| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include <math.h> | 
| 44 | #include <iostream> | 
| 45 |  | 
| 46 | #ifdef IS_MPI | 
| 47 | #include <mpi.h> | 
| 48 | #endif //is_mpi | 
| 49 |  | 
| 50 | #include "brains/Thermo.hpp" | 
| 51 | #include "primitives/Molecule.hpp" | 
| 52 | #include "utils/simError.h" | 
| 53 | #include "utils/PhysicalConstants.hpp" | 
| 54 | #include "types/FixedChargeAdapter.hpp" | 
| 55 | #include "types/FluctuatingChargeAdapter.hpp" | 
| 56 | #include "types/MultipoleAdapter.hpp" | 
| 57 | #ifdef HAVE_QHULL | 
| 58 | #include "math/ConvexHull.hpp" | 
| 59 | #include "math/AlphaHull.hpp" | 
| 60 | #endif | 
| 61 |  | 
| 62 | using namespace std; | 
| 63 | namespace OpenMD { | 
| 64 |  | 
| 65 | RealType Thermo::getTranslationalKinetic() { | 
| 66 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 67 |  | 
| 68 | if (!snap->hasTranslationalKineticEnergy) { | 
| 69 | SimInfo::MoleculeIterator miter; | 
| 70 | vector<StuntDouble*>::iterator iiter; | 
| 71 | Molecule* mol; | 
| 72 | StuntDouble* sd; | 
| 73 | Vector3d vel; | 
| 74 | RealType mass; | 
| 75 | RealType kinetic(0.0); | 
| 76 |  | 
| 77 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 78 | mol = info_->nextMolecule(miter)) { | 
| 79 |  | 
| 80 | for (sd = mol->beginIntegrableObject(iiter); sd != NULL; | 
| 81 | sd = mol->nextIntegrableObject(iiter)) { | 
| 82 |  | 
| 83 | mass = sd->getMass(); | 
| 84 | vel = sd->getVel(); | 
| 85 |  | 
| 86 | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 87 |  | 
| 88 | } | 
| 89 | } | 
| 90 |  | 
| 91 | #ifdef IS_MPI | 
| 92 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, | 
| 93 | MPI::SUM); | 
| 94 | #endif | 
| 95 |  | 
| 96 | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 97 |  | 
| 98 |  | 
| 99 | snap->setTranslationalKineticEnergy(kinetic); | 
| 100 | } | 
| 101 | return snap->getTranslationalKineticEnergy(); | 
| 102 | } | 
| 103 |  | 
| 104 | RealType Thermo::getRotationalKinetic() { | 
| 105 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 106 |  | 
| 107 | if (!snap->hasRotationalKineticEnergy) { | 
| 108 | SimInfo::MoleculeIterator miter; | 
| 109 | vector<StuntDouble*>::iterator iiter; | 
| 110 | Molecule* mol; | 
| 111 | StuntDouble* sd; | 
| 112 | Vector3d angMom; | 
| 113 | Mat3x3d I; | 
| 114 | int i, j, k; | 
| 115 | RealType kinetic(0.0); | 
| 116 |  | 
| 117 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 118 | mol = info_->nextMolecule(miter)) { | 
| 119 |  | 
| 120 | for (sd = mol->beginIntegrableObject(iiter); sd != NULL; | 
| 121 | sd = mol->nextIntegrableObject(iiter)) { | 
| 122 |  | 
| 123 | if (sd->isDirectional()) { | 
| 124 | angMom = sd->getJ(); | 
| 125 | I = sd->getI(); | 
| 126 |  | 
| 127 | if (sd->isLinear()) { | 
| 128 | i = sd->linearAxis(); | 
| 129 | j = (i + 1) % 3; | 
| 130 | k = (i + 2) % 3; | 
| 131 | kinetic += angMom[j] * angMom[j] / I(j, j) | 
| 132 | + angMom[k] * angMom[k] / I(k, k); | 
| 133 | } else { | 
| 134 | kinetic += angMom[0]*angMom[0]/I(0, 0) | 
| 135 | + angMom[1]*angMom[1]/I(1, 1) | 
| 136 | + angMom[2]*angMom[2]/I(2, 2); | 
| 137 | } | 
| 138 | } | 
| 139 | } | 
| 140 | } | 
| 141 |  | 
| 142 | #ifdef IS_MPI | 
| 143 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, | 
| 144 | MPI::SUM); | 
| 145 | #endif | 
| 146 |  | 
| 147 | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 148 |  | 
| 149 | snap->setRotationalKineticEnergy(kinetic); | 
| 150 | } | 
| 151 | return snap->getRotationalKineticEnergy(); | 
| 152 | } | 
| 153 |  | 
| 154 |  | 
| 155 |  | 
