| 1 | 
/* | 
| 2 | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
 * | 
| 4 | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
 * that the following conditions are met: | 
| 8 | 
 * | 
| 9 | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
 * | 
| 12 | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
 *    documentation and/or other materials provided with the | 
| 15 | 
 *    distribution. | 
| 16 | 
 * | 
| 17 | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
 * using, modifying or distributing the software or its | 
| 24 | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
 * such damages. | 
| 31 | 
 * | 
| 32 | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
 * work.  Good starting points are: | 
| 35 | 
 *                                                                       | 
| 36 | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 40 | 
 */ | 
| 41 | 
  | 
| 42 | 
#include <math.h> | 
| 43 | 
#include <iostream> | 
| 44 | 
 | 
| 45 | 
#ifdef IS_MPI | 
| 46 | 
#include <mpi.h> | 
| 47 | 
#endif //is_mpi | 
| 48 | 
 | 
| 49 | 
#include "brains/Thermo.hpp" | 
| 50 | 
#include "primitives/Molecule.hpp" | 
| 51 | 
#include "utils/simError.h" | 
| 52 | 
#include "utils/PhysicalConstants.hpp" | 
| 53 | 
 | 
| 54 | 
namespace OpenMD { | 
| 55 | 
 | 
| 56 | 
  RealType Thermo::getKinetic() { | 
| 57 | 
    SimInfo::MoleculeIterator miter; | 
| 58 | 
    std::vector<StuntDouble*>::iterator iiter; | 
| 59 | 
    Molecule* mol; | 
| 60 | 
    StuntDouble* integrableObject;     | 
| 61 | 
    Vector3d vel; | 
| 62 | 
    Vector3d angMom; | 
| 63 | 
    Mat3x3d I; | 
| 64 | 
    int i; | 
| 65 | 
    int j; | 
| 66 | 
    int k; | 
| 67 | 
    RealType mass; | 
| 68 | 
    RealType kinetic = 0.0; | 
| 69 | 
    RealType kinetic_global = 0.0; | 
| 70 | 
     | 
| 71 | 
    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 72 | 
      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;  | 
| 73 | 
           integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 74 | 
         | 
| 75 | 
        mass = integrableObject->getMass(); | 
| 76 | 
        vel = integrableObject->getVel(); | 
| 77 | 
         | 
| 78 | 
        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 79 | 
         | 
| 80 | 
        if (integrableObject->isDirectional()) { | 
| 81 | 
          angMom = integrableObject->getJ(); | 
| 82 | 
          I = integrableObject->getI(); | 
| 83 | 
 | 
| 84 | 
          if (integrableObject->isLinear()) { | 
| 85 | 
            i = integrableObject->linearAxis(); | 
| 86 | 
            j = (i + 1) % 3; | 
| 87 | 
            k = (i + 2) % 3; | 
| 88 | 
            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 89 | 
          } else {                         | 
| 90 | 
            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)  | 
| 91 | 
              + angMom[2]*angMom[2]/I(2, 2); | 
| 92 | 
          } | 
| 93 | 
        } | 
| 94 | 
             | 
| 95 | 
      } | 
| 96 | 
    } | 
| 97 | 
     | 
| 98 | 
#ifdef IS_MPI | 
| 99 | 
 | 
| 100 | 
    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 101 | 
                  MPI_COMM_WORLD); | 
| 102 | 
    kinetic = kinetic_global; | 
| 103 | 
 | 
| 104 | 
#endif //is_mpi | 
| 105 | 
 | 
| 106 | 
    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 107 | 
 | 
| 108 | 
    return kinetic; | 
| 109 | 
  } | 
| 110 | 
 | 
| 111 | 
  RealType Thermo::getPotential() { | 
| 112 | 
    RealType potential = 0.0; | 
| 113 | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 114 | 
    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 115 | 
 | 
| 116 | 
    // Get total potential for entire system from MPI. | 
| 117 | 
 | 
| 118 | 
#ifdef IS_MPI | 
| 119 | 
 | 
| 120 | 
    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, | 
| 121 | 
                  MPI_COMM_WORLD); | 
