if (!snap->hasPressureTensor) {
277  
278 <        double mass = integrableObject->getMass();
279 <        Vector3d vcom = integrableObject->getVel();
280 <        p_local += mass * outProduct(vcom, vcom);        
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297        }
298 <    }
203 <    
298 >      
299   #ifdef IS_MPI
300 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
301 < #else
302 <    p_global = p_local;
303 < #endif // is_mpi
300 >      MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9,
301 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
302 > #endif
303 >      
304 >      RealType volume = this->getVolume();
305 >      Mat3x3d stressTensor = snap->getStressTensor();
306 >      
307 >      pressureTensor =  (p_tens +
308 >                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 >      
310 >      snap->setPressureTensor(pressureTensor);
311 >    }
312 >    return snap->getPressureTensor();
313 >  }
314  
210    double volume = this->getVolume();
211    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
212    Mat3x3d tau = curSnapshot->statData.getTau();
315  
214    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
316  
317 <    return pressureTensor;
317 >
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 >
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      Vector3d ri(0.0);
328 >      Vector3d dipoleVector(0.0);
329 >      Vector3d nPos(0.0);
330 >      Vector3d pPos(0.0);
331 >      RealType nChg(0.0);
332 >      RealType pChg(0.0);
333 >      int nCount = 0;
334 >      int pCount = 0;
335 >      
336 >      RealType chargeToC = 1.60217733e-19;
337 >      RealType angstromToM = 1.0e-10;
338 >      RealType debyeToCm = 3.33564095198e-30;
339 >      
340 >      for (mol = info_->beginMolecule(miter); mol != NULL;
341 >           mol = info_->nextMolecule(miter)) {
342 >        
343 >        for (atom = mol->beginAtom(aiter); atom != NULL;
344 >             atom = mol->nextAtom(aiter)) {
345 >          
346 >          charge = 0.0;
347 >          
348 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 >          if ( fca.isFixedCharge() ) {
350 >            charge = fca.getCharge();
351 >          }
352 >          
353 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 >          if ( fqa.isFluctuatingCharge() ) {
355 >            charge += atom->getFlucQPos();
356 >          }
357 >          
358 >          charge *= chargeToC;
359 >          
360 >          ri = atom->getPos();
361 >          snap->wrapVector(ri);
362 >          ri *= angstromToM;
363 >          
364 >          if (charge < 0.0) {
365 >            nPos += ri;
366 >            nChg -= charge;
367 >            nCount++;
368 >          } else if (charge > 0.0) {
369 >            pPos += ri;
370 >            pChg += charge;
371 >            pCount++;
372 >          }
373 >          
374 >          if (atom->isDipole()) {
375 >            dipoleVector += atom->getDipole() * debyeToCm;
376 >          }
377 >        }
378 >      }
379 >      
380 >      
381 > #ifdef IS_MPI
382 >      MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE,
383 >                    MPI_SUM, MPI_COMM_WORLD);
384 >      MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE,
385 >                    MPI_SUM, MPI_COMM_WORLD);
386 >      
387 >      MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER,
388 >                    MPI_SUM, MPI_COMM_WORLD);
389 >      MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER,
390 >                    MPI_SUM, MPI_COMM_WORLD);
391 >      
392 >      MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3,
393 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
394 >      MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3,
395 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
396 >
397 >      MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(),
398 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 > #endif
400 >      
401 >      // first load the accumulated dipole moment (if dipoles were present)
402 >      Vector3d boxDipole = dipoleVector;
403 >      // now include the dipole moment due to charges
404 >      // use the lesser of the positive and negative charge totals
405 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
406 >      
407 >      // find the average positions
408 >      if (pCount > 0 && nCount > 0 ) {
409 >        pPos /= pCount;
410 >        nPos /= nCount;
411 >      }
412 >      
413 >      // dipole is from the negative to the positive (physics notation)
414 >      boxDipole += (pPos - nPos) * chg_value;
415 >      snap->setSystemDipole(boxDipole);
416 >    }
417 >
418 >    return snap->getSystemDipole();
419    }
420  
421 <  void Thermo::saveStat(){
422 <    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
423 <    Stats& stat = currSnapshot->statData;
421 >
422 >  Mat3x3d Thermo::getSystemQuadrupole() {
423 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
424 >
425 >    if (!snap->hasSystemQuadrupole) {
426 >      SimInfo::MoleculeIterator miter;
427 >      vector<Atom*>::iterator aiter;
428 >      Molecule* mol;
429 >      Atom* atom;
430 >      RealType charge;
431 >      Vector3d ri(0.0);
432 >      Vector3d dipole(0.0);
433 >      Mat3x3d qpole(0.0);