| 156 | RealType Thermo::getKinetic() { | 
| 157 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 158 |  | 
| 159 | if (!snap->hasKineticEnergy) { | 
| 160 | RealType ke = getTranslationalKinetic() + getRotationalKinetic(); | 
| 161 | snap->setKineticEnergy(ke); | 
| 162 | } | 
| 163 | return snap->getKineticEnergy(); | 
| 164 | } | 
| 165 |  | 
| 166 | RealType Thermo::getPotential() { | 
| 167 |  | 
| 168 | // ForceManager computes the potential and stores it in the | 
| 169 | // Snapshot.  All we have to do is report it. | 
| 170 |  | 
| 171 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 172 | return snap->getPotentialEnergy(); | 
| 173 | } | 
| 174 |  | 
| 175 | RealType Thermo::getTotalEnergy() { | 
| 176 |  | 
| 177 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 178 |  | 
| 179 | if (!snap->hasTotalEnergy) { | 
| 180 | snap->setTotalEnergy(this->getKinetic() + this->getPotential()); | 
| 181 | } | 
| 182 |  | 
| 183 | return snap->getTotalEnergy(); | 
| 184 | } | 
| 185 |  | 
| 186 | RealType Thermo::getTemperature() { | 
| 187 |  | 
| 188 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 189 |  | 
| 190 | if (!snap->hasTemperature) { | 
| 191 |  | 
| 192 | RealType temperature = ( 2.0 * this->getKinetic() ) | 
| 193 | / (info_->getNdf()* PhysicalConstants::kb ); | 
| 194 |  | 
| 195 | snap->setTemperature(temperature); | 
| 196 | } | 
| 197 |  | 
| 198 | return snap->getTemperature(); | 
| 199 | } | 
| 200 |  | 
| 201 | RealType Thermo::getElectronicTemperature() { | 
| 202 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 203 |  | 
| 204 | if (!snap->hasElectronicTemperature) { | 
| 205 |  | 
| 206 | SimInfo::MoleculeIterator miter; | 
| 207 | vector<Atom*>::iterator iiter; | 
| 208 | Molecule* mol; | 
| 209 | Atom* atom; | 
| 210 | RealType cvel; | 
| 211 | RealType cmass; | 
| 212 | RealType kinetic(0.0); | 
| 213 | RealType eTemp; | 
| 214 |  | 
| 215 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 216 | mol = info_->nextMolecule(miter)) { | 
| 217 |  | 
| 218 | for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; | 
| 219 | atom = mol->nextFluctuatingCharge(iiter)) { | 
| 220 |  | 
| 221 | cmass = atom->getChargeMass(); | 
| 222 | cvel = atom->getFlucQVel(); | 
| 223 |  | 
| 224 | kinetic += cmass * cvel * cvel; | 
| 225 |  | 
| 226 | } | 
| 227 | } | 
| 228 |  | 
| 229 | #ifdef IS_MPI | 
| 230 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, | 
| 231 | MPI::SUM); | 
| 232 | #endif | 
| 233 |  | 
| 234 | kinetic *= 0.5; | 
| 235 | eTemp =  (2.0 * kinetic) / | 
| 236 | (info_->getNFluctuatingCharges() * PhysicalConstants::kb ); | 
| 237 |  | 
| 238 | snap->setElectronicTemperature(eTemp); | 
| 239 | } | 
| 240 |  | 
| 241 | return snap->getElectronicTemperature(); | 
| 242 | } | 
| 243 |  | 
| 244 |  | 
| 245 | RealType Thermo::getVolume() { | 
| 246 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 247 | return snap->getVolume(); | 
| 248 | } | 
| 249 |  | 
| 250 | RealType Thermo::getPressure() { | 
| 251 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 252 |  | 
| 253 | if (!snap->hasPressure) { | 
| 254 | // Relies on the calculation of the full molecular pressure tensor | 
| 255 |  | 
| 256 | Mat3x3d tensor; | 
| 257 | RealType pressure; | 
| 258 |  | 
| 259 | tensor = getPressureTensor(); | 
| 260 |  | 
| 261 | pressure = PhysicalConstants::pressureConvert * | 
| 262 | (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 263 |  | 
| 264 | snap->setPressure(pressure); | 
| 265 | } | 
| 266 |  | 
| 267 | return snap->getPressure(); | 
| 268 | } | 