| 122 | 
    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 123 | 
 | 
| 124 | 
#else | 
| 125 | 
 | 
| 126 | 
    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 127 | 
 | 
| 128 | 
#endif // is_mpi | 
| 129 | 
 | 
| 130 | 
    return potential; | 
| 131 | 
  } | 
| 132 | 
 | 
| 133 | 
  RealType Thermo::getTotalE() { | 
| 134 | 
    RealType total; | 
| 135 | 
 | 
| 136 | 
    total = this->getKinetic() + this->getPotential(); | 
| 137 | 
    return total; | 
| 138 | 
  } | 
| 139 | 
 | 
| 140 | 
  RealType Thermo::getTemperature() { | 
| 141 | 
     | 
| 142 | 
    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); | 
| 143 | 
    return temperature; | 
| 144 | 
  } | 
| 145 | 
 | 
| 146 | 
  RealType Thermo::getVolume() {  | 
| 147 | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 148 | 
    return curSnapshot->getVolume(); | 
| 149 | 
  } | 
| 150 | 
 | 
| 151 | 
  RealType Thermo::getPressure() { | 
| 152 | 
 | 
| 153 | 
    // Relies on the calculation of the full molecular pressure tensor | 
| 154 | 
 | 
| 155 | 
 | 
| 156 | 
    Mat3x3d tensor; | 
| 157 | 
    RealType pressure; | 
| 158 | 
 | 
| 159 | 
    tensor = getPressureTensor(); | 
| 160 | 
 | 
| 161 | 
    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 162 | 
 | 
| 163 | 
    return pressure; | 
| 164 | 
  } | 
| 165 | 
 | 
| 166 | 
  RealType Thermo::getPressure(int direction) { | 
| 167 | 
 | 
| 168 | 
    // Relies on the calculation of the full molecular pressure tensor | 
| 169 | 
 | 
| 170 | 
           | 
| 171 | 
    Mat3x3d tensor; | 
| 172 | 
    RealType pressure; | 
| 173 | 
 | 
| 174 | 
    tensor = getPressureTensor(); | 
| 175 | 
 | 
| 176 | 
    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); | 
| 177 | 
 | 
| 178 | 
    return pressure; | 
| 179 | 
  } | 
| 180 | 
 | 
| 181 | 
  Mat3x3d Thermo::getPressureTensor() { | 
| 182 | 
    // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 183 | 
    // routine derived via viral theorem description in: | 
| 184 | 
    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 185 | 
    Mat3x3d pressureTensor; | 
| 186 | 
    Mat3x3d p_local(0.0); | 
| 187 | 
    Mat3x3d p_global(0.0); | 
| 188 | 
 | 
| 189 | 
    SimInfo::MoleculeIterator i; | 
| 190 | 
    std::vector<StuntDouble*>::iterator j; | 
| 191 | 
    Molecule* mol; | 
| 192 | 
    StuntDouble* integrableObject;     | 
| 193 | 
    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 194 | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;  | 
| 195 | 
           integrableObject = mol->nextIntegrableObject(j)) { | 
| 196 | 
 | 
| 197 | 
        RealType mass = integrableObject->getMass(); | 
| 198 | 
        Vector3d vcom = integrableObject->getVel(); | 
| 199 | 
        p_local += mass * outProduct(vcom, vcom);          | 
| 200 | 
      } | 
| 201 | 
    } | 
| 202 | 
     | 
| 203 | 
#ifdef IS_MPI | 
| 204 | 
    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 205 | 
#else | 
| 206 | 
    p_global = p_local; | 
| 207 | 
#endif // is_mpi | 
| 208 | 
 | 
| 209 | 
    RealType volume = this->getVolume(); | 
| 210 | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 211 | 
    Mat3x3d tau = curSnapshot->statData.getTau(); | 
| 212 | 
 | 
| 213 | 
    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume; | 
| 214 | 
     | 
| 215 | 
    return pressureTensor; | 
| 216 | 
  } | 
| 217 | 
 | 
| 218 | 
 | 
| 219 | 
  void Thermo::saveStat(){ | 
| 220 | 
    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 221 | 
    Stats& stat = currSnapshot->statData; | 
| 222 | 
     | 
| 223 | 
    stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 224 | 
    stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 225 | 
    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 226 | 
    stat[Stats::TEMPERATURE] = getTemperature(); | 
| 227 | 