434 >      
435 >      RealType chargeToC = 1.60217733e-19;
436 >      RealType angstromToM = 1.0e-10;
437 >      RealType debyeToCm = 3.33564095198e-30;
438 >      
439 >      for (mol = info_->beginMolecule(miter); mol != NULL;
440 >           mol = info_->nextMolecule(miter)) {
441 >        
442 >        for (atom = mol->beginAtom(aiter); atom != NULL;
443 >             atom = mol->nextAtom(aiter)) {
444 >
445 >          ri = atom->getPos();
446 >          snap->wrapVector(ri);
447 >          ri *= angstromToM;
448 >          
449 >          charge = 0.0;
450 >          
451 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
452 >          if ( fca.isFixedCharge() ) {
453 >            charge = fca.getCharge();
454 >          }
455 >          
456 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
457 >          if ( fqa.isFluctuatingCharge() ) {
458 >            charge += atom->getFlucQPos();
459 >          }
460 >          
461 >          charge *= chargeToC;
462 >          
463 >          qpole += 0.5 * charge * outProduct(ri, ri);
464 >
465 >          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
466 >          
467 >          if ( ma.isDipole() ) {
468 >            dipole = atom->getDipole() * debyeToCm;
469 >            qpole += 0.5 * outProduct( dipole, ri );
470 >          }
471 >
472 >          if ( ma.isQuadrupole() ) {
473 >            qpole += atom->getQuadrupole() * debyeToCm * angstromToM;          
474 >          }
475 >        }
476 >      }
477 >        
478 > #ifdef IS_MPI
479 >      MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(),
480 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
481 > #endif
482 >      
483 >      snap->setSystemQuadrupole(qpole);
484 >    }
485      
486 <    stat[Stats::KINETIC_ENERGY] = getKinetic();
487 <    stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 <    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226 <    stat[Stats::TEMPERATURE] = getTemperature();
227 <    stat[Stats::PRESSURE] = getPressure();
228 <    stat[Stats::VOLUME] = getVolume();      
486 >    return snap->getSystemQuadrupole();
487 >  }
488  
489 <    Mat3x3d tensor =getPressureTensor();
490 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
491 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
492 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
489 >  // Returns the Heat Flux Vector for the system
490 >  Vector3d Thermo::getHeatFlux(){
491 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
492 >    SimInfo::MoleculeIterator miter;
493 >    vector<StuntDouble*>::iterator iiter;
494 >    Molecule* mol;
495 >    StuntDouble* sd;    
496 >    RigidBody::AtomIterator ai;
497 >    Atom* atom;      
498 >    Vector3d vel;
499 >    Vector3d angMom;
500 >    Mat3x3d I;
501 >    int i;
502 >    int j;
503 >    int k;
504 >    RealType mass;
505  
506 +    Vector3d x_a;
507 +    RealType kinetic;
508 +    RealType potential;
509 +    RealType eatom;
510 +    // Convective portion of the heat flux
511 +    Vector3d heatFluxJc = V3Zero;
512  
513 <    /**@todo need refactorying*/
514 <    //Conserved Quantity is set by integrator and time is set by setTime
513 >    /* Calculate convective portion of the heat flux */
514 >    for (mol = info_->beginMolecule(miter); mol != NULL;
515 >         mol = info_->nextMolecule(miter)) {
516 >      
517 >      for (sd = mol->beginIntegrableObject(iiter);
518 >           sd != NULL;
519 >           sd = mol->nextIntegrableObject(iiter)) {
520 >        
521 >        mass = sd->getMass();
522 >        vel = sd->getVel();
523 >
524 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
525 >        
526 >        if (sd->isDirectional()) {
527 >          angMom = sd->getJ();
528 >          I = sd->getI();
529 >
530 >          if (sd->isLinear()) {
531 >            i = sd->linearAxis();
532 >            j = (i + 1) % 3;
533 >            k = (i + 2) % 3;
534 >            kinetic += angMom[j] * angMom[j] / I(j, j)
535 >              + angMom[k] * angMom[k] / I(k, k);
536 >          } else {                        
537 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
538 >              + angMom[1]*angMom[1]/I(1, 1)
539 >              + angMom[2]*angMom[2]/I(2, 2);
540 >          }
541 >        }
542 >
543 >        potential = 0.0;
544 >
545 >        if (sd->isRigidBody()) {
546 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
547 >          for (atom = rb->beginAtom(ai); atom != NULL;
548 >               atom = rb->nextAtom(ai)) {
549 >            potential +=  atom->getParticlePot();
550 >          }          
551 >        } else {
552 >          potential = sd->getParticlePot();
553 >        }
554 >
555 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
556 >        // The potential may not be a 1/2 factor
557 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
558 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
559 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
560 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
561 >      }
562 >    }
563 >
564 >    /* The J_v vector is reduced in the forceManager so everyone has
565 >     *  the global Jv. Jc is computed over the local atoms and must be
566 >     *  reduced among all processors.