| 269 |  | 
| 270 | Mat3x3d Thermo::getPressureTensor() { | 
| 271 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 272 | // routine derived via viral theorem description in: | 
| 273 | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 274 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 275 |  | 
| 276 | if (!snap->hasPressureTensor) { | 
| 277 |  | 
| 278 | Mat3x3d pressureTensor; | 
| 279 | Mat3x3d p_tens(0.0); | 
| 280 | RealType mass; | 
| 281 | Vector3d vcom; | 
| 282 |  | 
| 283 | SimInfo::MoleculeIterator i; | 
| 284 | vector<StuntDouble*>::iterator j; | 
| 285 | Molecule* mol; | 
| 286 | StuntDouble* sd; | 
| 287 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 288 | mol = info_->nextMolecule(i)) { | 
| 289 |  | 
| 290 | for (sd = mol->beginIntegrableObject(j); sd != NULL; | 
| 291 | sd = mol->nextIntegrableObject(j)) { | 
| 292 |  | 
| 293 | mass = sd->getMass(); | 
| 294 | vcom = sd->getVel(); | 
| 295 | p_tens += mass * outProduct(vcom, vcom); | 
| 296 | } | 
| 297 | } | 
| 298 |  | 
| 299 | #ifdef IS_MPI | 
| 300 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, | 
| 301 | MPI::REALTYPE, MPI::SUM); | 
| 302 | #endif | 
| 303 |  | 
| 304 | RealType volume = this->getVolume(); | 
| 305 | Mat3x3d stressTensor = snap->getStressTensor(); | 
| 306 |  | 
| 307 | pressureTensor =  (p_tens + | 
| 308 | PhysicalConstants::energyConvert * stressTensor)/volume; | 
| 309 |  | 
| 310 | snap->setPressureTensor(pressureTensor); | 
| 311 | } | 
| 312 | return snap->getPressureTensor(); | 
| 313 | } | 
| 314 |  | 
| 315 |  | 
| 316 |  | 
| 317 |  | 
| 318 | Vector3d Thermo::getSystemDipole() { | 
| 319 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 320 |  | 
| 321 | if (!snap->hasSystemDipole) { | 
| 322 | SimInfo::MoleculeIterator miter; | 
| 323 | vector<Atom*>::iterator aiter; | 
| 324 | Molecule* mol; | 
| 325 | Atom* atom; | 
| 326 | RealType charge; | 
| 327 | RealType moment(0.0); | 
| 328 | Vector3d ri(0.0); | 
| 329 | Vector3d dipoleVector(0.0); | 
| 330 | Vector3d nPos(0.0); | 
| 331 | Vector3d pPos(0.0); | 
| 332 | RealType nChg(0.0); | 
| 333 | RealType pChg(0.0); | 
| 334 | int nCount = 0; | 
| 335 | int pCount = 0; | 
| 336 |  | 
| 337 | RealType chargeToC = 1.60217733e-19; | 
| 338 | RealType angstromToM = 1.0e-10; | 
| 339 | RealType debyeToCm = 3.33564095198e-30; | 
| 340 |  | 
| 341 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 342 | mol = info_->nextMolecule(miter)) { | 
| 343 |  | 
| 344 | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 345 | atom = mol->nextAtom(aiter)) { | 
| 346 |  | 
| 347 | charge = 0.0; | 
| 348 |  | 
| 349 | FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); | 
| 350 | if ( fca.isFixedCharge() ) { | 
| 351 | charge = fca.getCharge(); | 
| 352 | } | 
| 353 |  | 
| 354 | FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); | 
| 355 | if ( fqa.isFluctuatingCharge() ) { | 
| 356 | charge += atom->getFlucQPos(); | 
| 357 | } | 
| 358 |  | 
| 359 | charge *= chargeToC; | 
| 360 |  | 
| 361 | ri = atom->getPos(); | 
| 362 | snap->wrapVector(ri); | 
| 363 | ri *= angstromToM; | 
| 364 |  | 
| 365 | if (charge < 0.0) { | 
| 366 | nPos += ri; | 
| 367 | nChg -= charge; | 
| 368 | nCount++; | 
| 369 | } else if (charge > 0.0) { | 
| 370 | pPos += ri; | 
| 371 | pChg += charge; | 
| 372 | pCount++; | 
| 373 | } | 
| 374 |  | 
| 375 | MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); | 
| 376 | if (ma.isDipole() ) { | 
| 377 | Vector3d u_i = atom->getElectroFrame().getColumn(2); | 
| 378 | moment = ma.getDipoleMoment(); | 