    stat[Stats::PRESSURE] = getPressure(); | 
| 228 | 
    stat[Stats::VOLUME] = getVolume();       | 
| 229 | 
 | 
| 230 | 
    Mat3x3d tensor =getPressureTensor(); | 
| 231 | 
    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);       | 
| 232 | 
    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);       | 
| 233 | 
    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);       | 
| 234 | 
    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);       | 
| 235 | 
    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);       | 
| 236 | 
    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);       | 
| 237 | 
    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);       | 
| 238 | 
    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);       | 
| 239 | 
    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);       | 
| 240 | 
 | 
| 241 | 
 | 
| 242 | 
    Globals* simParams = info_->getSimParams(); | 
| 243 | 
 | 
| 244 | 
    if (simParams->haveTaggedAtomPair() &&  | 
| 245 | 
        simParams->havePrintTaggedPairDistance()) { | 
| 246 | 
      if ( simParams->getPrintTaggedPairDistance()) { | 
| 247 | 
         | 
| 248 | 
        std::pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 249 | 
        Vector3d pos1, pos2, rab; | 
| 250 | 
 | 
| 251 | 
#ifdef IS_MPI         | 
| 252 | 
        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl; | 
| 253 | 
 | 
| 254 | 
        int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 255 | 
        int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 256 | 
        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; | 
| 257 | 
 | 
| 258 | 
        int proc1 = info_->getMolToProc(mol1); | 
| 259 | 
        int proc2 = info_->getMolToProc(mol2); | 
| 260 | 
 | 
| 261 | 
        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; | 
| 262 | 
 | 
| 263 | 
        RealType data[3]; | 
| 264 | 
        if (proc1 == worldRank) { | 
| 265 | 
          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 266 | 
          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; | 
| 267 | 
          pos1 = sd1->getPos(); | 
| 268 | 
          data[0] = pos1.x(); | 
| 269 | 
          data[1] = pos1.y(); | 
| 270 | 
          data[2] = pos1.z();           | 
| 271 | 
          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 272 | 
        } else { | 
| 273 | 
          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 274 | 
          pos1 = Vector3d(data); | 
| 275 | 
        } | 
| 276 | 
 | 
| 277 | 
 | 
| 278 | 
        if (proc2 == worldRank) { | 
| 279 | 
          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 280 | 
          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; | 
| 281 | 
          pos2 = sd2->getPos(); | 
| 282 | 
          data[0] = pos2.x(); | 
| 283 | 
          data[1] = pos2.y(); | 
| 284 | 
          data[2] = pos2.z();           | 
| 285 | 
          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 286 | 
        } else { | 
| 287 | 
          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 288 | 
          pos2 = Vector3d(data); | 
| 289 | 
        } | 
| 290 | 
#else | 
| 291 | 
        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 292 | 
        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 293 | 
        pos1 = at1->getPos(); | 
| 294 | 
        pos2 = at2->getPos(); | 
| 295 | 
#endif         | 
| 296 | 
        rab = pos2 - pos1; | 
| 297 | 
        currSnapshot->wrapVector(rab); | 
| 298 | 
        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length(); | 
| 299 | 
      } | 
| 300 | 
    } | 
| 301 | 
       | 
| 302 | 
    /**@todo need refactorying*/ | 
| 303 | 
    //Conserved Quantity is set by integrator and time is set by setTime | 
| 304 | 
     | 
| 305 | 
  } | 
| 306 | 
 | 
| 307 | 
} //end namespace OpenMD |