567 >     */
568 > #ifdef IS_MPI
569 >    MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE,
570 >                  MPI_SUM, MPI_COMM_WORLD);
571 > #endif
572      
573 +    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
574 +
575 +    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
576 +      PhysicalConstants::energyConvert;
577 +        
578 +    // Correct for the fact the flux is 1/V (Jc + Jv)
579 +    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
580    }
581  
582 < } //end namespace oopse
582 >
583 >  Vector3d Thermo::getComVel(){
584 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
585 >
586 >    if (!snap->hasCOMvel) {
587 >
588 >      SimInfo::MoleculeIterator i;
589 >      Molecule* mol;
590 >      
591 >      Vector3d comVel(0.0);
592 >      RealType totalMass(0.0);
593 >      
594 >      for (mol = info_->beginMolecule(i); mol != NULL;
595 >           mol = info_->nextMolecule(i)) {
596 >        RealType mass = mol->getMass();
597 >        totalMass += mass;
598 >        comVel += mass * mol->getComVel();
599 >      }  
600 >      
601 > #ifdef IS_MPI
602 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
603 >                    MPI_SUM, MPI_COMM_WORLD);
604 >      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
605 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
606 > #endif
607 >      
608 >      comVel /= totalMass;
609 >      snap->setCOMvel(comVel);
610 >    }
611 >    return snap->getCOMvel();
612 >  }
613 >
614 >  Vector3d Thermo::getCom(){
615 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
616 >
617 >    if (!snap->hasCOM) {
618 >      
619 >      SimInfo::MoleculeIterator i;
620 >      Molecule* mol;
621 >      
622 >      Vector3d com(0.0);
623 >      RealType totalMass(0.0);
624 >      
625 >      for (mol = info_->beginMolecule(i); mol != NULL;
626 >           mol = info_->nextMolecule(i)) {
627 >        RealType mass = mol->getMass();
628 >        totalMass += mass;
629 >        com += mass * mol->getCom();
630 >      }  
631 >      
632 > #ifdef IS_MPI
633 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
634 >                    MPI_SUM, MPI_COMM_WORLD);
635 >      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
636 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
637 > #endif
638 >      
639 >      com /= totalMass;
640 >      snap->setCOM(com);
641 >    }
642 >    return snap->getCOM();
643 >  }        
644 >
645 >  /**
646 >   * Returns center of mass and center of mass velocity in one
647 >   * function call.
648 >   */  
649 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
650 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
651 >
652 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
653 >
654 >      SimInfo::MoleculeIterator i;
655 >      Molecule* mol;
656 >      
657 >      RealType totalMass(0.0);
658 >      
659 >      com = 0.0;
660 >      comVel = 0.0;
661 >      
662 >      for (mol = info_->beginMolecule(i); mol != NULL;
663 >           mol = info_->nextMolecule(i)) {
664 >        RealType mass = mol->getMass();
665 >        totalMass += mass;
666 >        com += mass * mol->getCom();
667 >        comVel += mass * mol->getComVel();          
668 >      }  
669 >      
670 > #ifdef IS_MPI
671 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
672 >                    MPI_SUM, MPI_COMM_WORLD);
673 >      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
674 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
675 >      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
676 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
677 > #endif
678 >      
679 >      com /= totalMass;
680 >      comVel /= totalMass;
681 >      snap->setCOM(com);
682 >      snap->setCOMvel(comVel);
683 >    }    
684 >    com = snap->getCOM();
685 >    comVel = snap->getCOMvel();
686 >    return;
687 >  }        
688 >  
689 >  /**
690 >   * \brief Return inertia tensor for entire system and angular momentum
691 >   *  Vector.
