| 1 | #include <math.h> | 
| 2 | #include <iostream> | 
| 3 | using namespace std; | 
| 4 |  | 
| 5 | #ifdef IS_MPI | 
| 6 | #include <mpi.h> | 
| 7 | #endif //is_mpi | 
| 8 |  | 
| 9 | #include "Thermo.hpp" | 
| 10 | #include "SRI.hpp" | 
| 11 | #include "Integrator.hpp" | 
| 12 | #include "simError.h" | 
| 13 | #include "MatVec3.h" | 
| 14 |  | 
| 15 | #ifdef IS_MPI | 
| 16 | #define __C | 
| 17 | #include "mpiSimulation.hpp" | 
| 18 | #endif // is_mpi | 
| 19 |  | 
| 20 | inline double roundMe( double x ){ | 
| 21 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 22 | } | 
| 23 |  | 
| 24 | Thermo::Thermo( SimInfo* the_info ) { | 
| 25 | info = the_info; | 
| 26 | int baseSeed = the_info->getSeed(); | 
| 27 |  | 
| 28 | gaussStream = new gaussianSPRNG( baseSeed ); | 
| 29 | } | 
| 30 |  | 
| 31 | Thermo::~Thermo(){ | 
| 32 | delete gaussStream; | 
| 33 | } | 
| 34 |  | 
| 35 | double Thermo::getKinetic(){ | 
| 36 |  | 
| 37 | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 38 | double kinetic; | 
| 39 | double amass; | 
| 40 | double aVel[3], aJ[3], I[3][3]; | 
| 41 | int i, j, k, kl; | 
| 42 |  | 
| 43 | double kinetic_global; | 
| 44 | vector<StuntDouble *> integrableObjects = info->integrableObjects; | 
| 45 |  | 
| 46 | kinetic = 0.0; | 
| 47 | kinetic_global = 0.0; | 
| 48 |  | 
| 49 | for (kl=0; kl<integrableObjects.size(); kl++) { | 
| 50 | integrableObjects[kl]->getVel(aVel); | 
| 51 | amass = integrableObjects[kl]->getMass(); | 
| 52 |  | 
| 53 | for(j=0; j<3; j++) | 
| 54 | kinetic += amass*aVel[j]*aVel[j]; | 
| 55 |  | 
| 56 | if (integrableObjects[kl]->isDirectional()){ | 
| 57 |  | 
| 58 | integrableObjects[kl]->getJ( aJ ); | 
| 59 | integrableObjects[kl]->getI( I ); | 
| 60 |  | 
| 61 | if (integrableObjects[kl]->isLinear()) { | 
| 62 | i = integrableObjects[kl]->linearAxis(); | 
| 63 | j = (i+1)%3; | 
| 64 | k = (i+2)%3; | 
| 65 | kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; | 
| 66 | } else { | 
| 67 | for (j=0; j<3; j++) | 
| 68 | kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 69 | } | 
| 70 | } | 
| 71 | } | 
| 72 | #ifdef IS_MPI | 
| 73 | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 74 | MPI_SUM, MPI_COMM_WORLD); | 
| 75 | kinetic = kinetic_global; | 
| 76 | #endif //is_mpi | 
| 77 |  | 
| 78 | kinetic = kinetic * 0.5 / e_convert; | 
| 79 |  | 
| 80 | return kinetic; | 
| 81 | } | 
| 82 |  | 
| 83 | double Thermo::getPotential(){ | 
| 84 |  | 
| 85 | double potential_local; | 
| 86 | double potential; | 
| 87 | int el, nSRI; | 
| 88 | Molecule* molecules; | 
| 89 |  | 
| 90 | molecules = info->molecules; | 
| 91 | nSRI = info->n_SRI; | 
| 92 |  | 
| 93 | potential_local = 0.0; | 
| 94 | potential = 0.0; | 
| 95 | potential_local += info->lrPot; | 
| 96 |  | 
| 97 | for( el=0; el<info->n_mol; el++ ){ | 
| 98 | potential_local += molecules[el].getPotential(); | 
| 99 | } | 
| 100 |  | 
| 101 | // Get total potential for entire system from MPI. | 
| 102 | #ifdef IS_MPI | 
| 103 | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 104 | MPI_SUM, MPI_COMM_WORLD); | 
| 105 | #else | 
| 106 | potential = potential_local; | 
| 107 | #endif // is_mpi | 
| 108 |  | 
| 109 | return potential; | 
| 110 | } | 
| 111 |  | 
| 112 | double Thermo::getTotalE(){ | 
| 113 |  | 
| 114 | double total; | 
| 115 |  | 
| 116 | total = this->getKinetic() + this->getPotential(); | 