| 379 | moment *= debyeToCm; | 
| 380 | dipoleVector += u_i * moment; | 
| 381 | } | 
| 382 | } | 
| 383 | } | 
| 384 |  | 
| 385 |  | 
| 386 | #ifdef IS_MPI | 
| 387 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, | 
| 388 | MPI::SUM); | 
| 389 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, | 
| 390 | MPI::SUM); | 
| 391 |  | 
| 392 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, | 
| 393 | MPI::SUM); | 
| 394 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, | 
| 395 | MPI::SUM); | 
| 396 |  | 
| 397 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, | 
| 398 | MPI::REALTYPE, MPI::SUM); | 
| 399 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, | 
| 400 | MPI::REALTYPE, MPI::SUM); | 
| 401 |  | 
| 402 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), | 
| 403 | 3, MPI::REALTYPE, MPI::SUM); | 
| 404 | #endif | 
| 405 |  | 
| 406 | // first load the accumulated dipole moment (if dipoles were present) | 
| 407 | Vector3d boxDipole = dipoleVector; | 
| 408 | // now include the dipole moment due to charges | 
| 409 | // use the lesser of the positive and negative charge totals | 
| 410 | RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 411 |  | 
| 412 | // find the average positions | 
| 413 | if (pCount > 0 && nCount > 0 ) { | 
| 414 | pPos /= pCount; | 
| 415 | nPos /= nCount; | 
| 416 | } | 
| 417 |  | 
| 418 | // dipole is from the negative to the positive (physics notation) | 
| 419 | boxDipole += (pPos - nPos) * chg_value; | 
| 420 | snap->setSystemDipole(boxDipole); | 
| 421 | } | 
| 422 |  | 
| 423 | return snap->getSystemDipole(); | 
| 424 | } | 
| 425 |  | 
| 426 | // Returns the Heat Flux Vector for the system | 
| 427 | Vector3d Thermo::getHeatFlux(){ | 
| 428 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 429 | SimInfo::MoleculeIterator miter; | 
| 430 | vector<StuntDouble*>::iterator iiter; | 
| 431 | Molecule* mol; | 
| 432 | StuntDouble* sd; | 
| 433 | RigidBody::AtomIterator ai; | 
| 434 | Atom* atom; | 
| 435 | Vector3d vel; | 
| 436 | Vector3d angMom; | 
| 437 | Mat3x3d I; | 
| 438 | int i; | 
| 439 | int j; | 
| 440 | int k; | 
| 441 | RealType mass; | 
| 442 |  | 
| 443 | Vector3d x_a; | 
| 444 | RealType kinetic; | 
| 445 | RealType potential; | 
| 446 | RealType eatom; | 
| 447 | // Convective portion of the heat flux | 
| 448 | Vector3d heatFluxJc = V3Zero; | 
| 449 |  | 
| 450 | /* Calculate convective portion of the heat flux */ | 
| 451 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 452 | mol = info_->nextMolecule(miter)) { | 
| 453 |  | 
| 454 | for (sd = mol->beginIntegrableObject(iiter); | 
| 455 | sd != NULL; | 
| 456 | sd = mol->nextIntegrableObject(iiter)) { | 
| 457 |  | 
| 458 | mass = sd->getMass(); | 
| 459 | vel = sd->getVel(); | 
| 460 |  | 
| 461 | kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 462 |  | 
| 463 | if (sd->isDirectional()) { | 
| 464 | angMom = sd->getJ(); | 
| 465 | I = sd->getI(); | 
| 466 |  | 
| 467 | if (sd->isLinear()) { | 
| 468 | i = sd->linearAxis(); | 
| 469 | j = (i + 1) % 3; | 
| 470 | k = (i + 2) % 3; | 
| 471 | kinetic += angMom[j] * angMom[j] / I(j, j) | 
| 472 | + angMom[k] * angMom[k] / I(k, k); | 
| 473 | } else { | 
| 474 | kinetic += angMom[0]*angMom[0]/I(0, 0) | 
| 475 | + angMom[1]*angMom[1]/I(1, 1) | 
| 476 | + angMom[2]*angMom[2]/I(2, 2); | 
| 477 | } | 
| 478 | } | 
| 479 |  | 
| 480 | potential = 0.0; | 
| 481 |  | 
| 482 | if (sd->isRigidBody()) { | 
| 483 | RigidBody* rb = dynamic_cast<RigidBody*>(sd); | 
| 484 | for (atom = rb->beginAtom(ai); atom != NULL; | 