692 >   *
693 >   *
694 >   *
695 >   *    [  Ixx -Ixy  -Ixz ]
696 >   * I =| -Iyx  Iyy  -Iyz |
697 >   *    [ -Izx -Iyz   Izz ]
698 >   */
699 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
700 >                                Vector3d &angularMomentum){
701 >
702 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
703 >    
704 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
705 >      
706 >      RealType xx = 0.0;
707 >      RealType yy = 0.0;
708 >      RealType zz = 0.0;
709 >      RealType xy = 0.0;
710 >      RealType xz = 0.0;
711 >      RealType yz = 0.0;
712 >      Vector3d com(0.0);
713 >      Vector3d comVel(0.0);
714 >      
715 >      getComAll(com, comVel);
716 >      
717 >      SimInfo::MoleculeIterator i;
718 >      Molecule* mol;
719 >      
720 >      Vector3d thisq(0.0);
721 >      Vector3d thisv(0.0);
722 >      
723 >      RealType thisMass = 0.0;
724 >      
725 >      for (mol = info_->beginMolecule(i); mol != NULL;
726 >           mol = info_->nextMolecule(i)) {
727 >        
728 >        thisq = mol->getCom()-com;
729 >        thisv = mol->getComVel()-comVel;
730 >        thisMass = mol->getMass();
731 >        // Compute moment of intertia coefficients.
732 >        xx += thisq[0]*thisq[0]*thisMass;
733 >        yy += thisq[1]*thisq[1]*thisMass;
734 >        zz += thisq[2]*thisq[2]*thisMass;
735 >        
736 >        // compute products of intertia
737 >        xy += thisq[0]*thisq[1]*thisMass;
738 >        xz += thisq[0]*thisq[2]*thisMass;
739 >        yz += thisq[1]*thisq[2]*thisMass;
740 >        
741 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
742 >      }
743 >      
744 >      inertiaTensor(0,0) = yy + zz;
745 >      inertiaTensor(0,1) = -xy;
746 >      inertiaTensor(0,2) = -xz;
747 >      inertiaTensor(1,0) = -xy;
748 >      inertiaTensor(1,1) = xx + zz;
749 >      inertiaTensor(1,2) = -yz;
750 >      inertiaTensor(2,0) = -xz;
751 >      inertiaTensor(2,1) = -yz;
752 >      inertiaTensor(2,2) = xx + yy;
753 >      
754 > #ifdef IS_MPI
755 >      MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(),
756 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 >      MPI_Allreduce(MPI_IN_PLACE,
758 >                    angularMomentum.getArrayPointer(), 3,
759 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
760 > #endif
761 >      
762 >      snap->setCOMw(angularMomentum);
763 >      snap->setInertiaTensor(inertiaTensor);
764 >    }
765 >    
766 >    angularMomentum = snap->getCOMw();
767 >    inertiaTensor = snap->getInertiaTensor();
768 >    
769 >    return;
770 >  }
771 >
772 >
773 >  Mat3x3d Thermo::getBoundingBox(){
774 >    
775 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
776 >    
777 >    if (!(snap->hasBoundingBox)) {
778 >      
779 >      SimInfo::MoleculeIterator i;
780 >      Molecule::RigidBodyIterator ri;
781 >      Molecule::AtomIterator ai;
782 >      Molecule* mol;
783 >      RigidBody* rb;
784 >      Atom* atom;
785 >      Vector3d pos, bMax, bMin;
786 >      int index = 0;
787 >      
788 >      for (mol = info_->beginMolecule(i); mol != NULL;
789 >           mol = info_->nextMolecule(i)) {
790 >        
791 >        //change the positions of atoms which belong to the rigidbodies
792 >        for (rb = mol->beginRigidBody(ri); rb != NULL;
793 >             rb = mol->nextRigidBody(ri)) {          
794 >          rb->updateAtoms();
795 >        }
796 >        
797 >        for(atom = mol->beginAtom(ai); atom != NULL;
798 >            atom = mol->nextAtom(ai)) {
799 >          
800 >          pos = atom->getPos();
801 >
802 >          if (index == 0) {
803 >            bMax = pos;
804 >            bMin = pos;
805 >          } else {
806 >            for (int i = 0; i < 3; i++) {
807 >              bMax[i] = max(bMax[i], pos[i]);
808 >              bMin[i] = min(bMin[i], pos[i]);
809 >            }
810 >          }
811 >          index++;