| 117 | return total; | 
| 118 | } | 
| 119 |  | 
| 120 | double Thermo::getTemperature(){ | 
| 121 |  | 
| 122 | const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 123 | double temperature; | 
| 124 |  | 
| 125 | temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 126 | return temperature; | 
| 127 | } | 
| 128 |  | 
| 129 | double Thermo::getVolume() { | 
| 130 |  | 
| 131 | return info->boxVol; | 
| 132 | } | 
| 133 |  | 
| 134 | double Thermo::getPressure() { | 
| 135 |  | 
| 136 | // Relies on the calculation of the full molecular pressure tensor | 
| 137 |  | 
| 138 | const double p_convert = 1.63882576e8; | 
| 139 | double press[3][3]; | 
| 140 | double pressure; | 
| 141 |  | 
| 142 | this->getPressureTensor(press); | 
| 143 |  | 
| 144 | pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 145 |  | 
| 146 | return pressure; | 
| 147 | } | 
| 148 |  | 
| 149 | double Thermo::getPressureX() { | 
| 150 |  | 
| 151 | // Relies on the calculation of the full molecular pressure tensor | 
| 152 |  | 
| 153 | const double p_convert = 1.63882576e8; | 
| 154 | double press[3][3]; | 
| 155 | double pressureX; | 
| 156 |  | 
| 157 | this->getPressureTensor(press); | 
| 158 |  | 
| 159 | pressureX = p_convert * press[0][0]; | 
| 160 |  | 
| 161 | return pressureX; | 
| 162 | } | 
| 163 |  | 
| 164 | double Thermo::getPressureY() { | 
| 165 |  | 
| 166 | // Relies on the calculation of the full molecular pressure tensor | 
| 167 |  | 
| 168 | const double p_convert = 1.63882576e8; | 
| 169 | double press[3][3]; | 
| 170 | double pressureY; | 
| 171 |  | 
| 172 | this->getPressureTensor(press); | 
| 173 |  | 
| 174 | pressureY = p_convert * press[1][1]; | 
| 175 |  | 
| 176 | return pressureY; | 
| 177 | } | 
| 178 |  | 
| 179 | double Thermo::getPressureZ() { | 
| 180 |  | 
| 181 | // Relies on the calculation of the full molecular pressure tensor | 
| 182 |  | 
| 183 | const double p_convert = 1.63882576e8; | 
| 184 | double press[3][3]; | 
| 185 | double pressureZ; | 
| 186 |  | 
| 187 | this->getPressureTensor(press); | 
| 188 |  | 
| 189 | pressureZ = p_convert * press[2][2]; | 
| 190 |  | 
| 191 | return pressureZ; | 
| 192 | } | 
| 193 |  | 
| 194 |  | 
| 195 | void Thermo::getPressureTensor(double press[3][3]){ | 
| 196 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 197 | // routine derived via viral theorem description in: | 
| 198 | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 199 |  | 
| 200 | const double e_convert = 4.184e-4; | 
| 201 |  | 
| 202 | double molmass, volume; | 
| 203 | double vcom[3]; | 
| 204 | double p_local[9], p_global[9]; | 
| 205 | int i, j, k; | 
| 206 |  | 
| 207 | for (i=0; i < 9; i++) { | 
| 208 | p_local[i] = 0.0; | 
| 209 | p_global[i] = 0.0; | 
| 210 | } | 
| 211 |  | 
| 212 | // use velocities of integrableObjects and their masses: | 
| 213 |  | 
| 214 | for (i=0; i < info->integrableObjects.size(); i++) { | 
| 215 |  | 
| 216 | molmass = info->integrableObjects[i]->getMass(); | 
| 217 |  | 
| 218 | info->integrableObjects[i]->getVel(vcom); | 
| 219 |  | 
| 220 | p_local[0] += molmass * (vcom[0] * vcom[0]); | 
| 221 | p_local[1] += molmass * (vcom[0] * vcom[1]); | 
| 222 | p_local[2] += molmass * (vcom[0] * vcom[2]); | 
| 223 | p_local[3] += molmass * (vcom[1] * vcom[0]); | 
| 224 | p_local[4] += molmass * (vcom[1] * vcom[1]); | 