| 485 | atom = rb->nextAtom(ai)) { | 
| 486 | potential +=  atom->getParticlePot(); | 
| 487 | } | 
| 488 | } else { | 
| 489 | potential = sd->getParticlePot(); | 
| 490 | } | 
| 491 |  | 
| 492 | potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 | 
| 493 | // The potential may not be a 1/2 factor | 
| 494 | eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2 | 
| 495 | heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 | 
| 496 | heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 | 
| 497 | heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 | 
| 498 | } | 
| 499 | } | 
| 500 |  | 
| 501 | /* The J_v vector is reduced in the forceManager so everyone has | 
| 502 | *  the global Jv. Jc is computed over the local atoms and must be | 
| 503 | *  reduced among all processors. | 
| 504 | */ | 
| 505 | #ifdef IS_MPI | 
| 506 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, | 
| 507 | MPI::SUM); | 
| 508 | #endif | 
| 509 |  | 
| 510 | // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 | 
| 511 |  | 
| 512 | Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * | 
| 513 | PhysicalConstants::energyConvert; | 
| 514 |  | 
| 515 | // Correct for the fact the flux is 1/V (Jc + Jv) | 
| 516 | return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 | 
| 517 | } | 
| 518 |  | 
| 519 |  | 
| 520 | Vector3d Thermo::getComVel(){ | 
| 521 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 522 |  | 
| 523 | if (!snap->hasCOMvel) { | 
| 524 |  | 
| 525 | SimInfo::MoleculeIterator i; | 
| 526 | Molecule* mol; | 
| 527 |  | 
| 528 | Vector3d comVel(0.0); | 
| 529 | RealType totalMass(0.0); | 
| 530 |  | 
| 531 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 532 | mol = info_->nextMolecule(i)) { | 
| 533 | RealType mass = mol->getMass(); | 
| 534 | totalMass += mass; | 
| 535 | comVel += mass * mol->getComVel(); | 
| 536 | } | 
| 537 |  | 
| 538 | #ifdef IS_MPI | 
| 539 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, | 
| 540 | MPI::SUM); | 
| 541 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, | 
| 542 | MPI::REALTYPE, MPI::SUM); | 
| 543 | #endif | 
| 544 |  | 
| 545 | comVel /= totalMass; | 
| 546 | snap->setCOMvel(comVel); | 
| 547 | } | 
| 548 | return snap->getCOMvel(); | 
| 549 | } | 
| 550 |  | 
| 551 | Vector3d Thermo::getCom(){ | 
| 552 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 553 |  | 
| 554 | if (!snap->hasCOM) { | 
| 555 |  | 
| 556 | SimInfo::MoleculeIterator i; | 
| 557 | Molecule* mol; | 
| 558 |  | 
| 559 | Vector3d com(0.0); | 
| 560 | RealType totalMass(0.0); | 
| 561 |  | 
| 562 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 563 | mol = info_->nextMolecule(i)) { | 
| 564 | RealType mass = mol->getMass(); | 
| 565 | totalMass += mass; | 
| 566 | com += mass * mol->getCom(); | 
| 567 | } | 
| 568 |  | 
| 569 | #ifdef IS_MPI | 
| 570 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, | 
| 571 | MPI::SUM); | 
| 572 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, | 
| 573 | MPI::REALTYPE, MPI::SUM); | 
| 574 | #endif | 
| 575 |  | 
| 576 | com /= totalMass; | 
| 577 | snap->setCOM(com); | 
| 578 | } | 
| 579 | return snap->getCOM(); | 
| 580 | } | 
| 581 |  | 
| 582 | /** | 
| 583 | * Returns center of mass and center of mass velocity in one | 
| 584 | * function call. | 
| 585 | */ | 
| 586 | void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 587 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 588 |  | 
| 589 | if (!(snap->hasCOM && snap->hasCOMvel)) { | 
| 590 |  | 
| 591 | SimInfo::MoleculeIterator i; | 
| 592 | Molecule* mol; | 
| 593 |  | 
| 594 | RealType totalMass(0.0); | 
| 595 |  | 
| 596 | com = 0.0; | 
| 597 | comVel = 0.0; | 
| 598 |  | 
| 599 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 600 | mol = info_->nextMolecule(i)) { | 
| 601 | RealType mass = mol->getMass(); | 
| 602 | totalMass += mass; | 
| 603 | com += mass * mol->getCom(); | 
| 604 | comVel += mass * mol->getComVel(); | 
| 605 | } | 
| 606 |  | 
| 607 | #ifdef IS_MPI | 
| 608 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, | 
| 609 | MPI::SUM); | 
| 610 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, | 
| 611 | MPI::REALTYPE, MPI::SUM); | 
| 612 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, | 
| 613 | MPI::REALTYPE, MPI::SUM); | 
| 614 | #endif | 
| 615 |  | 
| 616 | com /= totalMass; | 
| 617 | comVel /= totalMass; | 
| 618 | snap->setCOM(com); | 
| 619 | snap->setCOMvel(comVel); | 
| 620 | } | 
| 621 | com = snap->getCOM(); | 
| 622 | comVel = snap->getCOMvel(); | 
| 623 | return; | 
| 624 | } | 
| 625 |  | 
| 626 | /** | 
| 627 | * Return intertia tensor for entire system and angular momentum | 
| 628 | * Vector. | 
| 629 | * | 
| 630 | * | 
| 631 | * | 
| 632 | *    [  Ixx -Ixy  -Ixz ] | 
| 633 | * I =| -Iyx  Iyy  -Iyz | | 
| 634 | *    [ -Izx -Iyz   Izz ] | 
| 635 | */ | 
| 636 | void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, | 
| 637 | Vector3d &angularMomentum){ | 
| 638 |  | 
| 639 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 640 |  | 
| 641 | if (!(snap->hasInertiaTensor && snap->hasCOMw)) { | 
| 642 |  | 
| 643 | RealType xx = 0.0; | 
| 644 | RealType yy = 0.0; | 
| 645 | RealType zz = 0.0; | 
| 646 | RealType xy = 0.0; | 
| 647 | RealType xz = 0.0; | 
| 648 | RealType yz = 0.0; | 
| 649 | Vector3d com(0.0); | 
| 650 | Vector3d comVel(0.0); | 
| 651 |  | 
| 652 | getComAll(com, comVel); | 
| 653 |  | 
| 654 | SimInfo::MoleculeIterator i; | 
| 655 | Molecule* mol; | 
| 656 |  | 
| 657 | Vector3d thisq(0.0); | 
| 658 | Vector3d thisv(0.0); | 
| 659 |  | 
| 660 | RealType thisMass = 0.0; | 
| 661 |  | 
| 662 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 663 | mol = info_->nextMolecule(i)) { | 
| 664 |  | 
| 665 | thisq = mol->getCom()-com; | 
| 666 | thisv = mol->getComVel()-comVel; | 
| 667 | thisMass = mol->getMass(); | 
| 668 | // Compute moment of intertia coefficients. | 
| 669 | xx += thisq[0]*thisq[0]*thisMass; | 
| 670 | yy += thisq[1]*thisq[1]*thisMass; | 
| 671 | zz += thisq[2]*thisq[2]*thisMass; | 
| 672 |  | 
| 673 | // compute products of intertia | 
| 674 | xy += thisq[0]*thisq[1]*thisMass; | 
| 675 | xz += thisq[0]*thisq[2]*thisMass; | 
| 676 | yz += thisq[1]*thisq[2]*thisMass; | 
| 677 |  | 
| 678 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 679 | } | 
| 680 |  | 
| 681 | inertiaTensor(0,0) = yy + zz; | 
| 682 | inertiaTensor(0,1) = -xy; | 
| 683 | inertiaTensor(0,2) = -xz; | 
| 684 | inertiaTensor(1,0) = -xy; | 
| 685 | inertiaTensor(1,1) = xx + zz; | 
| 686 | inertiaTensor(1,2) = -yz; | 
| 687 | inertiaTensor(2,0) = -xz; | 
| 688 | inertiaTensor(2,1) = -yz; | 
| 689 | inertiaTensor(2,2) = xx + yy; | 
| 690 |  | 
| 691 | #ifdef IS_MPI | 
| 692 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), | 
| 693 | 9, MPI::REALTYPE, MPI::SUM); | 
| 694 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, | 
| 695 | angularMomentum.getArrayPointer(), 3, | 
| 696 | MPI::REALTYPE, MPI::SUM); | 
| 697 | #endif | 
| 698 |  | 
| 699 | snap->setCOMw(angularMomentum); | 
| 700 | snap->setInertiaTensor(inertiaTensor); | 
| 701 | } | 
| 702 |  | 
| 703 | angularMomentum = snap->getCOMw(); | 
| 704 | inertiaTensor = snap->getInertiaTensor(); | 
| 705 |  | 
| 706 | return; | 
| 707 | } | 
| 708 |  | 
| 709 | // Returns the angular momentum of the system | 
| 710 | Vector3d Thermo::getAngularMomentum(){ | 
| 711 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 712 |  | 
| 713 | if (!snap->hasCOMw) { | 
| 714 |  | 
| 715 | Vector3d com(0.0); | 
| 716 | Vector3d comVel(0.0); | 
| 717 | Vector3d angularMomentum(0.0); | 
| 718 |  | 
| 719 | getComAll(com, comVel); | 
| 720 |  | 
| 721 | SimInfo::MoleculeIterator i; | 
| 722 | Molecule* mol; | 
| 723 |  | 
| 724 | Vector3d thisr(0.0); | 
| 725 | Vector3d thisp(0.0); | 
| 726 |  | 
| 727 | RealType thisMass; | 
| 728 |  | 
| 729 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 730 | mol = info_->nextMolecule(i)) { | 
| 731 | thisMass = mol->getMass(); | 
| 732 | thisr = mol->getCom() - com; | 
| 733 | thisp = (mol->getComVel() - comVel) * thisMass; | 
| 734 |  | 
| 735 | angularMomentum += cross( thisr, thisp ); | 
| 736 | } | 
| 737 |  | 
| 738 | #ifdef IS_MPI | 
| 739 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, | 
| 740 | angularMomentum.getArrayPointer(), 3, | 
| 741 | MPI::REALTYPE, MPI::SUM); | 
| 742 | #endif | 
| 743 |  | 
| 744 | snap->setCOMw(angularMomentum); | 
| 745 | } | 
| 746 |  | 
| 747 | return snap->getCOMw(); | 
| 748 | } | 
| 749 |  | 
| 750 |  | 
| 751 | /** | 
| 752 | * Returns the Volume of the system based on a ellipsoid with | 
| 753 | * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 754 | * where R_i are related to the principle inertia moments | 
| 755 | *  R_i = sqrt(C*I_i/N), this reduces to | 
| 756 | *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). | 
| 757 | * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 758 | */ | 
| 759 | RealType Thermo::getGyrationalVolume(){ | 
| 760 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 761 |  | 
| 762 | if (!snap->hasGyrationalVolume) { | 
| 763 |  | 
| 764 | Mat3x3d intTensor; | 
| 765 | RealType det; | 
| 766 | Vector3d dummyAngMom; | 
| 767 | RealType sysconstants; | 
| 768 | RealType geomCnst; | 
| 769 | RealType volume; | 
| 770 |  | 
| 771 | geomCnst = 3.0/2.0; | 
| 772 | /* Get the inertial tensor and angular momentum for free*/ | 
| 773 | getInertiaTensor(intTensor, dummyAngMom); | 
| 774 |  | 
| 775 | det = intTensor.determinant(); | 
| 776 | sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); | 
| 777 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); | 
| 778 |  | 
| 779 | snap->setGyrationalVolume(volume); | 
| 780 | } | 
| 781 | return snap->getGyrationalVolume(); | 
| 782 | } | 
| 783 |  | 
| 784 | void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 785 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 786 |  | 
| 787 | if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { | 
| 788 |  | 
| 789 | Mat3x3d intTensor; | 
| 790 | Vector3d dummyAngMom; | 
| 791 | RealType sysconstants; | 
| 792 | RealType geomCnst; | 
| 793 |  | 
| 794 | geomCnst = 3.0/2.0; | 
| 795 | /* Get the inertia tensor and angular momentum for free*/ | 
| 796 | this->getInertiaTensor(intTensor, dummyAngMom); | 
| 797 |  | 
| 798 | detI = intTensor.determinant(); | 
| 799 | sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); | 
| 800 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); | 
| 801 | snap->setGyrationalVolume(volume); | 
| 802 | } else { | 
| 803 | volume = snap->getGyrationalVolume(); | 
| 804 | detI = snap->getInertiaTensor().determinant(); | 
| 805 | } | 
| 806 | return; | 
| 807 | } | 
| 808 |  | 
| 809 | RealType Thermo::getTaggedAtomPairDistance(){ | 
| 810 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 811 | Globals* simParams = info_->getSimParams(); | 
| 812 |  | 
| 813 | if (simParams->haveTaggedAtomPair() && | 
| 814 | simParams->havePrintTaggedPairDistance()) { | 
| 815 | if ( simParams->getPrintTaggedPairDistance()) { | 
| 816 |  | 
| 817 | pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 818 | Vector3d pos1, pos2, rab; | 
| 819 |  | 
| 820 | #ifdef IS_MPI | 
| 821 | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 822 | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 823 |  | 
| 824 | int proc1 = info_->getMolToProc(mol1); | 
| 825 | int proc2 = info_->getMolToProc(mol2); | 
| 826 |  | 
| 827 | RealType data[3]; | 
| 828 | if (proc1 == worldRank) { | 
| 829 | StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 830 | pos1 = sd1->getPos(); | 
| 831 | data[0] = pos1.x(); | 
| 832 | data[1] = pos1.y(); | 
| 833 | data[2] = pos1.z(); | 
| 834 | MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); | 
| 835 | } else { | 
| 836 | MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); | 
| 837 | pos1 = Vector3d(data); | 
| 838 | } | 
| 839 |  | 
| 840 | if (proc2 == worldRank) { | 
| 841 | StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 842 | pos2 = sd2->getPos(); | 
| 843 | data[0] = pos2.x(); | 
| 844 | data[1] = pos2.y(); | 
| 845 | data[2] = pos2.z(); | 
| 846 | MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); | 
| 847 | } else { | 
| 848 | MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); | 
| 849 | pos2 = Vector3d(data); | 
| 850 | } | 
| 851 | #else | 
| 852 | StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 853 | StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 854 | pos1 = at1->getPos(); | 
| 855 | pos2 = at2->getPos(); | 
| 856 | #endif | 
| 857 | rab = pos2 - pos1; | 
| 858 | currSnapshot->wrapVector(rab); | 
| 859 | return rab.length(); | 
| 860 | } | 
| 861 | return 0.0; | 
| 862 | } | 
| 863 | return 0.0; | 
| 864 | } | 
| 865 |  | 
| 866 | RealType Thermo::getHullVolume(){ | 
| 867 | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 868 |  | 
| 869 | #ifdef HAVE_QHULL | 
| 870 | if (!snap->hasHullVolume) { | 
| 871 | Hull* surfaceMesh_; | 
| 872 |  | 
| 873 | Globals* simParams = info_->getSimParams(); | 
| 874 | const std::string ht = simParams->getHULL_Method(); | 
| 875 |  | 
| 876 | if (ht == "Convex") { | 
| 877 | surfaceMesh_ = new ConvexHull(); | 
| 878 | } else if (ht == "AlphaShape") { | 
| 879 | surfaceMesh_ = new AlphaHull(simParams->getAlpha()); | 
| 880 | } else { | 
| 881 | return 0.0; | 
| 882 | } | 
| 883 |  | 
| 884 | // Build a vector of stunt doubles to determine if they are | 
| 885 | // surface atoms | 
| 886 | std::vector<StuntDouble*> localSites_; | 
| 887 | Molecule* mol; | 
| 888 | StuntDouble* sd; | 
| 889 | SimInfo::MoleculeIterator i; | 
| 890 | Molecule::IntegrableObjectIterator  j; | 
| 891 |  | 
| 892 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 893 | mol = info_->nextMolecule(i)) { | 
| 894 | for (sd = mol->beginIntegrableObject(j); | 
| 895 | sd != NULL; | 
| 896 | sd = mol->nextIntegrableObject(j)) { | 
| 897 | localSites_.push_back(sd); | 
| 898 | } | 
| 899 | } | 
| 900 |  | 
| 901 | // Compute surface Mesh | 
| 902 | surfaceMesh_->computeHull(localSites_); | 
| 903 | snap->setHullVolume(surfaceMesh_->getVolume()); | 
| 904 | } | 
| 905 | return snap->getHullVolume(); | 
| 906 | #else | 
| 907 | return 0.0; | 
| 908 | #endif | 
| 909 | } | 
| 910 | } |