812 >        }
813 >      }
814 >      
815 > #ifdef IS_MPI
816 >      MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE,
817 >                    MPI_MAX, MPI_COMM_WORLD);
818 >
819 >      MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE,
820 >                    MPI_MIN, MPI_COMM_WORLD);
821 > #endif
822 >      Mat3x3d bBox = Mat3x3d(0.0);
823 >      for (int i = 0; i < 3; i++) {          
824 >        bBox(i,i) = bMax[i] - bMin[i];
825 >      }
826 >      snap->setBoundingBox(bBox);
827 >    }
828 >    
829 >    return snap->getBoundingBox();    
830 >  }
831 >  
832 >  
833 >  // Returns the angular momentum of the system
834 >  Vector3d Thermo::getAngularMomentum(){
835 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
836 >    
837 >    if (!snap->hasCOMw) {
838 >      
839 >      Vector3d com(0.0);
840 >      Vector3d comVel(0.0);
841 >      Vector3d angularMomentum(0.0);
842 >      
843 >      getComAll(com, comVel);
844 >      
845 >      SimInfo::MoleculeIterator i;
846 >      Molecule* mol;
847 >      
848 >      Vector3d thisr(0.0);
849 >      Vector3d thisp(0.0);
850 >      
851 >      RealType thisMass;
852 >      
853 >      for (mol = info_->beginMolecule(i); mol != NULL;
854 >           mol = info_->nextMolecule(i)) {
855 >        thisMass = mol->getMass();
856 >        thisr = mol->getCom() - com;
857 >        thisp = (mol->getComVel() - comVel) * thisMass;
858 >        
859 >        angularMomentum += cross( thisr, thisp );      
860 >      }  
861 >      
862 > #ifdef IS_MPI
863 >      MPI_Allreduce(MPI_IN_PLACE,
864 >                    angularMomentum.getArrayPointer(), 3,
865 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
866 > #endif
867 >      
868 >      snap->setCOMw(angularMomentum);
869 >    }
870 >    
871 >    return snap->getCOMw();
872 >  }
873 >  
874 >  
875 >  /**
876 >   * Returns the Volume of the system based on a ellipsoid with
877 >   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
878 >   * where R_i are related to the principle inertia moments
879 >   *  R_i = sqrt(C*I_i/N), this reduces to
880 >   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
881 >   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
882 >   */
883 >  RealType Thermo::getGyrationalVolume(){
884 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
885 >    
886 >    if (!snap->hasGyrationalVolume) {
887 >      
888 >      Mat3x3d intTensor;
889 >      RealType det;
890 >      Vector3d dummyAngMom;
891 >      RealType sysconstants;
892 >      RealType geomCnst;
893 >      RealType volume;
894 >      
895 >      geomCnst = 3.0/2.0;
896 >      /* Get the inertial tensor and angular momentum for free*/
897 >      getInertiaTensor(intTensor, dummyAngMom);
898 >      
899 >      det = intTensor.determinant();
900 >      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
901 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
902 >
903 >      snap->setGyrationalVolume(volume);
904 >    }
905 >    return snap->getGyrationalVolume();
906 >  }
907 >  
908 >  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
909 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
910 >
911 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
912 >    
913 >      Mat3x3d intTensor;
914 >      Vector3d dummyAngMom;
915 >      RealType sysconstants;
916 >      RealType geomCnst;
917 >      
918 >      geomCnst = 3.0/2.0;
919 >      /* Get the inertia tensor and angular momentum for free*/
920 >      this->getInertiaTensor(intTensor, dummyAngMom);
921 >      
922 >      detI = intTensor.determinant();
923 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
924 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
925 >      snap->setGyrationalVolume(volume);
926 >    } else {
927 >      volume = snap->getGyrationalVolume();
928 >      detI = snap->getInertiaTensor().determinant();
929 >    }
930 >    return;