| 225 | p_local[5] += molmass * (vcom[1] * vcom[2]); | 
| 226 | p_local[6] += molmass * (vcom[2] * vcom[0]); | 
| 227 | p_local[7] += molmass * (vcom[2] * vcom[1]); | 
| 228 | p_local[8] += molmass * (vcom[2] * vcom[2]); | 
| 229 |  | 
| 230 | } | 
| 231 |  | 
| 232 | // Get total for entire system from MPI. | 
| 233 |  | 
| 234 | #ifdef IS_MPI | 
| 235 | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 236 | #else | 
| 237 | for (i=0; i<9; i++) { | 
| 238 | p_global[i] = p_local[i]; | 
| 239 | } | 
| 240 | #endif // is_mpi | 
| 241 |  | 
| 242 | volume = this->getVolume(); | 
| 243 |  | 
| 244 |  | 
| 245 |  | 
| 246 | for(i = 0; i < 3; i++) { | 
| 247 | for (j = 0; j < 3; j++) { | 
| 248 | k = 3*i + j; | 
| 249 | press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 250 | } | 
| 251 | } | 
| 252 | } | 
| 253 |  | 
| 254 | void Thermo::velocitize() { | 
| 255 |  | 
| 256 | double aVel[3], aJ[3], I[3][3]; | 
| 257 | int i, j, l, m, n, vr, vd; // velocity randomizer loop counters | 
| 258 | double vdrift[3]; | 
| 259 | double vbar; | 
| 260 | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 261 | double av2; | 
| 262 | double kebar; | 
| 263 | double temperature; | 
| 264 | int nobj; | 
| 265 |  | 
| 266 | if (!info->have_target_temp) { | 
| 267 | sprintf( painCave.errMsg, | 
| 268 | "You can't resample the velocities without a targetTemp!\n" | 
| 269 | ); | 
| 270 | painCave.isFatal = 1; | 
| 271 | painCave.severity = OOPSE_ERROR; | 
| 272 | simError(); | 
| 273 | return; | 
| 274 | } | 
| 275 |  | 
| 276 | nobj = info->integrableObjects.size(); | 
| 277 |  | 
| 278 | temperature   = info->target_temp; | 
| 279 |  | 
| 280 | kebar = kb * temperature * (double)info->ndfRaw / | 
| 281 | ( 2.0 * (double)info->ndf ); | 
| 282 |  | 
| 283 | for(vr = 0; vr < nobj; vr++){ | 
| 284 |  | 
| 285 | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 286 |  | 
| 287 | av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); | 
| 288 | vbar = sqrt( av2 ); | 
| 289 |  | 
| 290 | // picks random velocities from a gaussian distribution | 
| 291 | // centered on vbar | 
| 292 |  | 
| 293 | for (j=0; j<3; j++) | 
| 294 | aVel[j] = vbar * gaussStream->getGaussian(); | 
| 295 |  | 
| 296 | info->integrableObjects[vr]->setVel( aVel ); | 
| 297 |  | 
| 298 | if(info->integrableObjects[vr]->isDirectional()){ | 
| 299 |  | 
| 300 | info->integrableObjects[vr]->getI( I ); | 
| 301 |  | 
| 302 | if (info->integrableObjects[vr]->isLinear()) { | 
| 303 |  | 
| 304 | l= info->integrableObjects[vr]->linearAxis(); | 
| 305 | m = (l+1)%3; | 
| 306 | n = (l+2)%3; | 
| 307 |  | 
| 308 | aJ[l] = 0.0; | 
| 309 | vbar = sqrt( 2.0 * kebar * I[m][m] ); | 
| 310 | aJ[m] = vbar * gaussStream->getGaussian(); | 
| 311 | vbar = sqrt( 2.0 * kebar * I[n][n] ); | 
| 312 | aJ[n] = vbar * gaussStream->getGaussian(); | 
| 313 |  | 
| 314 | } else { | 
| 315 | for (j = 0 ; j < 3; j++) { | 
| 316 | vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 317 | aJ[j] = vbar * gaussStream->getGaussian(); | 
| 318 | } | 
| 319 | } // else isLinear | 
| 320 |  | 
| 321 | info->integrableObjects[vr]->setJ( aJ ); | 
| 322 |  | 
| 323 | }//isDirectional | 
| 324 |  | 
| 325 | } | 
| 326 |  | 
| 327 | // Get the Center of Mass drift velocity. | 
| 328 |  | 
| 329 | getCOMVel(vdrift); | 
| 330 |  | 
| 331 | //  Corrects for the center of mass drift. | 
| 332 | // sums all the momentum and divides by total mass. | 
| 333 |  | 
| 334 | for(vd = 0; vd < nobj; vd++){ | 
| 335 |  | 
| 336 | info->integrableObjects[vd]->getVel(aVel); | 
| 337 |  | 
| 338 | for (j=0; j < 3; j++) | 
| 339 | aVel[j] -= vdrift[j]; | 
| 340 |  | 
| 341 | info->integrableObjects[vd]->setVel( aVel ); | 
| 342 | } | 
| 343 |  | 
| 344 | } | 
| 345 |  | 
| 346 | void Thermo::getCOMVel(double vdrift[3]){ | 
| 347 |  | 
| 348 | double mtot, mtot_local; | 
| 349 | double aVel[3], amass; | 
| 350 | double vdrift_local[3]; | 
| 351 | int vd, j; | 
| 352 | int nobj; | 
| 353 |  | 
| 354 | nobj   = info->integrableObjects.size(); | 
| 355 |  | 
| 356 | mtot_local = 0.0; | 
| 357 | vdrift_local[0] = 0.0; | 
| 358 | vdrift_local[1] = 0.0; | 
| 359 | vdrift_local[2] = 0.0; | 
| 360 |  | 
| 361 | for(vd = 0; vd < nobj; vd++){ | 
| 362 |  | 
| 363 | amass = info->integrableObjects[vd]->getMass(); | 
| 364 | info->integrableObjects[vd]->getVel( aVel ); | 
| 365 |  | 
| 366 | for(j = 0; j < 3; j++) | 
| 367 | vdrift_local[j] += aVel[j] * amass; | 
| 368 |  | 
| 369 | mtot_local += amass; | 
| 370 | } | 
| 371 |  | 
| 372 | #ifdef IS_MPI | 
| 373 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 374 | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 375 | #else | 
| 376 | mtot = mtot_local; | 
| 377 | for(vd = 0; vd < 3; vd++) { | 
| 378 | vdrift[vd] = vdrift_local[vd]; | 
| 379 | } | 
| 380 | #endif | 
| 381 |  | 
| 382 | for (vd = 0; vd < 3; vd++) { | 
| 383 | vdrift[vd] = vdrift[vd] / mtot; | 
| 384 | } | 
| 385 |  | 
| 386 | } | 
| 387 |  | 
| 388 | void Thermo::getCOM(double COM[3]){ | 
| 389 |  | 
| 390 | double mtot, mtot_local; | 
| 391 | double aPos[3], amass; | 
| 392 | double COM_local[3]; | 
| 393 | int i, j; | 
| 394 | int nobj; | 
| 395 |  | 
| 396 | mtot_local = 0.0; | 
| 397 | COM_local[0] = 0.0; | 
| 398 | COM_local[1] = 0.0; | 
| 399 | COM_local[2] = 0.0; | 
| 400 |  | 
| 401 | nobj = info->integrableObjects.size(); | 
| 402 | for(i = 0; i < nobj; i++){ | 
| 403 |  | 
| 404 | amass = info->integrableObjects[i]->getMass(); | 
| 405 | info->integrableObjects[i]->getPos( aPos ); | 
| 406 |  | 
| 407 | for(j = 0; j < 3; j++) | 
| 408 | COM_local[j] += aPos[j] * amass; | 
| 409 |  | 
| 410 | mtot_local += amass; | 
| 411 | } | 
| 412 |  | 
| 413 | #ifdef IS_MPI | 
| 414 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 415 | MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 416 | #else | 
| 417 | mtot = mtot_local; | 
| 418 | for(i = 0; i < 3; i++) { | 
| 419 | COM[i] = COM_local[i]; | 
| 420 | } | 
| 421 | #endif | 
| 422 |  | 
| 423 | for (i = 0; i < 3; i++) { | 
| 424 | COM[i] = COM[i] / mtot; | 
| 425 | } | 
| 426 | } | 
| 427 |  | 
| 428 | void Thermo::removeCOMdrift() { | 
| 429 | double vdrift[3], aVel[3]; | 
| 430 | int vd, j, nobj; | 
| 431 |  | 
| 432 | nobj = info->integrableObjects.size(); | 
| 433 |  | 
| 434 | // Get the Center of Mass drift velocity. | 
| 435 |  | 
| 436 | getCOMVel(vdrift); | 
| 437 |  | 
| 438 | //  Corrects for the center of mass drift. | 
| 439 | // sums all the momentum and divides by total mass. | 
| 440 |  | 
| 441 | for(vd = 0; vd < nobj; vd++){ | 
| 442 |  | 
| 443 | info->integrableObjects[vd]->getVel(aVel); | 
| 444 |  | 
| 445 | for (j=0; j < 3; j++) | 
| 446 | aVel[j] -= vdrift[j]; | 
| 447 |  | 
| 448 | info->integrableObjects[vd]->setVel( aVel ); | 
| 449 | } | 
| 450 | } |