931 >  }
932 >  
933 >  RealType Thermo::getTaggedAtomPairDistance(){
934 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
935 >    Globals* simParams = info_->getSimParams();
936 >    
937 >    if (simParams->haveTaggedAtomPair() &&
938 >        simParams->havePrintTaggedPairDistance()) {
939 >      if ( simParams->getPrintTaggedPairDistance()) {
940 >        
941 >        pair<int, int> tap = simParams->getTaggedAtomPair();
942 >        Vector3d pos1, pos2, rab;
943 >        
944 > #ifdef IS_MPI        
945 >        int mol1 = info_->getGlobalMolMembership(tap.first);
946 >        int mol2 = info_->getGlobalMolMembership(tap.second);
947 >
948 >        int proc1 = info_->getMolToProc(mol1);
949 >        int proc2 = info_->getMolToProc(mol2);
950 >
951 >        RealType data[3];
952 >        if (proc1 == worldRank) {
953 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
954 >          pos1 = sd1->getPos();
955 >          data[0] = pos1.x();
956 >          data[1] = pos1.y();
957 >          data[2] = pos1.z();          
958 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
959 >        } else {
960 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
961 >          pos1 = Vector3d(data);
962 >        }
963 >
964 >        if (proc2 == worldRank) {
965 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
966 >          pos2 = sd2->getPos();
967 >          data[0] = pos2.x();
968 >          data[1] = pos2.y();
969 >          data[2] = pos2.z();  
970 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
971 >        } else {
972 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
973 >          pos2 = Vector3d(data);
974 >        }
975 > #else
976 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
977 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
978 >        pos1 = at1->getPos();
979 >        pos2 = at2->getPos();
980 > #endif        
981 >        rab = pos2 - pos1;
982 >        currSnapshot->wrapVector(rab);
983 >        return rab.length();
984 >      }
985 >      return 0.0;    
986 >    }
987 >    return 0.0;
988 >  }
989 >
990 >  RealType Thermo::getHullVolume(){
991 > #ifdef HAVE_QHULL    
992 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
993 >    if (!snap->hasHullVolume) {
994 >      Hull* surfaceMesh_;
995 >      
996 >      Globals* simParams = info_->getSimParams();
997 >      const std::string ht = simParams->getHULL_Method();
998 >      
999 >      if (ht == "Convex") {
1000 >        surfaceMesh_ = new ConvexHull();
1001 >      } else if (ht == "AlphaShape") {
1002 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
1003 >      } else {
1004 >        return 0.0;
1005 >      }
1006 >      
1007 >      // Build a vector of stunt doubles to determine if they are
1008 >      // surface atoms
1009 >      std::vector<StuntDouble*> localSites_;
1010 >      Molecule* mol;
1011 >      StuntDouble* sd;
1012 >      SimInfo::MoleculeIterator i;
1013 >      Molecule::IntegrableObjectIterator  j;
1014 >      
1015 >      for (mol = info_->beginMolecule(i); mol != NULL;
1016 >           mol = info_->nextMolecule(i)) {          
1017 >        for (sd = mol->beginIntegrableObject(j);
1018 >             sd != NULL;
1019 >             sd = mol->nextIntegrableObject(j)) {  
1020 >          localSites_.push_back(sd);
1021 >        }
1022 >      }  
1023 >      
1024 >      // Compute surface Mesh
1025 >      surfaceMesh_->computeHull(localSites_);
1026 >      snap->setHullVolume(surfaceMesh_->getVolume());
1027 >      
1028 >      delete surfaceMesh_;
1029 >    }
1030 >    
1031 >    return snap->getHullVolume();
1032 > #else
1033 >    return 0.0;
1034 > #endif
1035 >  }
1036 >
1037 >
1038 > }

Comparing trunk/src/brains/Thermo.cpp (property svn:keywords):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 2022 by gezelter, Fri Sep 26 22:22:28 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines